CS 536 — Solution for Homework 4 (Strength, Weakest Preconditions, Syntactic Substitution)

10/21: pp.2, 3, also added headers

Part 1: Strength

1. (Weaken/strengthen pre-/post-conditions)
 a. $\sigma \models \{p_0\} S \{q_2\}$ -- we can always strengthen preconditions and weaken postconditions.
 b. $\sigma \models_{tot} \{p_0\} S \{q_2\}$ for the same reason.

Part 2: Weakest preconditions

2. (Relationship between wp and modified triples.) Remember, we're looking only at σ that \vdash the precondition.
 a. $\sigma \models$ and $\sigma \models_{tot} \{p \wedge w\} S \{q\}$. Total correctness holds by definition of wp and total correctness implies partial correctness.
 b. Both $\sigma \vdash$ and $\not\vdash \{p \wedge \neg w\} S \{q\}$ are possible (\vdash holds if S leads to \bot, but $\not\vdash$ holds if S terminates).

2c. As in (a), $\sigma \models$ and $\sigma \models\{\neg p \wedge w\} S \{q\}$.
2d. As in (b), both $\sigma \vdash$ and $\sigma \not\vdash\{\neg p \wedge w\} S \{q\}$ always.
2e. $\sigma \not\vdash$ and $\not\vdash_{tot} \{p \wedge w\} S \{q\}$. If S under σ doesn't terminate, then $\sigma \vdash$ the triple. Otherwise S terminates $\vdash q$, so $\sigma \not\vdash$ the triple. Either way, $\sigma \not\vdash_{tot}$ the triple.
2f. $\sigma \vdash$ and $\not\vdash_{tot} \{p \wedge \neg w\} S \{q\}$. Since $\sigma \vdash \neg w$, running S under σ does not terminate $\vdash q$ by definition of wp. Either S doesn't terminate or it terminates $\not\vdash q$ (and hence $\vdash \neg q$ because S is deterministic).

Either way, $\sigma \vdash$ and $\not\vdash_{tot}$ the triple.
2g. As in (c), $\sigma \vdash$ and $\not\vdash\{\neg p \wedge w\} S \{\neg q\}$ are possible; $\not\vdash_{tot}$ always holds.
2h. As in (f), $\sigma \vdash$ and $\not\vdash_{tot} \{\neg p \wedge \neg w\} S \{\neg q\}$.

3. (Simple wp)
 a. $wp(n := n \ast (n-k), \ n < k \ast n) \equiv n \ast (n-k) < k \ast (n \ast (n-k))$
 b. $wp(x := x \ast y; y := y-x, x^2 > y^2) \equiv wp(x := x \ast y, wp(y := y-x, x^2 > y^2))$
 $\equiv wp(x := x \ast y, x^2 > (y-x^2) \equiv (x \ast y)^2 > (y - x \ast y)^2$

4. (Calculate and simplify wp) For each of the problems, we calculate the wp and logically simplify it to get the precondition for the triple.
4a. $wp(j := j+i; i := i-k, i \leq j \wedge j-i < n+k)$
 $\equiv wp(j := j+i, wp(i := i-k, i \leq j \wedge j-i < n+k))$
 $\equiv wp(j := j+i, i-k \leq j \wedge j-(i-k) < n+k)$
 $\equiv i-k \leq j+i \wedge (j+i)-(i-k) < n+k$
 $\Leftrightarrow -k \leq j \wedge j+i-i+k < n+k$
 $\Leftrightarrow -k \leq j \wedge j+k < n+k$
 $\Leftrightarrow -k \leq j < n$
4b. \(wp(j := i*j; k := j*i+k, 0 < i < j < k) \)
\[\equiv wp(j := i*j, 0 < i < j < j*i+k) \]
\[\equiv 0 < i < i*j < j*i+k \]
\[\Leftrightarrow i > 0 \land j > 1 \land 0 < i*j < j*i+(k-1) \] [10/21 this line and next]
\[\Leftrightarrow i > 0 \land j > 1 \land k > 1 \text{ (since } i \text{ and } j \text{ > 0, we also need } k-1 > 0 \text{ to get } i*j < j*i*(k-1) > 0.) \]

4c. \(wp(\text{if } x \geq 0 \text{ then } x := x+k \text{ else } y := y-k \text{ fi}, x > y) \)
\[\equiv (x \geq 0 \rightarrow wp(x := x+k, x > y)) \land (x < 0 \rightarrow wp(y := y-k, x > y)) \]
\[\equiv (x \geq 0 \rightarrow x+k > y) \land (x < 0 \rightarrow x > y-k) \]
\[\Leftrightarrow (x \geq 0 \rightarrow x > y-k) \land (x < 0 \rightarrow x > y-k) \]
\[\Leftrightarrow T \]

4d. \(wp(\text{if } b[M] \leq v \text{ then } L := M \text{ else } R := M \text{ fi}, L < R \land b[L] \leq v < b[R]) \)
\[\equiv (b[M] \leq v \rightarrow wp(L := M, L < R \land b[L] \leq v < b[R])) \]
\[\land (b[M] > v \rightarrow wp(R := M, L < R \land b[L] \leq v < b[R])) \]
\[\equiv (b[M] \leq v \rightarrow M < R \land b[M] \leq v < b[R]) \land (b[M] > v \rightarrow L < M \land b[L] \leq v < b[M]) \]
\[\Leftrightarrow (b[M] \leq v \rightarrow M < R \land v < b[R]) \land (b[M] > v \rightarrow L < M \land b[L] \leq v) \]

(Note for an actual binary search, we'd be able to simplify further because of the larger context, but here, we can't.)

4e. For \(wp(\text{if } x < 0 \text{ then } x := 2-x \text{ else if } x < 2 \text{ then } x := x+2 \text{ fi fi, } x^2 > x) \), let's first calculate the \(wp \) of the nested \textit{if-fi}. Let \(NI \equiv \text{if } x < 2 \text{ then } x := x+2 \text{ else skip fi}. \) Then \(wp(NI, x^2 > x) \)
\[\equiv wp(\text{if } x < 2 \text{ then } x := x+2 \text{ else skip fi}, x^2 > x) \]
\[\equiv (x < 2 \rightarrow wp(x := x+2, x^2 > x)) \land (x \geq 2 \rightarrow wp(\text{skip, } x^2 > x))) \]
\[\equiv (x < 2 \rightarrow (x+2)^2 > x+2) \land (x \geq 2 \rightarrow x^2 > x) \]

Now we can calculate the \(wp \) of the outer \textit{if-fi}:
\[wp(\text{if } x < 0 \text{ then } x := 2-x \text{ else } NI \text{ fi, } x^2 > x) \]
\[\equiv (x < 0 \rightarrow wp(x := 2-x, x^2 > x)) \land (x \geq 0 \rightarrow wp(NI, x^2 > x)) \]
\[\equiv (x < 0 \rightarrow (2-x)^2 > 2-x) \land (x \geq 0 \rightarrow (x < 2 \rightarrow (x+2)^2 > x+2) \land (x \geq 2 \rightarrow x^2 > x)) \]

To logically simplify, if \(x < 0 \) then \((2-x)^2 > 2-x \), if \(x < 2 \) then \((x+2)^2 > x+2 \). Finally, if \(x \geq 2 \) then \(x^2 > x \). So the entire \(wp \) is equivalent to true, and we can use that as the precondition.
Part 3: Syntactic Substitution

5. (Substitutions involving \(p \equiv x \times y < f(a) \lor \forall x \cdot x \geq a \rightarrow \exists y \cdot x \div y > y-a-z \))

To make the substitutions more visible, I'll underline the new pieces of text (you didn't have to do this).

5a. The occurrence of \(x \) outside the \(\forall x \) is free and should be replaced, but the ones inside the \(\forall x \) are bounded, so are shielded from substitution.

\[
p[y-z/x] = (x \times y < f(a) \lor \forall x \cdot x \geq a \rightarrow \exists y \cdot x \div y > y-a-z)[y-z/x]
\]

\[
= (y-z) \times y < f(z) \lor \forall x \cdot x \geq a \rightarrow \exists y \cdot x \div y > y-a-z
\]

5b. Similarly to (a), only the two \(y \)'s not in \(\exists y \) are free (even though one of them is in the scope of the \(\forall x \)).

\[
p[y+z/y] = (x \times y < f(a) \lor \forall x \cdot x \geq a \rightarrow \exists y \cdot x \div y > y-a-z)[y+z/y]
\]

\[
= x \times (y+z) < f(a) \lor \forall x \cdot x \geq a \times (y+z) \rightarrow \exists y \cdot x \div y > y-a-z
\]

5c. We rename the quantified \(\forall x \) (to \(\forall v \)) and \(\forall y \) (to \(\forall w \)) to avoid capture. (Free \(x \)'s are not renamed.)

\[
p[x \times y/a] = (x \times y < f(a) \lor \forall x \cdot x \geq a \times y \rightarrow \exists y \cdot x \div y > y-a-z)[x \times y/a]
\]

\[
\equiv (x \times y < f(x \times y) \lor \forall x \cdot x \geq a \times y \rightarrow \exists y \cdot x \div y > y-a-z)[x \times y/a] \quad \text{Replace the free } x
\]

\[
\equiv x \times y < f(x \times y) \lor \forall v \cdot (v \geq a \times y \rightarrow \exists w \cdot v \div w > w-a-z)[x \times y/a] \quad \text{Start renaming } x \text{ to } v
\]

\[
\equiv x \times y < f(x \times y) \lor \forall v \cdot (v \geq a \times y \rightarrow \exists w \cdot v \div w > w-a-z)[x \times y/a] \quad \text{Finish renaming}
\]

(The double-underlined \(v \)'s show where the \(x \)'s were renamed to \(v \). You didn't have to do this.)

[10/21 Next two lines]

\[
\equiv x \times y < f(x \times y) \lor \forall v \cdot (v \geq a \times y \rightarrow \exists w \cdot v \div w > w-a-z)[x \times y/a] \quad \text{Rename } y \text{ to } w
\]

\[
\equiv x \times y < f(x \times y) \lor \forall v \cdot (v \geq a \times y \rightarrow \exists w \cdot v \div w > w-a-z)[x \times y/a] \quad \text{Replace } a
\]

5d. We rename the quantified \(\exists y \) (to \(\exists w \)) to avoid capture. Just to be different, let's rename then substitute.

\[
p[x \times y/a] = (x \times y < f(a) \lor \forall x \cdot x \geq a \times y \rightarrow \exists w \cdot x \times y > y-a-z)[x \times y/a]
\]

\[
\equiv (x \times y < f(a) \lor \forall x \cdot x \geq a \times y \rightarrow \exists w \cdot (x \times y > y-a-z)[w/y])[x \times y/a] \quad \text{Start renaming } y \text{ to } w
\]

\[
\equiv (x \times y < f(a) \lor \forall x \cdot x \geq a \times y \rightarrow \exists w \cdot (x \times y > y-a-z)[y/a][x \times y/a] \quad \text{Finish renaming}
\]

\[
\equiv x \times y < f(y \div a) \lor \forall x \cdot x \geq (y \div a) \times y \rightarrow \exists w \cdot x \times w > w-(x \times y) \div a] \quad \text{Replace the free } a.
\]

5e. To calculate \(p[x+y/a][y+z/x] \), we'll first calculate \(p_1 \equiv p[x \times y/a] \) (which will involve renaming \(x \) to \(v \)), then we'll calculate \(p_1[y-z/x] \) (which involves renaming \(y \) to \(w \)).

\[
p_1 = p[x \times y/a] = (x \times y < f(a) \lor \forall x \cdot x \geq a \times y \rightarrow \exists y \cdot x \times y > y-a-z)[x \times y/a]
\]

\[
= (x \times y < f(a) \times x \times y) \lor \forall v \cdot v \geq a \rightarrow \exists y \cdot v \div y > y-a-z)[x \times y/a] \quad \text{Renaming } x \text{ to } v
\]

[10/21 here to end of problem]

\[
= (x \times y < f(a) \times x \times y) \lor \forall v \cdot v \geq a \rightarrow \exists w \cdot v \div w > w-a-z)[x \times y/a] \quad \text{Renaming } y \text{ to } w
\]

\[
= x \times y < f(x \times y) \lor \forall v \cdot v \geq x \times y \rightarrow \exists w \cdot v \div w > w-(x \times y) \div a \quad \text{Substitute for } a
\]

Then

\[
p[x \times y/a][y-z/x]
\]

\[
= (x \times y < f(x \times y) \lor \forall v \cdot v \geq x \times y \rightarrow \exists w \cdot v \div w > w-(x \times y) \div a)[y-z/x]
\]

\[
= (y-z) \times y < f(y-z+y) \lor \forall v \cdot v \geq y-z+y \rightarrow \exists w \cdot v \div w > w-(y-z+w) \div a \quad \text{Substitute for } x
\]

CS 536: Science of Programming – 3 – © James Sasaki, 2018