State Updates, Satisfaction of Quantified Predicates

CS 536: Science of Programming, Fall 2019

9/16 pp.6, 8; 9/28 p.3, 10/2 p.6

A. Why?

- A predicate is satisfied relative to a state; it is valid if it is satisfied in all states.
- State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes

At the end of this lecture, you should

- Know what it means to update a state.
- Know what it means for a quantified predicate to be valid of be satisfied in a state.

C. "Updating" States

- To check quantified predicates for satisfaction, we need to look at different states that are related to, but not identical to, our starting state.
- Example 1: For \{y = 1\} ⊨ ∀ x ∈ ℤ. x² + 1 ≥ y - 1, we need to know that \{y = 1, x = α\} ⊨ x² + 1 ≥ y - 1 for every α ∈ ℤ. I.e., we need
 - ….
 - \{y = 1, x = -1\} ⊨ x² + 1 ≥ y - 1
 - \{y = 1, x = 0\} ⊨ x² + 1 ≥ y - 1
 - \{y = 1, x = 1\} ⊨ x² + 1 ≥ y - 1
 - \{y = 1, x = 2\} ⊨ x² + 1 ≥ y - 1
 - ….
- Similarly, for \{z = 4\} ⊨ ∃ x ∈ ℤ. x ≥ z, we need \{z = 4, x = α\} ⊨ x ≥ z for some particular integer α (α = 5 works nicely).
- There is a complicating factor. If the quantified variable already appears in the state, then we need to replace its binding with one that gives the value we’re interested in checking.
- Example 2: We already know \{z = 4\} ⊨ ∃ x ∈ ℤ. x ≥ z because \{z = 4, x = 5\} ⊨ x ≥ z. If we start with the state \{z = 4, x = -15\}, which already has a binding for x, we find that the new state ⊨ ∃ x ∈ ℤ. x ≥ z because once again, \{z = 4, x = 5\} ⊨ x ≥ z holds.
- In Example 2, the x that appears in \{z = 4, x = 5\} is not the same x that appears within ∃ x ∈ ℤ. x ≥ z. However, the two x’s in “\{z = 4, x = 5\} ⊨ x ≥ z” are the same x. Giving the two x’s the same name causes the confusion. If we gave the x’s different names, there’d be no problem with understanding; let xo be the “outer” x and xi be the “inner” x, then
\{ z = 4, xo = -15 \} \models \exists \, xi \in \mathbb{Z}. \, xi \geq z

because

\{ z = 4, xo = -15, xi = 5 \} \models xi \geq z

- When we use the same name \(x \), the binding for the outer \(x \) becomes invisible, overridden by the binding for the inner \(x \):

\{ z = 4, (outer) x = -15 \} \models \exists \, x \in \mathbb{Z}. \, x \geq z \because \{ z = 4, x = 5 \} \models x \geq z

- **Definition:** For any state \(\sigma \), variable \(x \), and value \(\alpha \), the **update of \(\sigma \) at \(x \) with \(\alpha \)** (written \(\sigma[x \mapsto \alpha] \)) is the state that is a copy of \(\sigma \) except that it binds variable \(x \) to value \(\alpha \).
 - Let \(\tau = \sigma[x \mapsto \alpha] \), then \(\tau(x) = \alpha \); if variable \(y \neq x \), then \(\tau(y) = \sigma(y) \).
 - Note \(\tau(x) = \alpha \) regardless of whether \(\sigma(x) \) is defined or not. If \(\sigma(x) \) is defined, its type and exact value are irrelevant.

- Set theoretically,
 - If \(x \) has no binding in \(\sigma \), then \(\sigma[x \mapsto \alpha] \) is \(\sigma \cup \{ x = \alpha \} \): It’s like \(\sigma \) but has been extended with \(x = \alpha \).
 - If \(x \) has a binding in \(\sigma \), say \(\sigma = \{ x = \beta \} \cup \sigma_0 \) where \(\sigma_0 \) is the rest of \(\sigma \), then \(\sigma[x \mapsto \alpha] \) is \(\sigma_0 \cup \{ x = \alpha \} \).
 - It’s like \(\sigma \) but has the binding \(x = \alpha \), not \(x = \beta \). (Having two bindings for \(x \) would be illegal.)

- **Important:** Calling it the “update” of \(\sigma \) is kind of misleading because we’re not modifying \(\sigma \).
 - Taking \(\sigma[x \mapsto \alpha] \) **does not do** an update in place; if we define \(\tau = \sigma[x \mapsto \alpha] \), then \(\sigma \) is still \(\sigma \).
 - Conceptually, we aren’t modifying \(\sigma \), we’re creating a new state.

- We’re not required to give \(\sigma[x \mapsto \alpha] \) a new name; we can write it out explicitly:
 - If \(x \equiv v \) where \(v \) stands for a variable (not literally the variable \(v \)) then if \(v \equiv x \), then \(\sigma[x \mapsto \alpha](v) = \sigma[x \mapsto \alpha](x) = \alpha \), otherwise (if \(x \not\equiv v \)), then \(\sigma[x \mapsto \alpha](v) = \sigma(v) \).
 - (You have to read \(\sigma[x \mapsto \alpha](v) \) left-to-right — we’re taking the function \(\sigma[x \mapsto \alpha] \) and applying it to \(v \). I.e., \(\sigma[x \mapsto \alpha](v) = (\sigma[x \mapsto \alpha])(v) \), where the left pair of parentheses are for grouping and the ones around \(v \) are for the function call.)

- **Example 3:** If \(\sigma = \{ x = 2, y = 6 \} \), then \(\sigma[x \mapsto 0] = \{ x = 0, y = 6 \} \):
 - \(\sigma[x \mapsto 0](x) = 0 \) (Even though \(\sigma(x) = 2 \))
 - \(\sigma[x \mapsto 0](y) = \sigma(y) = 6 \) (Since we didn’t update \(y \))
 - \(\sigma[x \mapsto 0](x+y) = 0+6 = 6 \) (Since the \(x \) in \(x+y \) gets evaluated to \(0 \))
 - \(\sigma[x \mapsto 0](x^2) \models x^2 \leq 0 \) (Even though our starting \(\sigma \neq x^2 \leq 0 \))

- The value part of an update has to be a semantic value, not a syntactic one, so \(\sigma[x \mapsto x+1] \) isn’t well-formed.
 - In these notes, it may help to remember that since \(x+1 \) is in this font, it’s syntactic.
 - On the other hand, “\(\sigma[x \mapsto \sigma(x+1)] \)” or “\(\sigma[x \mapsto \alpha \text{ plus one} \)” where \(\alpha = \sigma(x) \)” do make sense.

* Unfortunately, “update” is the traditional name, and for myself, I can’t find any word that’s exactly right. We’re not always extending \(\sigma \), we’re not always superseding \(\sigma \),
Multiple Updates

- We can do a sequence of updates on a state. E.g., \(\sigma[x \mapsto 0][y \mapsto 8] \) is a doubly updated state. Sequences of updates are read left-to-right, so this is \((\sigma[x \mapsto 0])[y \mapsto 8] \).
- **Example 4:** If \(\sigma = \{ x = 2, y = 6 \} \), then \(\sigma[x \mapsto 0][y \mapsto 8] = \{ x = 0, y = 6 \} \).
 - The order of update doesn’t matter if you have two different variables.
- **Example 5:** \(\sigma[x \mapsto 0][y \mapsto 8] = \sigma[y \mapsto 8][x \mapsto 0] \).
- If you update the same variable twice, the second update supersedes the first.
- **Example 6:** \(\sigma[x \mapsto 0][x \mapsto 17] = \sigma[x \mapsto 17] \neq \sigma[x \mapsto 17][x \mapsto 0] = \sigma[x \mapsto 0] \).
 - Of course, if the second update is identical to the first, nothing happens: \(\sigma[x \mapsto \alpha][x \mapsto \alpha] = \sigma[x \mapsto \alpha] \).
- If you have to evaluate an expression, be sure to do it in the correct state.
 - Let \(\sigma(x) = 1 \) and let \(\tau = \sigma[x \mapsto 2] \), then \(\tau[z \mapsto \sigma(x)+10] \) maps \(z \) to \(\sigma(x)+10 = 1+10 = 11 \). We can omit \(\tau \) and also write \(\sigma[x \mapsto 2][z \mapsto \sigma(x)+10] \), which gives the same state as \(\tau \).
 - On the other hand, look at \(\tau[z \mapsto \tau(x)+10] \). Since \(\tau = \sigma[x \mapsto 2] \), the value of \(\tau(x)+10 = 12 \), so \(\tau[z \mapsto \tau(x)+10] = \tau[z \mapsto 12] \). \([2/28] \)
 - If we hadn’t given the name \(\tau = \sigma[x \mapsto 2] \), then we would had to write \(\sigma[x \mapsto 2][z \mapsto \sigma[x \mapsto 2](x)+10] \). (This is pretty ugly, so giving \(\sigma[x \mapsto 2] \) a name like \(\tau \) makes things more readable.)

D. Updating Array Values

- Updating array elements like \(b[0] \) is a bit more complicated than updating simple variables like \(x \) and \(y \). First, let’s extend our notion of updating states to updating general functions.
- **Definition:** If \(\delta \) is a function on one argument and \(\alpha \) and \(\beta \) are valid members of the domain and range of \(\delta \) respectively, then the **update of \(\delta \) at \(\alpha \) with \(\beta \)**, written \(\delta(\alpha \mapsto \beta) \), is the function defined by \(\delta(\alpha \mapsto \beta)(\gamma) = \beta \) if \(\gamma = \alpha \) and \(\delta(\alpha \mapsto \beta)(\gamma) = \delta(\gamma) \) if \(\gamma \neq \alpha \).
- **Definition:** If \(\sigma \) is a (proper) state for an array \(b \) and \(\alpha \) is a valid index value for \(b \), then \(\sigma[b(\alpha) \mapsto \beta] \) means \(\sigma[b \mapsto \eta(\alpha \mapsto \beta)] \) where \(\eta = \text{the function} \sigma(b) \) In words, if \(\sigma \) includes the binding \(b = \text{function} \eta \), then the updating \(\sigma \) at \(b[\alpha] \) with \(\beta \) is just like updating \(\sigma \) at \(b \) with an updated version of \(\eta \), namely \(\eta(\alpha \mapsto \beta) \).
- **Example 7:** Say \(\sigma = \{ x = 3, b = (2, 4, 6) \} \), then \(\sigma[b(0) \mapsto 8] = \{ x = 3, b = (8, 4, 6) \} \). Here, \(\sigma(b) \) is the function \((2, 4, 6) \) (which means \{(0, 2), (1, 4), (2, 6)\}), so \(\sigma(b)[0 \mapsto 8] \) (the update of function \(\sigma(b) \)) is the function \((2, 4, 6)[0 \mapsto 8] = (8, 4, 6) \).

E. Satisfaction of Quantified Predicates

- One use of updated states is for describing how assignment works. (We’ll see this later.) The other use for updated states is for defining when quantified predicates are satisfied.
- **Definition:** \(\sigma \models \exists \ x \in S. p \) if for one or more witness \(\alpha \in S \), it’s the case that \(\sigma[x \mapsto \alpha] \models p \). Note we’re asking a hypothetical question: “If we were to calculate \(\sigma[x \mapsto \alpha] \), would we find that it satisfies \(p \)”
 - **Example 8a:** For any state \(\sigma \), we can show \(\sigma \models \exists \ x. x^2 \leq 0 \) using 0 as the witness: \(\sigma[x \mapsto 0] \models x^2 \leq 0 \), since \(\sigma[x \mapsto 0](x^2 \leq 0) = \sigma[x \mapsto 0](0^2) \leq \sigma[x \mapsto 0](0) = (0^2 \leq 0) = \top \).
Remember, \(\sigma(x) \) is irrelevant, since \(\sigma[x \mapsto \alpha] \) overrides any value for \(\sigma(x) \).

Example 8b: If \(\sigma(x) \) is, say 5, it’s still the case that \(\sigma \models \exists x. x^2 \leq 0 \) using 0 as the witness because we \(\sigma[x \mapsto 0] \models x^2 \leq 0 \), regardless of \(\sigma(x) = 5 \).

If there are many successful witness values, we don’t have to specify all of them; we just need one.

Example 12: If \(\sigma(y) = 3 \), then \(\sigma \models \exists x. x^2 \leq y \) with \(x = 0 \) or 1 as possible witness values.

Definition: \(\sigma \models \forall x \in S, \rho \) if for every value \(\alpha \in S \), we have \(\sigma[x \mapsto \alpha] \models \rho \). (Again, this is hypothetical: “If for every \(\alpha \), we were to calculate \(\sigma[x \mapsto \alpha] \), would we find that it satisfies \(\rho \)”)

Example 10: To know \(\sigma \models \forall x \in \mathbb{Z} . x^2 \geq x \), we need to know \(\sigma[x \mapsto \alpha] \models x^2 \geq x \) for every \(\alpha \in \mathbb{Z} \).

Since for every integer \(\alpha \), indeed \(\alpha^2 \) is \(\geq \alpha \), this does hold. Recall that it doesn’t matter what \(\sigma(x) \) is, since we’re interested in \(\sigma[x \mapsto \alpha] \).

When asking if \(\sigma \) satisfies \(\forall x \in S, q \) or \(\exists x \in S, q \), we don’t care about \(\sigma(x) \). For a predicate \(p \) in general, for the question “Does \(\sigma \models p \)” only depends on how \(\sigma \) operates on the non-quantified variables of \(p \).

Example 11: Since the body of \(\forall x \in \mathbb{Z} . x^2 \geq x \) uses only the quantified variable \(x \), it doesn’t matter what bindings \(\sigma \) has when checking \(\sigma \models \forall x \in \mathbb{Z} . x^2 \geq x \). Even \(\sigma = \emptyset \) works: \(\emptyset \models \forall x \in \mathbb{Z} . x^2 \geq x \).

Note with nested quantifiers, the notation does get more complicated.

Example 12: \(\sigma \models \forall x \geq y^2 . \exists z. z > x + y^2 \) iff (for every \(\alpha \in \mathbb{Z} \), if \(\alpha \geq \sigma(y)^2 \), then there is some \(\beta \in \mathbb{Z} \) such that \(\beta > \alpha + \sigma(y)^2 \)).

\[
\sigma \models \forall x \geq y^2 . \exists z. z \geq x + y^2 \\
\text{iff } \sigma \models \forall x \geq y^2 \rightarrow \exists z. z \geq x + y^2 \\
\text{iff for every } \alpha \in \mathbb{Z}, \sigma[x \mapsto \alpha] \models x \geq y^2 \rightarrow \exists z. z \geq x + y^2, \quad \text{defn } \models \forall
\]

Now, \(\sigma[x \mapsto \alpha] \models x \geq y^2 \rightarrow \exists z. z \geq x + y^2 \)

\[
\text{iff } \sigma[x \mapsto \alpha] \models x \geq y^2 \text{ implies } \sigma[x \mapsto \alpha] \models \exists z. z \geq x + y^2 \\
\text{iff } \alpha \geq y^2 \text{ implies } \sigma[x \mapsto \alpha] \models \exists z. z \geq x + y^2 \\
\text{iff } \alpha \geq y^2 \text{ implies for some } \beta, \sigma[x \mapsto \alpha][z \mapsto \beta] \models z \geq x + y^2 \\
\text{iff } \alpha \text{ greater than } y^2 \text{ implies for some } \beta, \beta \text{ greater than or equal to } \alpha + y^2 \\
\text{defn } \models \geq
\]

Taking \(\beta = 2\alpha \) for our witness value, we need \(\alpha \geq y^2 \) implies for some \(2\alpha \geq \alpha + y^2 \), which is true.

Note defining intermediate names like "let \(\tau = \sigma[x \mapsto \alpha][z \mapsto \beta] \)" is allowed, if you prefer that style.

Justifying DeMorgan’s Laws for Quantified Predicates

- In general, we want our systems of reasoning to be **sound**: We want the textual transformations that make up logical equivalence to reflect truths about how our semantics work.

Example 15: Here is a check of DeMorgan’s law for existentials, which says \(\neg \exists x. p \iff \forall x. \neg p \).

Semantically, we want each of these to be valid if and only if the other is. So we need \(\sigma \models \neg \exists x. p \) if and only if \(\sigma \models \forall x. \neg p \).

© James Sasaki, 2019
\[\sigma \models \neg \exists x \in S . p \]

iff \(\sigma \not\models \exists x . p \) \hspace{1cm} \text{defn of } \sigma \models \neg \text{predicate}

iff for no \(\alpha \in S \) do we have \(\sigma[x \mapsto \alpha] \models p \) \hspace{1cm} \text{defn of } \sigma \models \text{existential}

iff for every \(\alpha \in S \) we have \(\sigma[x \mapsto \alpha] \not\models p \) \hspace{1cm} \text{equivalence of “no } \models “ \text{ vs “every } \not\models “

iff for every \(\alpha \in S \) we have \(\sigma[x \mapsto \alpha] \models \neg p \) \hspace{1cm} \text{defn of } \sigma \models \neg \text{predicate}

iff \(\sigma \models \forall x . \neg p \) \hspace{1cm} \text{defn of } \sigma \models \text{universal.}

- Showing the semantic property that \(\models \neg \exists x . p \iff \forall x . \neg p \) gives us a justification for adding \(\neg \exists x . p \iff \forall x . \neg p \) as a proof rule.
A. Why

- A predicate is satisfied or unsatisfied relative to a state.
- A predicate is valid if it is satisfied in all states.
- State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes

At the end of today, you should

- Know how to check a predicate for satisfaction in a state, how to check a predicate for validity, and know how to update a state.

C. Questions

1. Say C. At the end of today, you should

 - B.

 - A.

 - $Illinois Institute of Technology
 - Activity 4
 - •
 - •
 - •
 - •

 $Questions$

 $Outcomes$

 Why

 $i.$ $(\neg \forall x \in U. p)$ iff for _____ 1 state σ and _____ 2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____ 4

 $b.$ $(\forall x \in U. p)$ iff for _____ 1 state σ and _____ 2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____ 4

 $c.$ $\sigma \models (\exists x \in U. p)$ requires _____ 3.

 $d.$ $\sigma \models (\forall x \in U. p)$ requires _____ 3.

 $e.$ $\sigma \models (\exists x \in U. p)$ iff for _____ 1 state σ for _____ 2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____ 4.

 $f.$ $\sigma \models (\forall x \in U. p)$ iff for _____ 1 state σ for _____ 2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____ 4.

 $g.$ $(\exists x \in U. p)$ iff for _____ 2 state σ, we have $\sigma _____ 4 (\forall x \in U. p)$.

 $h.$ $(\forall x \in U. p)$ iff for _____ 2 state σ, we have $\sigma _____ 4 (\exists x \in U. p)$.

 $i.$ $(\forall x \in U. p)$ iff for _____ 2 state σ, and for _____ 2 $\alpha \in U$, we have $\sigma[x \mapsto \alpha]$ _____ 4.
4. Let \(p_1 \equiv \exists y . \forall x . f(x) > y \), and let \(p_2 \equiv \forall x . \exists y . f(x) > y \). (As usual, assume a domain of \(\mathbb{Z} \).)

 a. Is it the case that (regardless of the definition of \(f \)), if \(p_1 \) is valid then so is \(p_2 \)? If so, explain why. If not, give a definition of \(f(x) \) and show \(\models p_1 \) but \(\not\models p_2 \).

 b. (Repeat part a in the other direction.) Is it the case that (regardless of the definition of \(f \)), if \(p_2 \) is valid then so is \(p_1 \)? If so, explain why. If not, give a definition of \(f(x) \) and show \(\models p_2 \) but \(\not\models p_1 \).
CS 536: Solution to Activity 4 (Satisfaction, Validity, and State Updates)

1. \(\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha] \) iff \(u \neq v \) or \((u \equiv v \text{ and } \alpha = \beta) \). Another way to phrase this is \((\alpha = \beta \text{ or } u \neq v) \) [9/16]

2. (Quantified statements over arrays) Let \(\sigma(b) = (7, 5, 12, 16) \).
 a. Yes, \(\sigma \models \exists k \cdot 0 \leq k \wedge k+1 < \text{size}(b) \wedge b[k] < b[k+1] \) with 1 and 2 as possible witnesses for \(k \).
 b. Yes, \(\sigma \models \exists k \cdot 0 \leq k-1 \wedge k+1 < \text{size}(b) \wedge b[k-1] < b[k] < b[k+1] \) with 2 as the only witness that works.
 c. Yes, \(\sigma \models \forall k \cdot b[k] > 0 \)
 d. Yes, if \(\sigma(k) = -5 \), we still have \(\sigma \models \exists k \cdot b[k] > 0 \), with witnesses 0, 1, 2, 3. The key is that for \(\sigma \) to satisfy the existential with witness call it \(\alpha \), then we need \(\sigma[k \mapsto \alpha] \models b[k] > 0 \), which doesn’t depend on \(\sigma(k) \) because the update of \(\sigma \) uses \(k = \alpha \), not \(k \) = whatever \(\sigma(k) \) happens to be. Here’s a step-by-step explanation (this is way too much detail for a test):
 \[
 \sigma[k \mapsto \alpha] \models b[k] > 0 \\
 \text{iff } \sigma[k \mapsto \alpha](b[k]) > \sigma[k \mapsto \alpha](0) \quad \text{defn state } \models \text{ relational test} \\
 \text{iff } \sigma[k \mapsto \alpha](b[k]) > \sigma[k \mapsto \alpha](0) \quad \text{the value of } 0 \text{ is zero} \\
 \text{iff } (\sigma(b))(\sigma[k \mapsto \alpha](k)) > 0 \quad \sigma[k \mapsto \alpha](b) = \sigma(b) \text{ because } b \neq k \\
 \text{iff } (\sigma(b))(\sigma[k \mapsto \alpha](k)) > 0 \quad \sigma[k \mapsto \alpha](b) = \sigma(b) \text{ because } b \neq k \\
 \text{iff } 7, 5, 12, \text{ or } 16 > 0 \quad \text{depending on } \alpha = 0, 1, 2, \text{ or } 3
 \]

3. (Validity/invalidity of quantified predicates)
 a. this \(\sigma \), some \(\alpha \), \(\models p \)
 b. this \(\sigma \), every \(\alpha \), \(\models p \)
 c. nothing of \(\sigma(x) \)
 d. nothing of \(\sigma(x) \)
 e. this \(\sigma \), every \(\alpha \), \(\not\models p \)
 f. this \(\sigma \), some \(\alpha \), \(\not\models p \)
 g. some \(\sigma \), \(\not\models \forall x \in U. p \)
 h. some \(\sigma \), every \(\alpha \), \(\not\models p \)
 i. some \(\sigma \), some \(\alpha \), \(\not\models p \)
 j. every \(\sigma \), some \(\alpha \), every \(\beta \), \(\models p \)
 k. some \(\sigma \), every \(\alpha \), some \(\beta \), \(\not\models p \)
 l. every \(\sigma \), every \(\alpha \), some \(\beta \), \(\models p \)
 m. some \(\sigma \), some \(\alpha \), every \(\beta \), \(\not\models p \)

4. (\(\exists \forall \) predicates versus \(\forall \exists \) predicates, specifically \(p_1 \equiv \exists y \cdot \forall x \cdot f(x) > y \), and \(p_2 \equiv \forall x \cdot \exists y \cdot f(x) > y \))
 a. The relation does hold: \(\models p_1 \) implies \(\models p_2 \). The short explanation is that for each value \(\alpha \) for \(x \), we need to find a value \(\beta \) for \(y \) that satisfies the body, but \(p_1 \) says that there’s a value that works for every \(\alpha \), so we can use that value for \(\beta \). In more detail, assume \(p_1 \) is valid: for every state \(\sigma \), there is some value \(\beta \)
where for every value \(\alpha \), \(\sigma[y \mapsto \beta][x \mapsto \alpha] \models f(x) > y \). To show that \(p_2 \) is valid, take an arbitrary state \(\tau \) with value \(\alpha \) for \(x \). We need a witness value for the \(\exists y \); using \(p_1 \) with \(\tau \) for \(\sigma \), we get a \(\beta \) for the \(\exists y \) of \(p_1 \) and use that as the witness for the \(\exists y \) in \(p_2 \). So then we need \(\tau[x \mapsto \alpha][y \mapsto \beta] \models f(x) > y \).

Substituting \(\sigma \) for \(\tau \) and swapping the order of the updates, we need \(\sigma[y \mapsto \beta][x \mapsto \alpha] \models f(x) > y \). But that’s exactly what \(p_1 \) provided.

b. The relation does not hold: We can have \(\models p_2 \) but \(\not\models p_1 \). The easiest example is \(f(x) = x \), then validity of \(p_1 \) would require us to find an integer value for \(y \) that is \(> \) every possible integer value of \(x \), and no such value exists.