Hoare Triples pt.2

CS 536: Science of Programming, Spring 2021

Due Sun Feb 28, 11:59 pm Post solution Mon Mar 1

Preliminary Exam 1

- **Exam 1 is Thu Mar 4** and covers classes 1 – 9 (i.e., up through Hoare Triples pt.2). Mostly multiple choice but some written problems too.

Notes

- This homework is only 25 points (it covers just one class, not two).
- This homework is due on Sun Feb 28; no late submissions allowed so that I can post a solution Monday Mar 1. (There isn’t time to grade and return this homework before the exam.)

Problems [25 points total]

Class 9: Hoare Triples, pt 2 (25 points)

1. [3 points] Study the triple \(\{???\} \ x := b^2 - 4ac \ \{0 \leq x \to \sqrt{x}\text{ is defined}\} \). Using backward assignment, what can we use for the precondition of the triple?

2. [4 points] Study the two triples \(\{p\} \ x := n; \ y := m \ \{p \land x = n \land y = m\} \) and \(\{1 \leq x \cdot y \leq n \cdot m\} \ S \{q\} \). Find a predicate \(p \) that makes it possible to join the two triples into a sequence.

3. [6 = 2*3 points] Let \(p_0 \to p, p \to p_1, q_0 \to q, \) and \(q \to q_1, \) all be valid. From \(\{p\} S \{q\}, \) there are four triples of the form \(\{p_i\} S \{q_j\} \) that get by replacing \(p \) by \(p_0 \) or \(p_1 \) and \(q \) by \(q_0 \) or \(q_1 \).
 a. If \(\sigma \models \{p\} S \{q\}, \) which of the four triples \(\sigma \models \{p_i\} S \{q_j\} \) is/are also satisfied by \(\sigma \) (under \(\models \))? Briefly justify.
 b. If \(\sigma \models_{tot} \{p\} S \{q\}, \) which of the four triples \(\sigma \models \{p_i\} S \{q_j\} \) is/are also satisfied by \(\sigma \) (under \(\models_{tot} \))? Briefly justify.

4. [12 = 4*3 points] Say \(\sigma \models \{p_1\} S \{q_1\} \) and \(\sigma \models \{p_2\} S \{q_2\}. \)
 a. Does \(\sigma \models \{p_1 \land p_2\} S \{q_1 \land q_2\}\)? Justify briefly.
 b. Does \(\sigma \models \{p_1 \lor p_2\} S \{q_1 \land q_2\}\)? Justify briefly.
 c. Does \(\sigma \models \{p_1 \lor p_2\} S \{q_1 \lor q_2\}\)? Justify briefly.
 d. Does \(\sigma \models \{p_1 \land p_2\} S \{q_1 \lor q_2\}\)? Justify briefly.