Solution – HW 3: Language Syntax, Semantics, Errors, Nondeterminism

CS 536: Science of Programming, Fall 2019

9/28, 9/29 pp. 1,2; 9/30 pp.1,2, 10/2 p.1

Lecture 5: Language Syntax/Operational Semantics

1. Here is one (of many possible) solutions: \(x := 1; j := 0; \text{while } j \leq m \text{ do } j := j + 1; x := x + 1; x := x + y \) od; \(j := j + 1 \) [10/2]

2. (Evaluate \(S \equiv \text{if } x > 0 \text{ then } x := x + 2 \times y; y := 3 \times y \text{ fi} \))

2a. \(\langle S, \{x = 2, y = 6\} \rangle \)

\(\rightarrow \langle \text{if } x > 0 \text{ then } x := x + 2 \times y; y := 3 \times y \text{ fi}, \{x = 2, y = 6\} \rangle \) // optional step (expanding \(S \))

\(\rightarrow \langle x := x + 2 \times y; y := 3 \times y, \{x = 2, y = 6\} \rangle \) // jump to start of true branch

\(\rightarrow \langle y := 3 \times y, \{x = 14, y = 6\} \rangle \) [9/29] // evaluate first assignment

\(\rightarrow \langle E, \{x = 14, y = 18\} \rangle \). // evaluate second assignment

Note 1: The comments weren't required. Note 2: The first step, where we expand \(S \), is an \(= \) not an \(\rightarrow \) because replacing \(S \) by the text it stands for is not a semantic operation. [9/29 rephrased]

2b. \(\langle S, \{x = -2, y = 8\} \rangle \rightarrow \langle \text{skip}, \{x = -2, y = 8\} \rangle \rightarrow \langle E, \{x = -2, y = 8\} \rangle \) [9/29]

Note the \(\text{skip} \) is required because an if-then statement is just an abbreviation for an if statement with \(\text{else skip} \).

3. (Evaluate loop) We have \(\sigma_0 = \{i = 1, x = 1, n = 5\} \) and \(W = \text{while } i \neq n \text{ do } S \text{ od} \) where \(S = i := i + 1; x := x + i \times i \) . One possible (kind of long) answer is

\(\langle W, \sigma_0 \rangle = \langle \text{while } i \neq n \text{ do } S \text{ od}, \sigma_0 \rangle \) // definition of \(W \)

\(\rightarrow \langle S; W, \sigma_0 \rangle \) // because \(\sigma_0 \models i \neq n \), the loop test

\(= \langle i := i + 1; x := x + i \times i; W, \sigma_0 \rangle \) // definition of \(S \)

\(\rightarrow \langle x := x + i \times i; W, \sigma_0[i \mapsto 2] \rangle \) // where \(\sigma_1 = \sigma_0[i \mapsto 2][x \mapsto 5] \)

\(\rightarrow \langle S; W, \sigma_1 \rangle \) // because \(\sigma_1 \models i \neq n \)

\(\rightarrow^2 \langle W, \sigma_2 \rangle \) // where \(\sigma_2 = \sigma_1[i \mapsto 3][x \mapsto 14] \models i \neq n \)

\(\rightarrow^3 \langle W, \sigma_3 \rangle \) // where \(\sigma_3 = \sigma_2[i \mapsto 4][x \mapsto 30] \models i \neq n \)

\(\rightarrow^2 \langle W, \sigma_4 \rangle \) // where \(\sigma_4 = \sigma_3[i \mapsto 5][x \mapsto 55] \models i \neq n \)

\(\rightarrow^2 \langle E, \sigma_5 \rangle \) // because \(\sigma_5 \neq i \neq n \).
Lecture 6: Denotational Semantics, Runtime Errs, Sequential Nondeterminism pt. 1

4. (Denotational semantics for Problem 2) [9/29]
 a. Since \(\langle S, \{x = 2, y = 6\} \rangle \rightarrow^* \langle E, \{x = 14, y = 18\} \rangle \), we have \(M(S, \{x = 2, y = 6\}) = \{\{x = 14, y = 18\}\} \).
 b. Since \(\langle S, \{x = -2, y = 8\} \rangle \rightarrow^* \langle E, \{x = -2, y = 8\} \rangle \), we have \(M(S, \{x = -2, y = 8\}) = \{\{x = -2, y = 8\}\} \).

5. (Diverging loop) We have \(W = \textbf{while} \ i \neq n \ \textbf{do} \ i := i+1; \ x := x+i \ \textbf{od} \). If we start with \(\sigma(i) < \sigma(n) \), the loop diverges; if we start with \(\sigma(i) \geq \sigma(n) \), we terminate, so the set we want is \(\{\sigma \in \Sigma \mid \sigma(i) > \sigma(n)\} \). [9/29]

6. (Deterministic program’s final state)
 a. If \(S \) is deterministic, then \(M(S, \sigma) \) is a singleton set \(\{\bot\} \), so for any program \(T \), \(\langle S; T, \sigma \rangle \rightarrow^* \langle E, \bot \rangle \). In English, since \(S \) doesn’t terminate, we can’t run \(T \), so \(S; T \) doesn’t terminate.
 b. Either \(\tau \in \Sigma \) or \(\tau = \bot \). Any member of \(\Sigma \) satisfies true so to get \(\tau \neq \top \), we must have \(\tau = \bot \).

Lecture 7: Sequential Nondeterminism pt. 2

7. (Nondeterministic program) [9/30; answer rewritten]
 - The set \(M(S, \sigma) \models \varphi \) iff every \(\tau \in M(S, \sigma) \) satisfies \(\varphi \).
 - Similarly, the set \(M(S, \sigma) \models \neg \varphi \) if every \(\tau \) in \(M(S, \sigma) \) satisfies \(\neg \varphi \).
 - But we’re given that \(M(S, \sigma) \models \varphi \) and \(M(S, \sigma) \models \neg \varphi \).
 - Then since \(M(S, \sigma) \models \varphi \), at least one \(\tau \) in \(M(S, \sigma) \) doesn’t satisfy \(\varphi \).
 - But we’re also given that \(\bot \not\in M(S, \sigma) \), so if \(\tau \) doesn’t satisfy \(\varphi \), it must satisfy \(\neg \varphi \).
 - Similarly, since \(M(S, \sigma) \models \neg \varphi \), we have that \(M(S, \sigma) \) contains at least one \(\tau \) that \(\models \varphi \).
 - So to get \(\bot \not\in M(S, \sigma) \), \(M(S, \sigma) \not\models \varphi \), and \(M(S, \sigma) \not\models \neg \varphi \), we must have at least two states in \(M(S, \sigma) \); one that \(\models \varphi \) and one that \(\not\models \neg \varphi \).
 - For a concrete example, if \(S = \textbf{if} \ T \rightarrow x := T \ \square \ T \rightarrow x := \textbf{F} \ \textbf{f} \ \textbf{i} \), then \(M(S, \emptyset) = \{\{x = T\}\} \).
 - \(\{x = F\} \) \not\models x and \(\not\models \neg x \).

8. (Nondeterministic loop that can both diverge and terminate) Basically, we need a loop where one guard lets us terminate and the other guard can cause divergence. A simple example of a \(W \) that does this is \(\textbf{do} \ x = 0 \rightarrow \textbf{sk} \{\square \} x = 0 \rightarrow x := -1 \ \textbf{od} \). Running this loop starting in state \(x = 0 \) diverges if we always choose the first guard and terminates in state \(\{x = -1\} \) if we ever choose the second guard.
a. Operationally, we diverge using execution path \(\langle W, \{x = 0\} \rangle \rightarrow \langle \textbf{skip}; W, \{x = 0\} \rangle \rightarrow \langle W, \{x = 0\} \rangle \rightarrow^2 \langle W, \{x = 0\} \rangle \rightarrow^2 \langle W, \{x = 0\} \rangle \rightarrow^2 \ldots \).

b. We terminate using path \(\langle W, \{x = 0\} \rangle \rightarrow \langle x := -1; W, \{x = 0\} \rangle \rightarrow \langle W, \{x = -1\} \rangle \rightarrow \langle E, \{x = -1\} \rangle \).

(This is the shortest path to termination: We can begin with chains of \(\langle W, \{x = 0\} \rangle \rightarrow^2 \langle W, \{x = 0\} \rangle \rightarrow^2 \ldots \) (as in part (a)) and join with the path above to get a loop that does more iterations before terminating.)