Forward Assignment; Strongest Postconditions

CS 536: Science of Programming, Fall 2020

A. Why?
- At times, a forward version of the assignment rule is more appropriate than the backward version.
- The forward assignment rule is part of calculating the sp (strongest postcondition) of a loop-free program.

B. Outcomes
At the end of this class you should
- Know the basic assignment axioms.
- Know what a strongest postcondition is and how to calculate the sp of loop-free programs.

C. Forward Assignment Rules
- We already have a “backwards” assignment rule, \{P(e)\} w.l.p. := e \{P\} where P is a predicate function.
- If we just use the body of P as the predicate, the rule is \{(\text{body of } P)[e/v]\} w.l.p. := e \{P\}.
 - Since \(p[e/v] = wlp(v := e, p)\), we know this is the most general possible rule.
- What about the other direction, \{p\} w.l.p. := e \{???\} — what can we use for the postcondition?
 - Most people’s first guess is \{p\} w.l.p. := e \{p \land v = e\}, which can work under certain conditions.

New Variable Introduction
- If \(v\) is a new (fresh) variable (doesn’t appear free in \(p\) and doesn’t appear in \(e\)) then \{p\} w.l.p. := e \{p \land v = e\}.
 - For example, \{x > y\} w.l.p. := 2 \{x > y \land z = 2\}
- To justify this, using \(wlp\), we know \{(p \land v = e)[e/v]\} w.l.p. := e \{p \land v = e\}.
 - Expanding, \((p \land v = e)[e/v] = p[e/v] \land e = e[e/v]\).
 - Since \(v\) is fresh, it doesn’t occur in \(p\) or \(e\), so \(p[e/v] = p\) and \(e[e/v] = e\). So we need \{p \land e = e\} w.l.p. := e \{p \land v = e\}, which definitely holds.

Forward Assignment (General Case)
- As an example of why \{p\} w.l.p. := e \{p \land v = e\} doesn’t work in general, consider \{x > 0\} w.l.p. := x/2 \{???\}.
 - Since division truncates, if \(x = 1\), the final state doesn’t satisfy \(x > 0\). We might want to try \(x*2 > 0\) as the postcondition, but again this fails if \(x = 1\).
• What we do know is that the value \(x \) had before the assignment was positive, and the new value of \(x \) is half of the old value of \(x \). If we use \(x_0 \) as the name for the value of \(x \) before the assignment, we can say \(\{ x_0 = x \land x > 0 \} \ x := x/2 \ \{ x_0 > 0 \land x = x_0/2 \} \).
• Note we don't have to actually store \(x_0 \) in memory; it's just a name we use for logical reasoning purposes — \(x_0 \) is a “fresh logical constant”; fresh in the sense that it doesn't appear in \(p \) or \(e \), logical because it only appears in the correctness discussion, not the program, and constant because though \(x \) changes, \(x_0 \) doesn't. (Note in this context, “logical” doesn't mean “boolean”.)
• The **general rule** is \(\{ p \land v = v_0 \} \ v := e \ \{ p[v_0/v] \land v = e[v_0/v] \} \). In the precondition, we may be able to omit \(v = v_0 \) as being understood.
 • **Example 1a:** \(\{ x > 0 \land x = x_0 \} \ x := x - 1 \ \{ x_0 > 0 \land x = x_0 - 1 \} \).
 • **Example 2a:** \(\{ s = \text{sum}(0, i) \land s = s_0 \} \ s := s + i + 1 \ \{ s_0 = \text{sum}(0, i) \land s = s_0 + i + 1 \} \).
• The \(x = x_0 \) and \(s = s_0 \) clauses are a bit annoying; we could drop them by using an existential in the postcondition, but that's no fun either:
 • **Example 1b:** \(\{ x > 0 \} \ x := x - 1 \ \{ \exists x_0. \ x_0 > 0 \land x = x_0 - 1 \} \)
 • **Example 2b:** \(\{ s = \text{sum}(0, i) \} \ s := s + i + 1 \ \{ s_0 = \text{sum}(0, i) \land s = s_0 + i + 1 \} \).
• Let's drop the existential as implied — when a symbol appears in the postcondition but not the precondition, then we're implicitly quantifying it existentially in the postcondition.
• We've actually been doing something similar with the precondition: Variables free in the precondition are treated as being universally quantified across both the precondition and postcondition.
 • **Example 1c:** (For all \(x \), there is an \(x_0 \) such that) \(\{ x > 0 \} \ x := x - 1 \ \{ x_0 > 0 \land x = x_0 - 1 \} \)
 • **Example 2c:** (For all \(s \) and \(i \), there is an \(s_0 \) such that)
 \(\{ s = \text{sum}(0, i) \} \ s := s + i + 1 \ \{ s_0 = \text{sum}(0, i) \land s = s_0 + i + 1 \} \).
• **Example 3:** \(\{ s_0 = \text{sum}(0, i) \land s = s_0 + i + 1 \} \ i := i + 1 \ \{ s_0 = \text{sum}(0, i) \land s = s_0 + i + 1 \land i = i_0 + 1 \} \). The postcondition of this example can be weakened to \(s = \text{sum}(0, i) \), which will be useful later for explaining the loop while \(i < n \) do \(s := s + i + 1 \); \(i := i + 1 \) od.
• Using the backward assignment rule on \(\{ p \} \ s := s + i + 1 \; i := i + 1 \; \{ s = \text{sum}(0, i) \} \) gets us a logically equivalent triple:
 \[
 p = wp(s := s + i + 1; i := i + 1, s = \text{sum}(0, i)) \\
 = wp(s := s + i + 1, wp(i := i + 1, s = \text{sum}(0, i))) \\
 = wp(s := s + i + 1, s = \text{sum}(0, i + 1)) \\
 = s + i + 1 = \text{sum}(0, i + 1) \\
 \iff s = \text{sum}(0, i)
 \]

Correctness of The Forward Assignment Rule

• The forward assignment rule appears to be very different from our earlier “backward” assignment rule, but actually, we can derive the forward assignment rule using the backward assignment rule.
• **Theorem (Correctness of Forward Assignment)**

\[\models (p \land v = v_0) \land e := (p[v_0/v] \land v = e[v_0/v]), \] where \(v_0 \) is a fresh logical constant.

• **Proof:**
 • We'll argue that the precondition \(p \land v = v_0 \) implies the \(wp \) of the assignment and postcondition.
 • We need \((p \land v = v_0) \rightarrow wp(v := e, q) \), where \(q = (p[v_0/v] \land v = e[v_0/v]) \). Simplifying,

\[
wp(v := e, q) = q[e/v] = (p[v_0/v] \land v = e[v_0/v])[e/v] = p[v_0/v][e/v] \land v[e/v] = e[v_0/v][e/v]
\]

• We can simplify \(p[v_0/v][e/v] \land v[e/v] = e[v_0/v][e/v] \) by looking at its three parts.
 • The easiest one is \(v[e/v] = e \).
 • For \(p[v_0/v] \), since \(v \) doesn't appear in it; we have \(p[v_0/v][e/v] = p[v_0/v] \), which is \(\Leftrightarrow p \land v = v_0 \).
 • Similarly, since \(v \) doesn't appear in \(e[v_0/v] \), we have \(e[v_0/v][e/v] = e[v_0/v] = e \) when \(v = v_0 \).

• So \((p[v_0/v][e/v] \land v[e/v] = e[v_0/v][e/v]) \Leftrightarrow p[v_0/v] \land e = e[v_0/v] \)

• So \((p[v_0/v][e/v] \land v[e/v] = e[v_0/v][e/v]) \Leftrightarrow p \land v = v_0 \land e = e \Leftrightarrow p \land v = v_0 \).

• \(p[v_0/v][e/v] \land v[e/v] = e[v_0/v][e/v] = p[v_0/v] \land e = e[v_0/v] \)

 and this is \(\Leftrightarrow p \land v = v_0 \).

• For a particular example, with \(\{x > 0 \land x = x_0 \} x := x-1 \{x_0 > 0 \land x = x_0 - 1 \} \), we find \(wp(x := x-1, x_0 > 0 \land x = x_0 - 1) = x_0 > 0 \land x-1 = x_0 - 1 \), which is implied by \(x > 0 \land x = x_0 \).

• **Note** that the simpler rule for introducing a new variable is a special case of the general rule:

 • We want \(\{p\} v := e \{p \land v = e\} \) if \(v \) doesn't occur in \(e \) or and \(v \) is not free in \(p \). The forward assignment rule says \(\{p\} v := e \{p[v_0/v] \land v = e[v_0/v]\} \), where \(v_0 \) is a fresh logical constant.

 Since \(v \) does not occur in \(e \), we know \(e[v_0/v] = e \). Similarly, since \(v \) isn't free in \(p \), we know \(p[v_0/v] = p \). Substituting into \(\{p\} v := e \{p[v_0/v] \land v = e[v_0/v]\} \) gives us \(\{p\} v := e \{p \land v = e\} \).

• Not shown: So we've shown that the forward assignment rule can be derived if we have the backward assignment rule. Turns out the other direction is also true: You can derive the backward assignment rule from the forward assignment rule.

D. The Strongest Postcondition (\(sp \))

• **Definition:** Given a precondition \(p \) and program \(S \), the **strongest postcondition** of \(p \) and \(S \) is (the predicate that stands for) the set of states we can terminate in if we run \(S \) starting in a state that satisfies \(p \). In symbols,

\[
sp(p, S) = \{ \tau \mid \tau \in M(S, \sigma) \land \Sigma \text{ for some } \sigma \text{ where } \sigma \models p \}.
\]

• Equivalently, \(sp(p, S) = \cup (M(S, \sigma) \land \Sigma) \) where \(\sigma \models p \).

• I.e., \(sp(p, S) \) is the image of \(M(S, \ldots) \) (considered as a function) over the set of states that satisfy \(p \).

• Figures 1 and 2 show the relationship between \(p \), \(S \), and \(sp(p, S) \) and \(sp(\neg p, S) \)

• If \(\sigma \models p \), then every state in \(M(S, \sigma) \land \Sigma \) is by definition in \(sp(p, S) \), so \(\models \{p\} S \{sp(p, S)\} \).
• This is only valid for \textit{partial correctness}: Starting in a state that satisfies p might yield an error.

• (To get total correctness, we need termination: $\vDash_{\text{tot}} \{p\} S \{sp(p, S)\} \iff \vDash_{\text{tot}} \{p\} S \{\top\}$.)

• For $sp(\neg p, S)$, the situation is symmetric:
 • If $\sigma \models \neg p$, then every state in $M(S, \sigma) \cap \Sigma$ is by definition in $sp(\neg p, S)$.
 • We have partial correctness for $\{p\} S \{sp(\neg p, S)\}$.
 • We only get total correctness if S always terminates starting in $\neg p$.

• Notice that $sp(p, S)$ and $sp(\neg p, S)$ can have states in common: $sp(p, S) \cap sp(\neg p, S) \neq \emptyset$, just means it’s possible for states satisfying p and $\neg p$ to map to a common final state. (E.g., $x := 0$ sets x to 0 regardless of p or $\neg p$.)

![Figure 1: $sp(p, S)$ is the set of states reachable via S from p](image1)

![Figure 2: $sp(\neg p, S)$ is the set of states reachable via S from $\neg p$](image2)

• \textbf{Example 4}: For an example where $sp(p, S)$ and $sp(\neg p, S)$ overlap, take $S = x := 1$, which produces the same final state regardless of the start state: $sp(p, x := 1) = sp(\neg p, x := 1) = x = 1$.

• \textbf{Example 5}: Let $W = \text{while } i \neq 0 \text{ do } i := i - 1 \text{ od}$. Clearly, if W terminates, it’s with $i = 0$, so for any precondition p, if i isn’t free in p, we have $sp(p, W) \models p \land i = 0$, so $\{p\} W \{p \land i = 0\}$ is partially correct. However, it’s not totally correct for every p: It terminates iff we start in a state with $i \geq 0$ (i.e., $\vDash_{\text{tot}} \{i \geq 0\} W \{\top\}$). So $\{i \geq 0\} W \{i = 0\}$ is totally correct. However, $\{i < 0\} W \{i = 0\}$ is partially correct but never totally correct.

• \textbf{Strongest} postcondition: For partial correctness, $\vDash \{p\} S \{sp(p, S)\}$ (i.e., $sp(p, S)$ is a postcondition).

What makes it the strongest postcondition is that it implies any other postcondition: for general
q, \vdash \{p\} S \{q\} \iff \sp(p, S) \to q. The proof of strength is easy: By definition of \sp, every state \tau \in \sp(p, S) comes from some \textit{M}(S, \sigma) where \sigma \vdash p. Since \{p\} S \{q\} is partially correct, we also know \tau \vdash q. Since every state satisfying \sp(p, S) also satisfies q, we know that \sp(p, S) \to q is valid.

E. Strongest Postconditions for Loop-Free Programs

- Recall the forward assignment rule:
 - \{p \land v = v_0\} v := e \{p[v_0/v] \land v = e[v_0/v]\}, where \(v_0\) is a fresh logical constant and the \(v = v_0\) conjunct is optional and implicit.
 - It turns out (we won't prove this) that this rule gives the strongest postcondition of the precondition and assignment, and we can use it as the base for calculating the strongest postcondition of a loop-free program:
 - \sp(p, \text{skip}) = p
 - \sp(p, v := e) = p[v_0/v] \land v = e[v_0/v], where \(v_0\) is a fresh constant.
 - \sp(p, S_1; S_2) = \sp(p, \text{sp}(p, S_1), S_2)
 - The most we can know after \(S_1; S_2\) is the most we know after executing \(S_2\) in the state that is the most we know after \(S_1\).
 - \sp(p, \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi}) = \sp(p \land B, S_1) \lor \sp(p \land \neg B, S_2)
 - After executing an \textit{if-else}, we know what we know after executing the true branch (after the test succeeded) or the false branch (after the test failed), but we don't know which branch was taken.
 - For specific \(p, B, S_1, \text{ and } S_2\), we might be able to infer which branch was taken, but in the general case, we can't.
 - \sp(p, B_1 \rightarrow S_1 \land B_2 \rightarrow S_2 \text{ fi}) = \sp(p \land B_1, S_1) \lor \sp(p \land B_2, S_2). As with deterministic \textit{if-else}, once the nondeterministic \textit{if-fi} finishes, we know it evaluated one of the guarded commands but not necessarily which one.

- **Explicitly naming old variables before conditionals:**
 - E.g., consider \textit{if }B \textit{ then }x := x + 1 \textit{ else skip fi}. (Assume \(x\) doesn't appear in \(B\).)
 - We definitely need to include \(x_0\) when taking the \sp of the true branch to get \((B \rightarrow x = x_0 + 1)\).
 - But we should also include \(x_0\) in the \sp of the false branch to get \((\neg B \rightarrow x = x_0)\) so that after the conditional, we know what \(x\) looks like after the conditional, regardless of \(B\). Without including \(x = x_0\) in the false branch \sp, we'd just know \(\neg B\).
 - In short, for \sp(p, \text{if } ... \text{ fi}), we should add old variable clauses for all variables modified by the branches.
 - For nondeterministic \textit{if...fi}, the principle is the same: Before the conditional, add old variable clauses for all variables modified in any of the guarded commands.
F. Examples of Strongest Postconditions

Example 6:

- Let’s use sp to fill in the postcondition of \(\{x > y\} x := x + k; y := y + k \) {??}
- (Presumably, the postcondition will imply that \(x \) is still > \(y \))
- Let \(p = x > y \), then \(sp(p, x := x + k; y := y + k) = sp(sp(p, x := x + k), y := y + k) \).
- Let’s calculate the inner sp first:
 \[
 sp(p, x := x + k)
 = sp(x > y, x := x + k)
 = (x > y)[x_0/x] \wedge x = (x + k)[x_0/x]
 = x_0 > y \wedge x = x_0 + k
 \]
- Then going back to our original problem and the outer sp, we get
 \[
 sp(p, x := x + k; y := y + k)
 = sp(sp(p, x := x + k), y := y + k)
 = sp(x_0 > y \wedge x = x_0 + k, y := y + k)
 = (x_0 > y \wedge x = x_0 + k)[y_0/y] \wedge y = (y + k)[y_0/y]
 = x_0 > y_0 \wedge x = x_0 + k \wedge y = y_0 + k
 \]

So our original triple can be filled in as

- \(\{x > y\} x := x + k; y := y + k \) \{\(x_0 > y_0 \wedge x = x_0 + k \wedge y = y_0 + k \)\}

Example 7:

- Using the same program, let’s compare the triple we got using \(sp \) with a triple we get using \(wp \).
- For the postcondition, let’s use \(x > y \):
 \[
 wp(x := x + k; y := y + k, x > y)
 = wp(x := x + k, wp(y := y + k, x > y))
 = wp(x := x + k, (x > y)[y+k/y])
 = wp(x := x + k, (x > y + k))
 = (x > y + k)[x+k/x]
 = x + k > y + k
 \]
- Which gives us \(\{x + k > y + k\} x := x + k; y := y + k \) \{\(x > y \)\}

Example 8:

- Let \(p = y = y_0 \) and \(S = if \ x \geq 0 \ then \ y := x \ else \ y := -x \ fi \). Then
 \[
 sp(p \wedge x \geq 0, y := x) = (x \geq 0)[y_0/y] \wedge y = x[y_0/y] = x \geq 0 \wedge y = x
 \]
 \[
 sp(p \wedge x < 0, y := -x) = (x < 0)[y_0/y] \wedge y = -x[y_0/y] = x < 0 \wedge y = -x
 \]
- So \(sp(y = y_0, if \ x \geq 0 \ then \ y := x \ else \ y := -x \ fi) \)
 \[
 = sp(p \wedge x \geq 0, y := x) \lor sp(p \wedge x < 0, y := -x)
 = x \geq 0 \wedge y = x \lor x < 0 \wedge y = -x
 \]
- Note that since the assignments to \(y \) don’t depend on \(y_0 \), we don’t find \(y_0 \) occurring in the result.

Example 9:
Let $S = \text{if even}(x) \; \text{then } x := x+1 \; \text{else } x := x+2 \; \text{fi}$ and let $p = x \geq 0$, then

\[sp(p, S) = sp(p, \text{if even}(x) \; \text{then } x := x+1 \; \text{else } x := x+2 \; \text{fi}) = sp(p \land \text{even}(x), x := x+1) \lor sp(p \land \text{odd}(x), x := x+2) \]

For the true branch,

\[sp(p \land \text{even}(x), x := x+1) = (p \land \text{even}(x))[x_0/x] \land x = (x+1)[x_0/x] = (x \geq 0 \land \text{even}(x))[x_0/x] \land x = (x+1)[x_0/x] = x_0 \geq 0 \land \text{even}(x_0) \land x = x_0+1 \]

For the false branch,

\[sp(p \land \text{odd}(x), x := x+2) = (p \land \text{odd}(x))[x_0/x] \land x = (x+2)[x_0/x] = (x \geq 0 \land \text{odd}(x))[x_0/x] \land x = x_0+2 = x_0 \geq 0 \land \text{odd}(x_0) \land x = x_0+2 \]

So $sp(p, S) = sp(p \land \text{even}(x), x := x+1) \lor sp(p \land \text{odd}(x), x := x+2) = (x_0 \geq 0 \land \text{even}(x_0) \land x = x_0+1) \lor (x_0 \geq 0 \land \text{odd}(x_0) \land x = x_0+2)$.

If we want to logically simplify, we get $x_0 \geq 0 \land \text{(even}(x_0) \land x = x_0+1 \lor \text{odd}(x_0) \land x = x_0+2))$.

That's about as far as we can simplify without losing information. For example, we could simplify to $(x_0 \geq 0 \land (x = x_0 + 1 \lor x = x_0 + 2))$ or to $(x \geq 1 \land \text{odd}(x))$, but whether we want to simplify or not depends on where we're using the sp in the overall proof of correctness for the program.

Example 10:

Let $S = \text{if } x \geq y \; \text{then } x := x-y \; \text{else } y := y \times x \; \text{fi}$

Let $q_1 = sp(x = x_0 \land y = y_0, S)$

\[q_1 = sp(x = x_0 \land y = y_0 \land x \geq y, x := x-y) \lor sp(x = x_0 \land y = y_0 \land x < y, y := y \times x) \]

\[= (y \equiv y_0 \land x \geq y \land x = x_0 \land y) \lor (x = x_0 \land x < y_0 \land y = y_0 \times x) \]

With q_1, if the first disjunct holds, then $x_0 \geq y_0$; if the second disjunct holds, then $x_0 < y_0$.

If we only introduce x_0 and y_0 just before the assignments to x and y, we get

- For the true branch, $sp(x = x_0 \land x \geq y, x := x-y) = (x_0 \geq y \land x = x_0 \times y)$
- For the false branch, $sp(y = y_0 \land x < y, y := y \times x) = (x < y_0 \land y = y_0 \times x)$

Let q_2 be their disjunction, $(x_0 \geq y \land x = x_0 \land y) \lor (x < y_0 \land y = y_0 \times x)$.

With q_2, if the first disjunct holds, we know $x_0 \geq y$, but not $x_0 \geq y_0$. Symmetrically, if the second conjunct holds, we know $x < y_0$, but not $x_0 < y_0$. (We certainly know $x_0 \geq y_0$ or $x_0 < y_0$, but we've lost the connections with them and the two disjuncts.)

Since q_1 implies q_2 but not vice versa, we know q_1 is the stronger of the two, so it, not q_2, should be the strongest postcondition.

Example 11:

If we have a sequence of assignments to one variable, then we introduce multiple logical variables to talk about its values at different times in the sequence.
• To complete \(\{ x > f(x, y) \} x := x+1; x := x^*x \) \(???)\), we’ll calculate the strongest postcondition.

 • To talk about the original value of \(x \), and the value of \(x \) between the two assignments, we need two different variables.

 • We need \(sp(x > f(x, y), S_1; S_2) = sp(sp(x > f(x, y), S_1), S_2) \) where \(S_1 = x := x+1 \) and \(S_2 = x := x^*x \).

 \[
 \begin{align*}
 sp(x > f(x, y), S_1) &= sp(x > f(x, y), x := x+1) \\
 &= (x > f(x, y))[x_0/x] \land x = (x+1)[x_0/x] \quad \text{(using } x_0 \text{ as the fresh variable)} \\
 &= x_0 > f(x_0, y) \land x = x_0+1 \\
 sp(sp(x > f(x, y), S_1), S_2) &= sp(x_0 > f(x_0, y) \land x = x_0+1, x := x^*x) \\
 &= (x_0 > f(x_0, y) \land x = x_0+1)[x_1/x] \land x = (x^*x)[x_1/x] \quad \text{(using } x_1 \text{ as the fresh variable)} \\
 &= x_0 > f(x_0, y) \land x_1 = x_0+1 \land x = x_1^*x_1
 \end{align*}
 \]

• We have to be careful with which variables we use where in the answer. In \(x_0 > f(x_0, y) \), we need \(x_0 \) to talk about the value of \(x \) before the first assignment. Between the two assignments, we have the then-current \(x = x_0+1 \), but after the second assignment, we use \(x_1 \) to name the value of \(x \) between the two assignments because the now-current \(x \neq x_1 \). So after the second assignment we have \(x_1 = x_0+1 \) and \(x = x_1^*x_1 \). But the \(x_0 > f(x_0, y) \) clause remains the same because it talks about something that was true before the first assignment.