Finding Invariants; Array Assignments

CS 536: Science of Programming, Spring 2021

Due Sun, May 9, 11:59 pm [chg 5/2]

A. Why?
• The hardest part of programming is finding good loop invariants.
• There are heuristics for finding them but no algorithms that work in all cases.
• Array assignments are harder to understand than assignments to plain variables

B. Objectives
After this homework, you should know how to
• Describe the strength connections among the conditions of \(\{ p_0 \} S_0 \{ inv \ p \} \ while \ B \ do \ S \ od \ \{ q \} \)
• Describe and use the invariant-finding heuristics "Replace a constant by a variable", “Drop a conjunct” and “Add a disjunct”.
• Array assignments aren’t like assignments to plain variables because the actual item to change can’t be determined until runtime. We can handle this by extending our notion of assignment and/or substitution.
• Perform textual substitution to replace an array element.
• Calculate the wp of an array element assignment.

C. Problems [50 points total]

Classes 19 & 20: Loop invariants 1 & 2 [26 points]
1. [10 = 5*2 points] In general, for \(\{ p_0 \} S_0 \{ inv \ p \} \ while \ B \ do \ S \ od \ \{ q \} \),
 a. Is \(p_0 \) stronger or weaker than \(p \)?
 b. Is \(p \) stronger or weaker than \(q \)?
 c. If we do zero iterations, does \(p \) still have to be true?
 d. When we start the first iteration, does \(p \) have to be true?
 e. Where inside \(S \) (if anywhere) does \(p \) have to be true?

2. [6 = 3*2 points] We’re given the postcondition \((x^2-f(y, a) < 2*z-b) \) where \(x, y, \) and \(z \) are the variables (and are all \(\geq 0 \)), and we know \(0 \leq a \leq n \) and \(-n \leq b \leq -1 \). If we use Replace a Constant by a Variable, then what are the candidate initialization code / invariant / loop test combinations we can get? You can ignore the power 2 as a constant to replace but not the 2 that multiplies \(z \).
3. [6 = 3*2 points] We’re given the postcondition

\[(x > 0 \lor y < n) \land (x < n \rightarrow f(x, n)) \land (f(y, n) \leftrightarrow y \geq 0)\]

If we use Drop a Conjunct, what are the candidate invariant / loop test combinations we get?

4. [4 = 2*2 points] (Add a disjunct)
 a. For the postcondition \((p_1 \land p_2)\), how are Drop a Conjunct and Add a Disjunct related?
 b. Why is Add a Disjunct less constrained than Replace a Constant by a Variable or Drop a Conjunct?

Class 21: Array Assignments [24 points]

5. [9 = 3*3 points] Syntactically calculate the following; you may simplify if you want.
 a. \(wp(b[0] := 9, \ x > b[k])\)
 b. \(wp(b[k] := b[m], \ b[m] = z)\)
 c. \(wp(b[k] := 1, \ b[k] = b[m])\)

6. [6 = 2*3] Complete the full proof outline below for partial correctness by using \(wp\) to give definitions for \(p_1\) and then \(p_2\). Logically simplify as you go.
 b. \(\{p_2\} b[x] := b[m]; \{p_1\} b[y] := b[n] \{b[x] < b[y] \land x \neq y\}\) (Hint: \(x \neq y [5/2]\) can help you simplify.)

7. [9 points] Calculate and simplify \((b[b[x]] = 8) [9 / b[y]]\). When you simplify, you can assume \(y \neq x [5/2]\). (Hint: Since you need it more than once, calculate \((b[x]) [9 / b[y]]\) first.)