Weakest Preconditions pt. 1

CS 536: Science of Programming, Fall 2019

9/20

A. Why

- Weakest liberal preconditions (wlp) and weakest preconditions (wp) are the most general requirements that a program must meet to be correct

B. Objectives

At the end of today you should understand

- What wlp and wp are and how they are related to preconditions in general.

C. Weaker and Weaker Preconditions?

- Say we have a triple $\models \{ p_0 \} S \{ q \}$. There may or may not be a strictly weaker precondition we can use instead of p_0. I.e., some p_1 where $\models \{ p_1 \} S \{ q \}$ with p_1 strictly weaker than p_0? (I.e, $p_1 \rightarrow p_0$, but not vice versa). Similarly, there might be an even strictly weaker p_2 that's valid as a precondition and so on.
 - (Note there's always a not-strictly weaker precondition: For an easy example, take $p_1 \equiv p_0 \land T$, $p_2 \equiv p_1 \land T$, etc.)
- So does the sequence \ldots, p_2, p_1, p_0 have to have a beginning? (Or reading the sequence backwards, is there a limit?) If $\models \{ \top \} S \{ q \}$, then the sequence stops, since there's no predicate strictly weaker than true.
- In general, it turns out that there's always a limit to the sequence \ldots, p_2, p_1, p_0. We call this limit the weakest liberal precondition (wlp) of S and q, written $\text{wlp}(S, q)$. This limit is useful because it describes the largest set of states that gives us partial correctness.
 - The key here is “largest set”. If w is the weakest liberal precondition for S and q, then no p' strictly weaker than w is a valid precondition for S and q.
 - wlp is for partial correctness; for $\models_{\text{ tot}}$, the notion is wp(S, q), the weakest precondition of S and q.
- Example: If $x \in \{ y \in \mathbb{Z} \mid y \geq 0 \}$ then $\{ 2 \leq x \leq 6 \} x := x \times x \{ x \geq 4 \}$ is valid, and we can form the sequence $2 \leq x$, …, $2 \leq x \leq 8$, $2 \leq x \leq 7$, $2 \leq x \leq 6$. Nothing weaker than $2 \leq x$ is a precondition, so it's the $\text{wp}(x := x \times x, x \geq 4)$.

D. Notation

- Notation: $\text{Sat}(p)$ is the set of states that satisfy p: $\text{Sat}(p) = \{ \sigma \in \Sigma \mid \sigma \models p \}$.
 - (Note some people write $\llbracket p \rrbracket$ for $\text{Sat}(p)$.)
- Using this notation, we can say
 - $\sigma \models_{\text{tot}} \{ p \} S \{ q \}$ iff $M(S, \sigma) \subseteq \text{Sat}(q)$.
 - Since $\bot \not\models q$, we can't have $M(S, \sigma) \subseteq \text{Sat}(q)$ if $\bot \in M(S, \sigma)$, so this guarantees termination of S.
 - $\sigma \models \{ p \} S \{ q \}$ iff $M(S, \sigma) - \{ \bot \} \subseteq \text{Sat}(q)$.
 - The original phrasing was $\sigma \models \{ p \} S \{ q \}$ iff $\sigma \models p$ implies $M(S, \sigma) - \{ \bot \} \not\models q$.

Illinois Institute of Technology Lecture 10
CS 536-05: Science of Programming – © James Sasaki, 2019
Using \subseteq covers the case where $M(S, \sigma) = \{\bot\}$ without having to name it explicitly

E. The Weakest Liberal Precondition (wlp) and Weakest Precondition (wp)

- Formally, we can define wlp and wp using states:
 - **Definition:** $wlp(S, q)$, the **weakest liberal precondition** of statement S with respect to a postcondition q, is the set of all states that satisfy $\{p\} S \{q\}$ for partial correctness. $wlp(S, q) = \{\sigma \in \Sigma | \models \{p\} S \{q\}\}$
 - **Definition:** $wp(S, q)$, the **weakest precondition** of statement S with respect to a postcondition q, is the set of all states that satisfy $\{p\} S \{q\}$ for total correctness: $wp(S, q) = \{\sigma \in \Sigma | \models_{tot} \{p\} S \{q\}\}$
 - Note $wp(S, q) \rightarrow wlp(S, q)$. If $wlp(S, q) \land \neg wp(S, q)$ is satisfiable iff running S under σ might not terminate.
 - The important property of wlp and wp is that any start state outside of them does not satisfy $\{p\} S \{q\}$ (under partial correctness for wlp and total correctness for wp).
 - We can treat wlp and wp as yielding a predicate
 - w is a $wlp(S, q)$ iff $Sat(w) = wlp(S, q)$
 - w is a $wp(S, q)$ iff $Sat(w) = wp(S, q)$
 - **Note:** w is “a” wlp/wp because as any predicate $\Leftrightarrow w$ is also a wlp/wp. (Trivial examples are $w \land T, w \land T \land T$, etc.) We say that w is determined “up to” logical equivalence, so “Let w be the wlp/wp of S and q” really means “Let w be any predicate $\Leftrightarrow wlp/wp$ of S and q.”
 - Now we can rephrase the definitions of wlp/wp using predicates:
 - $\models \{p\} S \{q\}$ iff $\models p \rightarrow wlp(S, q))$
 - $\models_{tot} \{p\} S \{q\}$ iff $\models p \rightarrow wp(S, q))$.
 - Equivalent phrasings
 - $\models \{wlp(S, q)\} S \{q\}$ and $\models \{p\} S \{q\}$ iff $\models p \rightarrow wlp(S, q))$.
 - If $\models p \rightarrow wlp(S, q))$ then $\models \{p\} S \{q\}$, but if $\not\models p \rightarrow wlp(S, q))$ then $\not\models \{p\} S \{q\}$.
 - For total correctness,
 - If $\models p \rightarrow wp(S, q))$ then $\models_{tot} \{p\} S \{q\}$, but if $\not\models p \rightarrow wlp(S, q))$ then $\not\models \{p\} S \{q\}$.
 - $\models_{tot} \{wp(S, q)\} S \{q\}$ and $\models \{p\} S \{q\} \models_{tot} p \rightarrow wp(S, q))$.

F. wp and wlp for Deterministic Programs

- If S is deterministic, then S leads to a unique result: $M(S, \sigma) = \{\tau\}$ for some $\tau \in \Sigma_\bot$.
- If S terminates normally ($\tau \in \Sigma$), then the start state σ is part of either $wlp/wp(S, q)$ or $wlp/wp(S, \neg q)$, depending on whether τ satisfies q or $\neg q$.
- Since $wp(S, q)$ is the set of states that lead to satisfaction of q, $\neg wp(S, q)$ is the set of states that lead to an error or to satisfaction of $\neg q$. Similarly, $\neg wp(S, \neg q)$ is the set of states that lead to an error or to satisfaction of q. The intersection of these two sets, $\neg wp(S, q) \land \neg wp(S, \neg q)$, is the set of states that lead to an error.
- Since σ must lead S either to termination satisfying q, termination satisfying $\neg q$, or nontermination, every state satisfies exactly one of $wp(S, q)$, $wp(S, \neg q)$, and $\neg wp(S, q) \land \neg wp(S, \neg q)$.
- Let $E \equiv \neg wp(S, q) \land \neg wp(S, \neg q)$, then we get the identities
• \(\neg wp(S, q) \Leftrightarrow E \lor wp(S, \neg q) \). The negation of “\(S \) terminates with \(q \) true” is “\(S \) doesn’t terminate or it terminates with \(q \) false”.

• \(\neg wp(S, \neg q) \Leftrightarrow E \lor wp(S, q) \) is symmetric: The negation of “\(S \) terminates with \(q \) false” is “\(S \) doesn’t terminate or it terminates with \(q \) true”.

• If \(S \) contains a loop and \(M(S, \sigma) \) diverges (and \(\sigma \in \Sigma \)), then \(\sigma \models \neg wp(S, q) \land \neg wp(S, \neg q) \). (See Figure 3.)

• On the left of Figure 3 is the set of all states \(\Sigma \) broken up into three partitions
 - The states that establish \(q \) form \(wp(S, q) = \{ \sigma \in \Sigma \mid M(S, \sigma) = \{ \tau \} \text{ and } \tau \models q \} \)
 - The states that establish \(\neg q \) form \(wp(S, \neg q) = \{ \sigma \in \Sigma \mid M(S, \sigma) = \{ \tau \} \text{ and } \tau \models \neg q \} \)
 - The states that lead to \(\bot \) form \(\neg wp(S, q) \land \neg wp(S, \neg q) = \{ \sigma \in \Sigma \mid M(S, \sigma) = \{ \bot \} \} \)

• The arrows indicate that starting from \(wp(S, q) \) or \(wp(S, \neg q) \) yields a state that satisfies \(q \) or \(\neg q \) respectively. Starting from a state outside both weakest preconditions leads to an error.

\[
\begin{array}{|c|c|c|}
\hline
\text{Establishes } q & wp(S, q) & \sigma_0 \rightarrow S \text{ (converges to } q) \rightarrow \tau_0 \quad q \\
\hline
E \text{ (Causes error)} & \neg wp(S, q) \land \neg wp(S, \neg q) & \sigma_2 \rightarrow S \text{ (yields an error)} \rightarrow \tau_1 \quad \neg q \\
\hline
\text{Establishes } \neg q & wp(S, \neg q) & \sigma_1 \rightarrow S \text{ (converges to } \neg q) \\
\hline
\end{array}
\]

\(\sigma \in \Sigma \)

\(M(S, \sigma_0) = \{ \tau_0 \} \models q \)
\(M(S, \sigma_1) = \{ \tau_1 \} \models \neg q \)
\(M(S, \sigma_2) = \{ \bot \} \not\models q \text{ and } \not\models \neg q \)

Figure 3: The Weakest Precondition for Deterministic \(S \)

• Figure 4 shows how that with deterministic programs, the \(wlp(S, q) \) combines \(wp(S, q) \) with the states that cause errors; similarly, the \(wlp(S, \neg q) \) combines \(wp(S, \neg q) \) with the states that cause errors.

• I.e., \(\sigma \models wlp(S, q) \) when \(M(S, \sigma) - \{ \bot \} \subseteq Sat(q) \). \(\sigma \models wlp(S, \neg q) \) when \(M(S, \sigma) - \{ \bot \} \subseteq Sat(\neg q) \). (Note this allows for \(M(S, \sigma) = \{ \bot \} \) without naming it as a special case.)

\[
\begin{array}{|c|}
\hline
wlp(S, q) \\
\hline
wp(S, q) \text{ establishes } q \\
\hline
\neg wp(S, q) \land \neg wp(S, \neg q) \text{ causes errors} \\
\hline
wp(S, \neg q) \text{ establishes } \neg q \\
\hline
\end{array}
\]

\(wlp(S, \neg q) \)

Figure 4: The Weakest Liberal Precondition for Deterministic \(S \)
G. *wp and wlp for Nondeterministic Programs*

- If S is nondeterministic, then $M(S, \sigma)$ is a nonempty subset of Σ_\perp that can contain more than one member. To satisfy q or $\neg q$, all the states in then $M(S, \sigma)$ must satisfy q or $\neg q$ respectively.
- Figure 5 shows the possible situations:
 - $\sigma \models wp(S, q)$ when everything in $M(S, \sigma)$ satisfies q.
 - $\sigma \models wp(S, \neg q)$ if everything in $M(S, \sigma)$ satisfies $\neg q$.
 - $\sigma \models \neg wp(S, q)$ when $\bot \in M(S, \sigma)$ and/or $\tau \models \neg q$ for some $\tau \in M(S, \sigma)$.
 - $\sigma \models \neg wp(S, \neg q)$ when $\bot \in M(S, \sigma)$ and/or $\tau \models q$ for some $\tau \in M(S, \sigma)$.
 - $\sigma \models wp(S, q) \land \neg wp(S, \neg q)$ when $\bot \in M(S, \sigma)$ and/or $\tau_1 \models q$ and $\tau_2 \models \neg q$ for some $\{\tau_1, \tau_2\} \subseteq M(S, \sigma)$.

![Diagram](image)

Figure 5: Weakest Precondition $M(S, \sigma)$ for Non-Deterministic S

- For non-deterministic programs, the situation for $wlp(S, q)$ is similar to the situation for deterministic programs in that $\sigma \models wlp(S, q)$ when $M(S, \sigma) - \{\bot\} \subseteq \text{Sat}(q)$. In Figure 6, the $wlp(S, q)$ is satisfied by σ that lead to the top or middle sets, and the the $wlp(S, \neg q)$ is satisfied by σ that lead to the middle or bottom sets.

![Diagram](image)

Figure 6: Weakest Liberal Preconditions $M(S, \sigma)$ for Non-Deterministic S

- Finally, Figure 7 shows how with nondeterministic programs, starting S outside the weakest precondition for q can still terminate in a state satisfying q: Even for $\sigma \not\models wp(S, q)$ where $\bot \not\in M(S, \sigma)$, it's possible for $M(S, \sigma) \cap \text{Sat}(q) \neq \emptyset$ because $M(S, \sigma) \cap \text{Sat}(\neg q)$ also $\neq \emptyset$.
- **Example 9:** Let $S \equiv \textbf{i}f ~ x \geq 0 \rightarrow x := 10 \Box x \leq 0 \rightarrow x := 20 \textbf{fi}$, and let $\Sigma_0 = M(S, \{x = 0\})$ be the set with two states $\{(x = 10), (x = 20)\}$. Then $\Sigma_0 \not\models x = 10, x \neq 10, x = 20,$ and $x \neq 20$. (We do have $\Sigma_0 \models x = 10 \lor x = 20.$)
H. Disjunctive Postconditions

- There are some relationships that hold between the \(wp \) of a predicate and the \(wp \)'s of its subpredicates.
- E.g., if you start in a state that is guaranteed to lead to a result that satisfies \(q_1 \) and \(q_2 \) separately, then the result will also satisfy \(q_1 \land q_2 \), and vice versa. In symbols, \(wp(S, q_1) \land wp(S, q_2) \iff wp(S, q_1 \land q_2) \).
 - This relationship holds for both deterministic and nondeterministic \(S \).
 - The relationship between \(wp(q_1 \lor q_2) \) and \(wp(q_1) \) and \(wp(q_2) \) differs for deterministic and nondeterministic \(S \).
- Deterministic \(S \): For all \(S \), \(wp(S, q_1) \lor wp(S, q_2) \iff wp(S, q_1 \lor q_2) \)
 - Nondeterministic \(S \): For all \(S \), \(wp(S, q_1) \lor wp(S, q_2) \Rightarrow wp(S, q_1 \lor q_2) \), but \(\iff \) doesn't hold for some \(S \).
 - For deterministic \(S \), \(M(S, \sigma) = \{ \tau \} \) for some \(\tau \in \Sigma \). If \(\tau \vdash q_1 \lor q_2 \) then either \(\tau \vdash q_1 \) or \(\tau \vdash q_2 \) (or both).
- So if \(M(S, \sigma) \neq \{ \bot \} \), then \(M(S, \sigma) \vdash q_1 \lor q_2 \iff M(S, \sigma) \vdash q_1 \) or \(M(S, \sigma) \vdash q_2 \).
 - Because of this, \(wp(S, q_1) \lor wp(S, q_2) \iff wp(S, q_1 \lor q_2) \).
 - For nondeterministic \(S \), we still have \(wp(S, q_1) \lor wp(S, q_2) \Rightarrow wp(S, q_1 \lor q_2) \). I.e., if you start in a state that's guaranteed to terminate satisfying \(q_1 \), or guaranteed to terminate satisfying \(q_2 \), then that state is guaranteed to terminate satisfying \(q_1 \lor q_2 \).
- For nondeterministic \(S \), the other direction, \(wp(S, q_1) \lor wp(S, q_2) \iff wp(S, q_1 \lor q_2) \), doesn't always hold: \(S \) can guarantee establishing \(q_1 \lor q_2 \) without leaving any way to guarantee satisfaction of just \(q_1 \) or just \(q_2 \).

Example 10: Let \(CoinFlip \equiv \textbf{if} \ T \rightarrow x := 0 \textbf{else} T \rightarrow x := 1 \textbf{fi} \).
- For all \(\sigma \), \(M(CoinFlip, \sigma) = \{ \{ x = 0, x = 1 \} \} \), which \(\vdash x = 0 \lor x = 1 \) but \(\not\vdash x = 0 \) and \(\not\vdash x = 1 \).
- Let \(Heads \iff wp(CoinFlip, x = 0) \), \(Tails = wp(CoinFlip, x = 1) \), and \(Heads_or_Tails = wp(CoinFlip, x = 0 \lor x = 1) \). We find \(Heads \iff Tails \iff F \) but \(Heads_or_Tails \iff T \).
- Altogether, \((Heads \lor Tails) \) \(\Rightarrow \) (but not \(\iff \)) \(Heads_or_Tails \).
- So for nondeterministic \(S \), even though \(\vdash_{\text{tot}} \{ wp(S, q) \} S \{ q \} \), if \(q \) is disjunctive, it's possible for you to run \(S \) in a state \(\sigma \vdash \neg wp(S, q) \) but still terminate without error in a state satisfying \(q \). (For deterministic \(S \), this won't happen.) E.g., if \(S \equiv \textbf{if} B \textbf{then} x := 0 \textbf{else} x := 1 \textbf{fi} \), then \(M(S, \sigma) \vdash x = 0 \) or \(M(S, \sigma) \vdash x = 1 \) (tails), \(wp(S, x = 0) \iff B \) and \(wp(S, x = 1) \iff \neg B \).
If we start in a state \(\sigma \) satisfying \(\text{wlp}(S, q) \) then either some execution path for \(S \) in \(\sigma \) causes an error or else all execution paths for \(S \) in \(\sigma \) lead to final states that \(\models q \). If we start in a \(\sigma \) satisfying \(\neg \text{wlp}(S, q) \), then every execution path for \(S \) in \(\sigma \) leads to a final state and at least one of the final states \(\models \neg q \).

We always have \(\text{wp}(S, q) \Rightarrow \text{wlp}(S, q) \); the other direction, \(\text{wp}(S, q) \Leftarrow \text{wlp}(S, q) \), only holds if \(S \) never causes an error.

Example 11: Let \(W \equiv \textbf{while} \ x \neq 0 \ \textbf{do} \ x := x - 1; \ y := 0 \ \textbf{od} \), then for \(M(W, \sigma) \),

- If \(\sigma = x = 0 \) then \(M(W, \sigma) = \{ \sigma \} \). Note if \(\sigma = x = 0 \land y = 0 \) then \(M(W, \sigma) = \{ \sigma \} \)
- If \(\sigma = x > 0 \) then \(M(W, \sigma) = \{ \sigma[x \mapsto 0][y \mapsto 0] \} \)
 - Note the only way \(W \) terminates with \(y \neq 0 \) is if we run it in \(x = 0 \land y \neq 0 \).
- If \(\sigma = x < 0 \) then \(M(W, \sigma) = \{ \bot \} \) so for any postcondition \(q, x < 0 \rightarrow \text{wp}(W, r) \) and \(x < 0 \rightarrow \neg \text{wp}(W, q) \).
- If we look at a particular postcondition, say \(q \equiv x = 0 \land y = 0 \), we find \(\text{wp}(W, q) \equiv x > 0 \lor x = y = 0 \lor x < 0 \) and \(\text{wp}(W, q) \equiv x > 0 \lor x = y = 0 \). For \(\neg q \equiv x \neq 0 \lor y \neq 0 \), since \(W \) can never terminate with \(x \neq 0 \), we find \(\text{wp}(W, \neg q) \equiv \text{wp}(W, y \neq 0) \equiv x = 0 \land y \neq 0 \lor x < 0 \) and \(\text{wp}(W, \neg q) \equiv \text{wp}(W, y \neq 0) \equiv x = 0 \land y \neq 0 \)
- The “being weakest” property of \(\text{wlp} \) is similar to that for \(\text{wp} \), but for partial correctness: \(\models \{ \text{wlp}(S, q) \} S \{ q \} \) and for all \(p, \models \{ p \} S \{ q \} \) iff \(p \Rightarrow \text{wp}(S, q) \).

J. Calculating \(\text{wlp} \) for Loop-Free Programs

- It’s easy to calculate the \(\text{wlp} \) of a loop-free program.
 - If a loop-free program cannot cause a runtime error then its \(\text{wp} \) and \(\text{wlp} \) are the same, which is also nice.
- The following algorithm takes \(S \) and \(q \) where \(S \) has no loops and syntactically calculates a particular predicate for \(\text{wlp}(S, q) \), which is why it’s described using \(\text{wlp}(S, q) \equiv \ldots \) instead of \(\text{wp}(S, q) \equiv \ldots \).
 - \(\text{wlp}(\text{skip}, q) \equiv q \)
 - \(\text{wlp}(v := e, Q(v)) \equiv Q(e) \) where \(Q \) is a predicate function over one variable
 - The operation that takes us from \(Q(v) \) to \(Q(e) \) is called **syntactic substitution**; we’ll look at it in more detail soon, but in the simple case, we simply inspect the definition of \(Q \), searching its text for occurrences of the variable \(v \) and replacing them with copies of \(e \).
 - \(\text{wlp}(S_1 ; S_2, q) \equiv \text{wlp}(S_1, \text{wlp}(S_2, q)) \)
 - \(\text{wlp}(\text{if} \ B \ \text{then} \ S_1 \ \text{else} \ S_2 \ \text{fi}, q) \equiv (B \rightarrow w_1) \land (\neg B \rightarrow w_2) \) where \(w_1 \equiv \text{wlp}(S_1, q) \) and \(w_2 \equiv \text{wlp}(S_2, q) \). If you want, you can write \((B \land w_1) \lor (\neg B \land w_2) \), which is equivalent.
 - \(\text{wlp}(\text{if} \ B_1 \rightarrow S_1 \land B_2 \rightarrow S_2 \ \text{fi}, q) \equiv (B_1 \rightarrow w_1) \land (B_2 \rightarrow w_2) \) where \(w_1 \equiv \text{wlp}(S_1, q) \) and \(w_2 \equiv \text{wlp}(S_2, q) \).
 - For the nondeterministic \(\text{if} \), don’t write \((B_1 \land w_1) \lor (B_2 \land w_2) \) instead of \((B_1 \rightarrow w_1) \land (B_2 \rightarrow w_2) \); they aren’t logically equivalent. When \(B_1 \) and \(B_2 \) are both true, either \(S_1 \) or \(S_2 \) can run, so we need \(B_1 \land B_2 \rightarrow w_1 \land w_2 \).
 - Using \((B_1 \land w_1) \lor (B_2 \land w_2) \) fails because it allows for the possibility that \(B_1 \) and \(B_2 \) are both true but one of \(w_1 \) and \(w_2 \) is not true. This isn’t a problem when \(B_2 \Rightarrow \neg B_1 \), which is why we can use \((B \land w_1) \lor (\neg B \land w_2) \) with deterministic \(\text{if} \) statements.
Strength; Weakest Preconditions, pt. 1

CS 536: Science of Programming

A. Why

- The weakest precondition and weakest liberal preconditions are the most general preconditions that a program needs in order to run correctly.

B. Objectives

At the end of this activity you should be able to

- Define what a weakest liberal precondition (wlp) and weakest precondition (wp) is and how it's related to (and different from) preconditions in general
- Be able to calculate the wlp of a simple loop-free program.

C. Problems

1. Let $w \iff \text{wp}(S, q)$ and let S be deterministic.
 a. For which $\sigma \models w$ do we have $\sigma \vdash_{\text{tot}} \{ w \} S \{ q \}$?
 b. For which $\sigma \models \neg w$ do we have $\sigma \vdash_{\text{tot}} \{ \neg w \} S \{ q \}$?
 c. For which $\sigma \models w$ do we have $\sigma \vdash_{\text{tot}} \{ w \} S \{ \neg q \}$?
 d. For which $\sigma \models \neg w$ do we have $\sigma \vdash \{ \neg w \} S \{ \neg q \}$?
 e. If S is nondeterministic, how do we have to modify the statement in part (d)?

2. If $\sigma \models w$ and $\sigma \models \{ w \} S \{ q \}$ and $\sigma \not\vdash_{\text{tot}} \{ w \} S \{ q \}$,
 a. What can we conclude about $M(S, \sigma)$?
 b. If in addition, S is deterministic, what more can we conclude about $M(S, \sigma)$?

3. For an arbitrary p (not necessarily one that implies w), what \models and \vdash_{tot} properties relationships do the triples
 a. $\{ p \land w \} S \{ q \}$ and $\{ \neg p \land w \} S \{ q \}$ have?
 b. $\{ p \land \neg w \} S \{ \neg q \}$ and $\{ \neg p \land \neg w \} S \{ \neg q \}$ have, if S is deterministic?
 c. $\{ p \land \neg w \} S \{ q \}$ and $\{ \neg p \land \neg w \} S \{ q \}$ have, if S is nondeterministic?

4. How are $\text{wp}(S, q_1 \lor q_2)$ and $\text{wp}(S, q_1) \cup \text{wp}(S, q_2)$, related if S is deterministic? If S is nondeterministic?
5. Which of the following statements are correct?
 a. For all $\sigma \in \Sigma$, $\sigma \vDash wp(S, q)$ iff $M(S, \sigma) \vDash q$
 b. For all $\sigma \in \Sigma$, $\sigma \vDash wlp(S, q)$ iff $M(S, \sigma) \cup \Sigma \vDash q$
 c. $\vDash_{tot} \{ wp(S, q) \} \ S \{ q \}$
 d. $\vDash \{ wlp(S, q) \} \ S \{ q \}$
 e. $\vDash_{tot} \{ p \} \ S \{ q \}$ iff $p \vdash wp(S, q)$
 f. $\vDash \{ p \} \ S \{ q \}$ iff $p \vdash wlp(S, q)$
 g. $\vDash \{ \neg wp(S, q) \} \ S \{ \neg q \}$
 h. $\vDash_{tot} \{ \neg wlp(S, q) \} \ S \{ \neg q \}$
 i. $wlp(S, q) \land wlp(S, \neg q)$ is not satisfiable
 j. $\not\vDash p \rightarrow wp(S, q)$ iff $\not\vDash_{tot} \{ p \} \ S \{ q \}$
 k. $\not\vDash p \rightarrow wlp(S, q)$ iff $\not\vDash \{ p \} \ S \{ q \}$
Solution to Activity 10 (Weakest Preconditions, pt. 1)

1. (Properties of weakest preconditions)
 a. For all $\sigma \vDash w$, we have $\sigma \vDash_{\text{tot}} \{w\} S\{q\}$, since w is a precondition for $\vDash_{\text{tot}} \{\ldots\} S\{q\}$.
 b. For no $\sigma \vDash \neg w$ do we have $\sigma \vDash \{\neg w\} S\{q\}$ because for w to be the weakest precondition for S and q, it cannot be that $M(S, \sigma) \vDash q$.
 c. For no $\sigma \vDash w$ do we have $\sigma \vDash_{\text{tot}} \{w\} S\{\neg q\}$ because w is a precondition for $\vDash_{\text{tot}} \{\ldots\} S\{q\}$.
 d. For all $\sigma \vDash \neg w$, we have $\sigma \vDash \{\neg w\} S\{\neg q\}$ because for w to be the weakest precondition for S and q, $\sigma \vDash \neg w$ implies $M(S, \sigma) \not\vDash q$. Since S is deterministic, either $M(S, \sigma) = \{\bot\}$ or $M(S, \sigma) \vDash \neg q$. Either way, $\sigma \vDash \{\neg w\} S\{\neg q\}$.
 e. If S is nondeterministic and $M(S, \sigma) \not\vDash q$, then as in the deterministic case, nontermination is a possibility ($\bot \subseteq M(S, \sigma)$ can happen). Regardless, we no longer know $M(S, \sigma) \vDash \neg q$ because we can have $M(S, \sigma) \not\vDash q$ and $M(S, \sigma) \not\vDash \neg q$ simultaneously.

2. (Partial but not total correctness when the wp is satisfied)
 a. If $\sigma \vDash w$ and $\sigma \vDash \{w\} S\{q\}$ then $M(S, \sigma) - \{\bot\} \vDash q$. If $\sigma \not\vDash_{\text{tot}} \{w\} S\{q\}$ then $M(S, \sigma) \not\vDash q$. This can only happen if $\bot \subseteq M(S, \sigma)$. (I.e., S can diverge under σ.)
 b. If in addition S is deterministic, then we don't just have $\bot \subseteq M(S, \sigma)$, we have $\{\bot\} = M(S, \sigma)$. (I.e., S diverges under σ.)

3. (Intersection with wp)
 a. $\vDash_{\text{tot}} \{p \land w\} S\{q\}$ and $\vDash_{\text{tot}} \{\neg p \land w\} S\{q\}$ follow from w being a precondition under \vDash_{tot}.
 b. Because w is weakest, we have for all $\sigma \vDash p \land \neg w$, that $\sigma \not\vDash_{\text{tot}} \{p \land \neg w\} S\{q\}$. If S is deterministic, this implies $\sigma \vDash \{p \land \neg w\} S\{\neg q\}$. Similarly, for all $\sigma \vDash \neg p \land \neg w$, we have $\sigma \vDash \{p \land \neg w\} S\{\neg q\}$.
 c. If S is nondeterministic then if $\sigma \vDash p \land \neg w$, we still know $\sigma \not\vDash_{\text{tot}} \{p \land \neg w\} S\{q\}$ but both $\sigma \vDash$ and $\sigma \not\vDash \{p \land \neg w\} S\{\neg q\}$ are possible. Similarly, if $\sigma \vDash \neg p \land \neg w$, we know $\sigma \not\vDash_{\text{tot}} \{\neg p \land \neg w\} S\{q\}$, but both $\sigma \vDash$ and $\sigma \not\vDash \{p \land \neg w\} S\{\neg q\}$ are possible.

4. For deterministic S, $wp(S, q_1 \lor q_2) = wp(S, q_1) \cup wp(S, q_2)$. For nondeterministic S, we have \supseteq instead of $=$.

5. (Properties of wp and wlp) The following properties are correct:
 (a) and (b) are the basic definitions of wp and wlp
 (c) and (d) say that wp and wlp are preconditions
 (e) and (f) say that wp and wlp are weakest preconditions
 (g) and (h) also say that wp and wlp are weakest
 (j) and (k) are the contrapositives of (e) and (f).
 However, (i) is incorrect: It claims that $wp(S, q) \land wlp(S, \neg q)$ is never satisfiable, but if $M(S, \sigma) \subseteq \{\bot\}$, then σ satisfies both $wlp(S, q)$ and $wlp(S, \neg q)$.