Language Syntax, Semantics, Runtime Errors

CS 536: Science of Programming, Fall 2020

Due Mon Feb 15, 11:59 pm

Problems [50 points]

Class 5: Language Syntax/Operational Semantics

1. [8 points] Translate the program below into our programming language.

 \[p = 1; \quad k = x = 0; \quad \textbf{while} (k++ < n) \{ ++x; \quad p *= x; \} \]

[2/11: add z]

2. [12 = 3 * 4 points] Let \(S = \text{if } x > 0 \text{ then } x := x*z \text{ else if } y > 0 \text{ then } y := y*z \text{ fi fi.} \)

 a. Evaluate \(\langle S, \{ x = 2, y = 6, z = 4 \} \rangle \) to completion, using step-by-step operational (i.e., \(\rightarrow \)) semantics.

 b. Evaluate \(\langle S, \{ x = -2, y = 8, z = 5 \} \rangle \) to completion, using step-by-step operational semantics.

 c. Evaluate \(\langle S, \{ x = -1, y = -2, z = 6 \} \rangle \) to completion, using step-by-step operational semantics.

3. [9 points] Let \(W = \text{while } k \neq n \text{ do } S \text{ od where } S = k := k+1; \; x := x+k*k. \) Let \(\sigma_0 = \{ k = 0, x = 1, n = 4 \}. \)

 Evaluate \(\langle W, \sigma_0 \rangle \) to completion. Show all configurations of the form \(\langle W, \text{state} \rangle \) and the final \(\langle E, \bot \rangle \). You can use \(\rightarrow^n \) to skip other configurations if you like, or you can show them (your choice).

Class 6: Denotational Semantics, Runtime Errs

4. [9 = 3 * 3 points] Give the denotational semantics \((M(S, \ldots) = ?) \) of the configurations in Problem 2a – 2c.

5. [4 points] Take the \(W \) from Problem 3. What is the set of \(\sigma \) such that \(\langle W, \sigma \rangle \rightarrow^n \langle E, \bot \rangle \)?

6. [8 points] Let \(S = x := b[m-2]/\sqrt{k} \) and let \(\sigma = \{ m = \alpha, k = y, b = \beta \}. \) Let \(\delta \) be the length of \(b \), so \(\beta(0), \ldots, \beta(\delta-1) \) are the values of \(b[0], b[1], \ldots \). Describe the set of all \(\sigma \) that cause \(M(S, \sigma) = \{ \bot_e \}. \)

 (As in class, divide by zero and square root of a negative number cause errors.)