State Updates, Satisfaction of Quantified Predicates

CS 536: Science of Programming, Fall 2019

A. Why?

• A predicate is satisfied relative to a state; it is valid if it is satisfied in all states.
• State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes

At the end of this lecture, you should

• Know what it means to update a state.
• Know what it means for a quantified predicate to be valid or be satisfied in a state.

C. "Updating" States

• To check quantified predicates for satisfaction, we need to look at different states that are related to, but not identical to, our starting state.

• Example 1: For \(\{ y = 1 \} \models \forall x \in \mathbb{N}. x^2 + 1 \geq y - 1 \), we need to know that \(\{ y = 1, x = \alpha \} \models x^2 + 1 \geq y - 1 \) for every natural number \(\alpha \). I.e., we need

 • \(\{ y = 1, x = 0 \} \models x^2 + 1 \geq y - 1 \)
 • \(\{ y = 1, x = 1 \} \models x^2 + 1 \geq y - 1 \)
 • \(\{ y = 1, x = 2 \} \models x^2 + 1 \geq y - 1 \)
 • ….

 • Similarly, for \(\{ z = 4 \} \models \exists x \in \mathbb{N}. x \geq z \), we need \(\{ z = 4, x = \alpha \} \models x \geq z \) for some particular natural number \(\alpha \) (\(\alpha = 5 \) works nicely).

• There is a complicating factor. If the quantified variable already appears in the state, then we need to replace its binding with one that gives the value we’re interested in checking.

• Example 2: We already know \(\{ z = 4 \} \models \exists x \in \mathbb{N}. x \geq z \) because \(\{ z = 4, x = 5 \} \models x \geq z \). If we start with the state \(\{ z = 4, x = -15 \} \), which already has a binding for \(x \), we find that the new state \(\models \exists x \in \mathbb{N}. x \geq z \) because once again, \(\{ z = 4, x = 5 \} \models x \geq z \) holds.

• In Example 2, the \(x \) that appears in \(\{ z = 4, x = 5 \} \) is not the same \(x \) that appears within \(\exists x \in \mathbb{N}. x \geq z \). However, the two \(x \)’s in “\(\{ z = 4, x = 5 \} \models x \geq z \)” are the same. Giving the two \(x \)’s the same name causes the confusion. If we gave the \(x \)’s different names, there’d be no problem with understanding; let \(xo \) be the “outer” \(x \) and \(xi \) be the “inner” \(x \), then

\[
\{ z = 4, xo = -15 \} \models \exists xi \in \mathbb{N}. xi \geq z
\]

because

\[
\{ z = 4, xo = -15, xi = 5 \} \models xi \geq z
\]
• When we use the same name \(x \), the binding for the outer \(x \) becomes invisible, overridden by the binding for the inner \(x \):

\[
\{ z = 4, \ (outer) \ x = -15 \} \models \exists x \in \mathbb{N}. \ x \geq z \text{ because } \{ z = 4, \ x = 5 \} \models x \geq z
\]

• **Definition:** For any state \(\sigma \), variable \(x \), and value \(\alpha \), the **update of \(\sigma \) at \(x \) with \(\alpha \)** (written \(\sigma[x \mapsto \alpha] \)) is the state that is a copy of \(\sigma \) except that it binds variable \(x \) to value \(\alpha \).

• Let \(\tau = \sigma[x \mapsto \alpha] \), then \(\tau(x) = \alpha \); if variable \(y \not\equiv x \), then \(\tau(y) = \sigma(y) \).

• Note \(\tau(x) = \alpha \) regardless of whether \(\sigma(x) \) is defined or not. If \(\sigma(x) \) is defined, its type and exact value are irrelevant.

• Set theoretically,

 • If \(x \) has no binding in \(\sigma \), then \(\sigma[x \mapsto \alpha] \) is \(\sigma \cup \{ x = \alpha \} \): It’s like \(\sigma \) but has been extended with \(x = \alpha \).

 • If \(x \) has a binding in \(\sigma \), say \(\sigma = \{ x = \beta \} \cup \sigma_0 \) where \(\sigma_0 \) is the rest of \(\sigma \), then \(\sigma[x \mapsto \alpha] = \sigma_0 \cup \{ x = \alpha \} \).

 It’s like \(\sigma \) but has the binding \(x = \alpha \), not \(x = \beta \). (Having two bindings for \(x \) would be illegal.)

• **Important:** Calling it the “update” of \(\sigma \) is kind of misleading because we’re not modifying \(\sigma \).

• Taking \(\sigma[x \mapsto \alpha] \) **does not do** an update in place; if we define \(\tau = \sigma[x \mapsto \alpha] \), then \(\sigma \) is still \(\sigma \).

• Conceptually, we aren’t modifying \(\sigma \), we’re creating a new state.

• We’re not required to give \(\sigma[x \mapsto \alpha] \) a new name; we can write it out explicitly:

 • If \(x \equiv y \), then \(\sigma[x \mapsto \alpha](y) = \alpha \); otherwise (if \(x \not\equiv y \)), then \(\sigma[x \mapsto \alpha](y) = \sigma(y) \).

 • (You have to read \(\sigma[x \mapsto \alpha](y) \) left-to-right — we’re taking the function \(\sigma[x \mapsto \alpha] \) and applying it to \(y \).

 I.e., \(\sigma[x \mapsto \alpha](y) = (\sigma[x \mapsto \alpha])(y) \), where the left pair of parentheses are for grouping and the ones around \(y \) are for the function call.)

• **Example 3:** If \(\sigma = \{ x = 2, \ y = 6 \} \), then \(\sigma[x \mapsto 0] = \{ x = 0, \ y = 6 \} \):

 • \(\sigma[x \mapsto 0](x) = 0 \) (Even though \(\sigma(x) = 2 \))

 • \(\sigma[x \mapsto 0](y) = \sigma(y) = 6 \) (Since we didn’t update \(y \))

 • \(\sigma[x \mapsto 0](x+y) = 0+6 = 6 \) (Since the \(x \) in \(x+y \) gets evaluated to 0)

 • \(\sigma[x \mapsto 0] \models x^2 \leq 0 \) (Even though our starting \(\sigma \not\equiv x^2 \leq 0 \))

• The value part of an update has to be a semantic value, not a syntactic one, so \(\sigma[x \mapsto x+1] \) isn’t well-formed.

 • In these notes, it may help to remember that since \(x+1 \) is **in this font**, it’s syntactic.

 • On the other hand, “\(\sigma[x \mapsto \sigma(x+1)] \)” or “\(\sigma[x \mapsto \alpha \text{ plus one} \)” where \(\alpha = \sigma(x) \)” do make sense.

Multiple Updates

• We can do a sequence of updates on a state. E.g., \(\sigma[x \mapsto 0][y \mapsto 8] \) is a doubly updated state. Sequences of updates are read left-to-right, so this is \((\sigma[x \mapsto 0])[y \mapsto 8] \).

• **Example 4:** If \(\sigma = \{ x = 2, \ y = 6 \} \), then \(\sigma[x \mapsto 0][y \mapsto 8] = \{ x = 0, \ y = 6 \}[y \mapsto 8] = \{ x = 0, \ y = 8 \} \).

• The order of update doesn’t matter if you have two different variables.

• **Example 5:** \(\sigma[x \mapsto 0][y \mapsto 8] = \sigma[y \mapsto 8][x \mapsto 0] \).

* Unfortunately, “update” is the traditional name, and for myself, I can't find any word that's exactly right. We're not always **extending** \(\sigma \), we're not always **superseding** \(\sigma \),
If you update the same variable twice, the second update supersedes the first.

Example 6: \[\sigma[x \mapsto 0][x \mapsto 17] = \sigma[x \mapsto 17] \neq \sigma[x \mapsto 17][x \mapsto 0] = \sigma[x \mapsto 0] \]

Of course, if the second update is identical to the first, nothing happens: \[\sigma[x \mapsto \alpha][x \mapsto \alpha] = \sigma[x \mapsto \alpha] \]

If you have to evaluate an expression, be sure to do it in the correct state.

- Let \(\sigma(x) = 1 \) and let \(\tau = \sigma[x \mapsto 2] \), then \(\tau[z \mapsto \sigma(x)+10] \) maps \(z \) to \(\sigma(x)+10 = 1+10 = 11 \). We can omit \(\tau \) and also write \(\sigma[x \mapsto 2][z \mapsto \sigma(x)+10] \), which gives the same state as \(\tau \).
- On the other hand, \(\tau[z \mapsto \tau(x)+10] \) maps \(z \) to \(\tau(x)+10 = 2+10 = 12 \). Here, if we don’t give a name to \(\sigma[x \mapsto 2] \), then we can’t write \(\tau[z \mapsto \tau(x)+10] \) so we have to write \(\sigma[x \mapsto 2][z \mapsto \sigma[x \mapsto 2](x)+10] \). (This is pretty ugly, so giving \(\sigma[x \mapsto 2] \) a name like \(\tau \) makes things more readable.)

D. Updating Array Values

- Updating array elements like \(b[0] \) is a bit more complicated than updating simple variables like \(x \) and \(y \). First, let’s extend our notion of updating states to updating general functions.

Definition: If \(\varphi \) is a function on one argument and \(\alpha \) and \(\beta \) are valid members of the domain and range of \(\varphi \) respectively, then the **update of \(\varphi \) at \(\alpha \) with \(\beta \)**, written \(\varphi[\alpha \mapsto \beta] \), is the function defined by \(\varphi[\alpha \mapsto \beta](\gamma) = \beta \) if \(\gamma = \alpha \) and \(\varphi[\alpha \mapsto \beta](\gamma) = \varphi(\gamma) \) if \(\gamma \neq \alpha \).

Definition: If \(\sigma \) is a (proper) state for an array \(b \) and \(\alpha \) is a valid index value for \(b \), then \(\sigma[b[\alpha] \mapsto \beta] \) means \(\sigma[b \mapsto \gamma[\alpha \mapsto \beta]] \) where \(\gamma \) is the function \(\sigma(b) \). In words, if \(\sigma \) includes the binding \(b = \text{function} \gamma \), then the updating \(\sigma \) at \(b[\alpha] \) with \(\beta \) is just like updating \(\sigma \) at \(b \) with an updated version of \(\gamma \), namely \(\gamma[\alpha \mapsto \beta] \).

Example 7: Say \(\sigma = \{ x = 3, b = (2, 4, 6) \} \), then \(\sigma[b[0] \mapsto 8] = (x = 3, b = (8, 4, 6)) \). Here, \(\sigma(b) \) is the function \((2, 4, 6) \) (which means \(\{(0, 2), (1, 4), (2, 6)\} \)), so \(\sigma(b)[0 \mapsto 8] \) (the update of function \(\sigma(b) \)) is the function \((2, 4, 6)[0 \mapsto 8] = (8, 4, 6) \).

E. Satisfaction of Quantified Predicates

- One use of updated states is for describing how assignment works. (We’ll see this later.) The other use for updated states is for defining when quantified predicates are satisfied.

Definition: \(\sigma \models \exists x \in S. \varphi \) if for one or more witness values \(\alpha \in S \), it’s the case that \(\sigma[x \mapsto \alpha] \models \varphi \). Note we’re asking a hypothetical question: “If we were to calculate \(\sigma[x \mapsto \alpha] \), would we find that it satisfies \(\varphi \)?”

Example 8a: For any state \(\sigma \), we can show \(\sigma \models \exists x. x^2 \leq 0 \) using 0 as the witness: \(\sigma[x \mapsto 0] \models x^2 \leq 0 \), since \(\sigma[x \mapsto 0](x^2) \leq \sigma[x \mapsto 0](0) = (0^2 \leq 0) = T \).

- Remember, \(\sigma(x) \) is irrelevant, since \(\sigma[x \mapsto \alpha] \) overrides any value for \(\sigma(x) \).

Example 8b: If \(\sigma(x) \) is, say 5, it’s still the case that \(\sigma \models \exists x. x^2 \leq 0 \) using 0 as the witness because we \(\sigma[x \mapsto 0] \models x^2 \leq 0 \), regardless of \(\sigma(x) = 5 \).

- If there are many successful witness values, we don’t have to specify all of them; we just need one.

Example 12: If \(\sigma(y) = 3 \), then \(\sigma \models \exists x. x^2 \leq y \) with \(x = 0 \) or 1 as possible witness values.
• **Definition**: \(\sigma \models \forall x \in S, p \) if for every value \(\alpha \in S \), we have \(\sigma[x \mapsto \alpha] \models p \). (Again, this is hypothetical: “If for every \(\alpha \), we were to calculate \(\sigma[x \mapsto \alpha] \), would we find that it satisfies \(p \)?”

• **Example 10**: To know \(\sigma \models \forall x \in \mathbb{Z}, x^2 \geq x \), we need to know \(\sigma[x \mapsto \alpha] \models x^2 \geq x \) for every \(\alpha \in \mathbb{Z} \).
Since for every integer \(\alpha \), indeed \(\alpha^2 \geq \alpha \), this does hold. Recall that it doesn’t matter what \(\sigma(x) \) is, since we’re interested in \(\sigma[x \mapsto \alpha] \).

• When asking if \(\sigma \) satisfies \(\forall x \in S, q \) or \(\exists x \in S, q \), we don’t care about \(\sigma(x) \). For a predicate \(p \) in general, for the question “Does \(\sigma \models p ? \)” only depends on how \(\sigma \) operates on the non-quantified variables of \(p \).

• **Example 11**: Since the body of \(\forall x \in \mathbb{Z}, x^2 \geq x \) uses only the quantified variable \(x \), it doesn’t matter what bindings \(\sigma \) has when checking \(\sigma \models \forall x \in \mathbb{Z}, x^2 \geq x. \) Even \(\sigma = \emptyset \) works: \(\emptyset \models \forall x \in \mathbb{Z}, x^2 \geq x \).

• Note with nested quantifiers, the notation does get more complicated.

• **Example 12**: \(\sigma \models \forall x \geq y^2, \exists z, z > x + y^2 \) iff (for every \(\alpha \in \mathbb{Z}, \) if \(\alpha \geq \sigma(y)^2 \), then there is some \(\beta \in \mathbb{Z} \) such that \(\beta > \alpha + \sigma(y)^2 \).

\[
\sigma \models \forall x \geq y^2, \exists z, z \geq x + y^2
\]
iff \(\sigma \models \forall x, x > y^2 \rightarrow \exists z, z \geq x + y^2 \) \quad defn bounded \(\forall \)
iff for every \(\alpha \in \mathbb{Z}, \sigma[x \mapsto \alpha] \models x > y^2 \rightarrow \exists z, z \geq x + y^2, \) \quad defn \(\models \forall \)

Now, \(\sigma[x \mapsto \alpha] \models x > y^2 \) implies \(\sigma[x \mapsto \alpha] \models \exists z, z \geq x + y^2 \)
iff \(\sigma[x \mapsto \alpha] \models x > y^2 \) implies \(\sigma[x \mapsto \alpha] \models \exists z, z \geq x + y^2 \) \quad defn \(\models \rightarrow \)
iff \(\sigma[x \mapsto \alpha] \models \exists z, z \geq x + y^2 \) \quad defn \(\models \exists \)
iff \(\alpha > \sigma(y)^2 \) implies for some \(\beta, \sigma[x \mapsto \alpha] [z \mapsto \beta] \models z \geq x + y^2 \)
iff \(\alpha > \sigma(y)^2 \) implies for some \(\beta, \beta \geq \alpha + \sigma(y)^2 \)
iff \(\alpha > \sigma(y)^2 \) \quad defn \(\models \geq \)

Taking \(\beta = 2\alpha \) for our witness value, we need \(\alpha > \sigma(y)^2 \) implies for some \(2\alpha \geq \alpha + \sigma(y)^2 \), which is true.
Note defining intermediate names like ”let \(\tau = \sigma[x \mapsto \alpha] [z \mapsto \beta] \)” is allowed, if you prefer that style.

Justifying DeMorgan’s Laws for Quantified Predicates

• In general, we want our systems of reasoning to be **sound**: We want the textual transformations that make up logical equivalence to reflect truths about how our semantics work.

• **Example 15**: Here is a check of DeMorgan’s law for existentials, which says \(\neg \exists x, p \equiv \forall x, \neg p \).
Semantically, we want each of these to be valid if and only if the other is. So we need \(\sigma \models \neg \exists x, p \) if and only if \(\sigma \models \forall x, \neg p \).

\[
\sigma \models \neg \exists x \in S, p
\]
iff \(\sigma \not\models \exists x, p \) \quad defn of \(\sigma \models \neg \)-predicate
iff for no \(\alpha \in S \) do we have \(\sigma[x \mapsto \alpha] \models p \) \quad defn of \(\sigma \models \exists \)-existential
iff for every \(\alpha \in S \) we have \(\sigma[x \mapsto \alpha] \not\models p \) \quad equivalence of “no \(\models \)” vs “every \(\not\models \)”
iff for every \(\alpha \in S \) we have \(\sigma[x \mapsto \alpha] \models \neg p \) \quad defn of \(\sigma \models \neg \)-predicate
iff \(\sigma \models \forall x, \neg p \) \quad defn of \(\sigma \models \) universal.

• By using this property of \(\neg \exists \), we can get a short proof of soundness for the negation of a universal: For all \(\sigma \),
\[\sigma \models \neg \forall x. p \]

iff \[
\sigma \models \neg (\forall x. \neg \neg p)
\]

iff \[
\sigma \models \neg (\neg \exists x. \neg p)
\]

iff \[
\sigma \models \exists x. \neg p
\]

double \(\neg\)

DeMorgan law (\(\neg \exists vs \forall \neg\))

double \(\neg\)
Satisfaction, Validity, and State Updates

CS 536: Science of Programming, Fall 2019

A. Why
• A predicate is satisfied or unsatisfied relative to a state.
• A predicate is valid if it is satisfied in all states.
• State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes
At the end of today, you should
• Know how to check a predicate for satisfaction in a state, how to check a predicate for validity, and know how to update a state.

C. Questions
1. Say u and v stand for variables (possibly the same variable) and α and β are values (possibly equal). When is $\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha]$? Hint: There are four cases because maybe $x \equiv y$, maybe $\alpha = \beta$.

2. Let $\sigma(b) = (7, 5, 12, 16)$.
 a. Does $\sigma \models \exists k. 0 \leq k \land k+1 < \text{size}(b) \land b[k] < b[k+1]$? If so, what was your witness values for k?
 b. Does $\sigma \models \exists k. 0 \leq k-1 \land k+1 < \text{size}(b) \land b[k-1] < b[k] < b[k+1]$? If so, what was your witness values for k?
 c. Does $\sigma \models \forall k. b[k] > 0$?
 d. If $\sigma(k) = -5$, then does $\sigma \models \exists k. b[k] > 0$?

3. For each of the situations below, fill in the blanks to describe when the situation holds.
 Fill in _____ 1 with “some”, “every”, or “this”
 Fill in _____ 2 with “some” or “every”,
 Fill in _____ 3 with “$\sigma(x)$ must be undefined”, “$\sigma(x)$ must be defined and $\sigma \models p$”, or “nothing of $\sigma(x)$”,
 Fill in _____ 4 with “$\models p$” or “$\not\models p$”.
 a. $\sigma \models (\exists x \in U. p)$ iff for _____ 1 state σ and _____ 2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____ 4
 b. $\sigma \models (\forall x \in U. p)$ iff for _____ 1 state σ and _____ 2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____ 4
 c. $\sigma \models (\exists x \in U. p)$ requires _____ 3.
 d. $\sigma \models (\forall x \in U. p)$ requires _____ 3.
 e. $\sigma \not\models (\exists x \in U. p)$ iff for _____ 1 state σ for _____ 2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____ 4 p.
 f. $\sigma \not\models (\forall x \in U. p)$ iff for _____ 1 state σ for _____ 2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____ 4 p.
 g. $\not\models (\forall x \in U. p)$ iff for _____ 2 state σ, we have σ _____ 4 $(\forall x \in U. p)$.
 h. $\not\models (\exists x \in U. p)$ iff for _____ 2 state σ, we have σ _____ 4 $(\exists x \in U. p)$.
 i. $\not\models (\forall x \in U. p)$ iff for _____ 2 state σ, and for _____ 2 $\alpha \in U$, we have $\sigma[x \mapsto \alpha]$ _____ 4.
j. $\forall (\exists x \in U . (\forall y \in V . p))$ iff for $\alpha \in U$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ ______ 4.

k. $\neg (\exists x \in U . (\forall y \in V . p))$ iff for $\alpha \in U$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta] $ $\models | \models | \neg | p$.

l. $\forall (\forall x \in U . (\exists y \in V . p))$ iff for $\alpha \in U$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta] $ $\models | \models | p$.

m. $\neg (\forall x \in U . (\exists y \in V . p))$ iff for $\alpha \in U$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ ______ 4.

4. Let $p_1 \equiv \exists y . \forall x . f(x) > y$, and let $p_2 \equiv \forall x . \exists y . f(x) > y$. (As usual, assume a domain of \mathbb{Z}.)

a. Is it the case that (regardless of the definition of f), if p_1 is valid then so is p_2? If so, explain why. If not, give a definition of $f(x)$ and show $\models p_1$ but $\not\models p_2$.

b. (Repeat part a in the other direction.) Is it the case that (regardless of the definition of f), if p_2 is valid then so is p_1? If so, explain why. If not, give a definition of $f(x)$ and show $\models p_2$ but $\not\models p_1$.

CS 536: Solution to Activity 4 (Satisfaction, Validity, and State Updates)

1. \(\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha] \) iff \(u \neq v \) or \((u \equiv v \text{ and } \alpha = \beta) \).

2. (Quantified statements over arrays) Let \(\sigma(b) = (7, 5, 12, 16) \).
 a. Yes, \(\sigma \models \exists k \cdot 0 \leq k \wedge k+1 < \text{size}(b) \wedge b[k] < b[k+1] \) with 1 and 2 as possible witnesses for \(k \).
 b. Yes, \(\sigma \models \exists k \cdot 0 \leq k-1 \wedge k+1 < \text{size}(b) \wedge b[k-1] < b[k] < b[k+1] \) with 2 as the only witness that works.
 c. Yes, \(\sigma \models \forall k \cdot b[k] > 0 \)
 d. Yes, if \(\sigma(k) = -5 \), we still have \(\sigma \models \exists k \cdot b[k] > 0 \), with witnesses 0, 1, 2, 3. The key is that for \(\sigma \) to satisfy the existential with witness call it \(\alpha \), then we need \(\sigma[k \mapsto \alpha] \models b[k] > 0 \), which doesn’t depend on \(\sigma(k) \) because the update of \(\sigma \) uses \(k = \alpha \), not \(k \) whatever \(\sigma(k) \) happens to be. Here’s a step-by-step explanation (this is way too much detail for a test):

 \[
 \sigma[k \mapsto \alpha] \models b[k] > 0
 \]

 if \(\sigma[k \mapsto \alpha](b[k]) > \sigma[k \mapsto \alpha](0) \) defn state \(\models \) relational test

 if \((\sigma[k \mapsto \alpha](b))(\sigma[k \mapsto \alpha](k)) > 0 \) the value of 0 is zero

 if \((\sigma(b))(\sigma[k \mapsto \alpha](k)) > 0 \) \(\sigma[k \mapsto \alpha](b) = \sigma(b) \) because \(b \neq k \)

 if \((\sigma(b))(\alpha) > 0 \) \(\sigma[k \mapsto \alpha](k) = \alpha \)

 if \(7, 5, 12, \text{ or } 16 > 0 \) depending on \(\alpha = 0, 1, 2, \text{ or } 3 \)

3. (Validity/invalidity of quantified predicates)
 a. this \(\sigma \), some \(\alpha \), \(\not\models p \)
 b. this \(\sigma \), every \(\alpha \), \(\models p \)
 c. nothing of \(\sigma(x) \)
 d. nothing of \(\sigma(x) \)
 e. this \(\sigma \), every \(\alpha \), \(\not\models p \)
 f. this \(\sigma \), some \(\alpha \), \(\not\models p \)
 g. some \(\sigma \), \(\not\models \forall x \in U. p \)
 h. some \(\sigma \), every \(\alpha \), \(\not\models p \)
 i. some \(\sigma \), some \(\alpha \), \(\not\models p \)
 j. every \(\sigma \), some \(\alpha \), every \(\beta \), \(\models p \)
 k. some \(\sigma \), every \(\alpha \), some \(\beta \), \(\not\models p \)
 l. every \(\sigma \), every \(\alpha \), some \(\beta \), \(\models p \)
 m. some \(\sigma \), some \(\alpha \), every \(\beta \), \(\not\models p \)

4. (\(\exists \forall \) predicates versus \(\forall \exists \) predicates, specifically \(p_1 \equiv \exists y. \forall x. \mathsf{f}(x) > y \), and \(p_2 \equiv \forall x. \exists y. \mathsf{f}(x) > y \))
 a. The relation does hold: \(\models p_1 \) implies \(\models p_2 \). The short explanation is that for each value \(\alpha \) for \(x \), we need to find a value \(\beta \) for \(y \) that satisfies the body, but \(p_1 \) says that there’s a value that works for every \(\alpha \), so we can use that value for \(\beta \). In more detail, assume \(p_1 \) is valid: for every state \(\sigma \), there is some value \(\beta \) where for every value \(\alpha \), \(\sigma[y \mapsto \beta][x \mapsto \alpha] \models \mathsf{f}(x) > y \). To show that \(p_2 \) is valid, take an arbitrary state \(\tau \)
with value α for x. We need a witness value for the $\exists y$; using p_1 with τ for σ, we get a β for the $\exists y$ of p_1 and use that as the witness for the $\exists y$ in p_2. So then we need $\tau[x \mapsto \alpha][y \mapsto \beta] \models f(x) > y$.
Substituting σ for τ and swapping the order of the updates, we need $\sigma[y \mapsto \beta][x \mapsto \alpha] \models f(x) > y$. But that’s exactly what p_1 provided.

b. The relation does not hold: We can have $\models p_2$ but $\not\models p_1$. The easiest example is $f(x) = x$, then validity of p_1 would require us to find an integer value for y that is $>\,$ every possible integer value of x, and no such value exists.