Weakest Preconditions

Part 2: Calculating wp, wlp; Domain Predicates

CS 536: Science of Programming, Spring 2021

A. Why

- Weakest liberal preconditions (wlp) and weakest preconditions (wp) are the most general requirements that a program must meet to be correct.

B. Objectives

At the end of today you should understand

- How to add error domain predicates to the wlp of a loop-free program to obtain its wp.

C. Calculating wlp for Loop-Free Programs

- It’s easy to calculate the wp and wlp of a loop-free/error-free program S especially since for such programs, the wp and wlp are identical.
- The following algorithm takes S and q and syntactically calculates a particular predicate for wlp(S, q), which is why it’s described using wlp(S, q) ≡ ... instead of wp(S, q) ⇔

 - wlp(skip, q) = q
 - wlp(v := e, Q(v)) = Q(e) where Q is a predicate function over one variable.
 - The operation that takes us from Q(v) to Q(e) is called syntactic substitution; we’ll look at it in more detail soon, but in the simple case, we simply inspect the definition of Q, search its text for occurrences of the variable v and replace them with copies of e.
 - wlp(S₁; S₂, q) = wlp(S₁, wlp(S₂, q))
 - wlp(if B then S₁ else S₂ fi, q) = (B → w₁) ∧ (∼B → w₂) where w₁ = wlp(S₁, q) and w₂ = wlp(S₂, q).
 - Since it’s equivalent, you can also use (B ∧ w₁) ∨ (∼B ∧ w₂).
 - wlp(if B₁ → S₁ ⋄ B₂ → S₂ fi, q) = (B₁ → w₁) ∧ (B₂ → w₂) where w₁ = wlp(S₁, q) and w₂ = wlp(S₂, q).
 - For the nondeterministic if, you must use (B₁ → w₁) ∧ (B₂ → w₂), not (B₁ ∧ w₁) ∨ (B₂ ∧ w₂), because they’re not equivalent (unlike the deterministic if statement).
 - When B₁ and B₂ are both true, either S₁ or S₂ can run, so we need B₁ ∧ B₂ → w₁ ∧ w₂, and this is implied by (B₁ → w₁) ∧ (B₂ → w₂).
 - Using (B₁ ∧ w₁) ∨ (B₂ ∧ w₂) fails because it allows for the possibility that B₁ and B₂ are both true but only one of w₁ and w₂ is true. This isn’t a problem when B₂ ⇔ ∼B₁, which is why we can use (B ∧ w₁) ∨ (∼B ∧ w₂) with deterministic if statements.
D. Some Examples of Calculating wp/wlp:

- The programs in these examples never end in “state” \(\bot \), so the \(wp \) and \(wlp \) are equivalent.

 - **Example 2**: \(wlp(x := x+1, x \geq 0) = x+1 \geq 0 \)

 - **Example 3**: \(wlp(y := y+x; x := x+1, x \geq 0) = wlp(y := y+x, wlp(x := x+1, x \geq 0)) = wlp(y := y+x, x+1 \geq 0) = x+1 \geq 0 \)

 - **Example 4**: \(wlp(y := y+x; x := x+1, x \geq y) = wlp(y := y+x, wlp(x := x+1, x \geq y)) = wlp(y := y+x, x+1 \geq y) = x+1 \geq y+x \)

 - If we were asked only to calculate the \(wlp \), we’d stop here. If we also wanted to logically simplify the \(wp \) then \(x+1 \geq y+x \Leftrightarrow y \leq 1 \).

 - **Example 5**: (Swap the two assignments in Example 4) \(wlp(x := x+1; y := y+x, x \geq y) \)

 - \(wlp(x := x+1, wlp(y := y+x, x \geq y)) = wlp(x := x+1, x \geq y+x) = x+1 \geq y+x+1 [\Leftrightarrow y \leq 0 \text{ if you want to logically simplify}] \)

 - **Example 6**: \(wlp(\text{if } y \geq 0 \text{ then } x := y \text{ fi, } x \geq 0) \)

 - \(wlp(\text{if } y \geq 0 \text{ then } x := y \text{ else skip fi, } x \geq 0) = (y \geq 0 \rightarrow wlp(x := y, x \geq 0)) \land (y < 0 \rightarrow wlp(\text{skip, } x \geq 0)) = (y \geq 0 \rightarrow y \geq 0) \land (y < 0 \rightarrow x \geq 0) \)

 - It’s also okay to use \((y \geq 0 \land y \geq 0) \lor (y < 0 \land x \geq 0) \).

 - If we want to simplify logically, we can continue with

 \[\Leftrightarrow y \geq 0 \lor (y < 0 \land x \geq 0)\]

 \[\Leftrightarrow (y \geq 0 \lor y < 0) \land (y \geq 0 \lor x \geq 0)\]

 \[\Leftrightarrow y \geq 0 \lor x \geq 0 \text{ (which is also } \Leftrightarrow y < 0 \rightarrow x \geq 0, \text{ if you prefer)}\]

E. Domain Predicates for Avoiding Runtime Errors in Expressions

- To avoid runtime failure of \(\sigma(e) \), we’ll take the context in which we’re evaluating \(e \) and augment it with a predicate that guarantee non-failure of \(\sigma(e) \). For example, for \(\{P(e)\} = e \{P(v)\} \), we’ll augment the precondition to guarantee that evaluation of \(e \) won’t fail.

- For each expression \(e \), we will define a domain predicate \(D(e) \) such that \(\sigma = D(e) \) implies \(\sigma(e) \neq \bot \).

 - This predicate has to be defined recursively, since we need to handle complex expressions like \(D(b[b[k]]) = 0 \leq k < \text{size}(b) \land 0 \leq b[k] < \text{size}(b) \).

 - As with \(wp \) and \(sp \), the domain predicate for an expression is unique only up to logical equivalence. For example, \(D(x/y + u/v) = y \neq 0 \land v \neq 0 \Leftrightarrow v \neq 0 \land y \neq 0 \).

- **Definition** (Domain predicate \(D(e) \) for expression \(e \)) We must define \(D \) for each kind of expression that can cause a runtime error:
• $D(c) = D(v) = T$ if where c is a constant and v is a variable.
 • Evaluation of a variable or constant doesn't cause failure.
• $D(b[e]) = D(e) \land 0 \leq e < \text{size}(b)$
• $D(e_1 / e_2) = D(e_1 \% e_2) \iff D(e_1) \land D(e_2) \land e_2 \neq 0$
• $D(\sqrt{(e)}) = D(e) \land e \geq 0$
 • And so on, depending on the datatypes and operations being used.
• The various operations ($+$, $-$, etc.) and relations (\leq, $=$, etc.) don't cause errors but we still have to check their subexpressions:
• $D(e_1 \text{ op } e_2) = D(e_1) \land D(e_2)$, except for $\text{op} = \div$ or $\%$
• $D(\text{op } e) = D(e)$, unless you add an operator that can cause runtime failure.
• $D(\text{if } B \text{ then } e_1 \text{ else } e_2 \text{ fi}) = D(B) \land (B \rightarrow D(e_1)) \land (\neg B \rightarrow D(e_2))$
 • (For a conditional expression, we only need safety of the one branch we execute.)

Example 7: $D(b[b[k]]) = D(b[k]) \land 0 \leq b[k] < \text{size}(b)$
$= D(k) \land 0 \leq k < \text{size}(b) \land 0 \leq b[k] < \text{size}(b)$
$\iff 0 \leq k < \text{size}(b) \land 0 \leq b[k] < \text{size}(b)$

Example 8: $D((-b + \sqrt{(b*b - 4*a*a*c)})/(2*a))$
$= D(e) \land D(2*a) \land 2*a \neq 0$
where $e = -b + \sqrt{(b*b - 4*a*c)}$
$= D(-b) \land D(\sqrt{(b*b - 4*a*c)}) \land D(2*a) \land 2*a \neq 0$
$\iff D(\sqrt{(b*b - 4*a*c)}) \land 2*a \neq 0$
%since $D(-b) = D(2*a) = T$
$= D(b*b - 4*a*c) \land (b*b - 4*a*c \geq 0) \land 2*a \neq 0$
$\iff b*b - 4*a*c \geq 0 \land 2*a \neq 0$

Example 9: $D(\text{if } 0 \leq k < \text{size}(b) \text{ then } b[k] \text{ else } 0 \text{ fi})$
$= D(B) \land (B \rightarrow D(b[k])) \land (\neg B \rightarrow D(0))$
where $B = 0 \leq k < \text{size}(b)$
$= (B \rightarrow D(b[k])) \land (\neg B \rightarrow T)$
since $D(B)$ and $D(0) = T$
$\iff B \rightarrow D(b[k])$
expanding $D(b[k])$
$= B \rightarrow D(k) \land 0 \leq k < \text{size}(b)$
$\iff B \rightarrow T \land B$
$\iff T$

F. Domain Predicates for Avoiding Runtime Errors in Programs

• Recall that we extended our notion of operational semantics to include $\langle S, \sigma \rangle \rightarrow^* \langle E, \bot_e \rangle$ to indicate that evaluation of S causes a runtime failure.
• We can avoid runtime failure of statements by adding domain predicates to the preconditions of statements. Though for loops we can't in general calculate the wp/wp, we can calculate the domain predicate for them.
• **Definition:** For statement S, the predicate $D(S)$ gives a sufficient condition to avoid runtime errors.
 • $D(\text{skip}) = T$
 • $D(v := e) = D(e)$
• \(D(b[e_1] := e_2) = D(b[e_1]) \land D(e_2)\)

• \(D(S_1 ; S_2) = D(S_1) \land wp(S_1, D(S_2))\)

[Running \(S_1\) when \(D(S_1)\) holds tells us \(S_1\) won't cause an error. Running \(S_1\) when \(wp(S_1, D(S_2))\) holds tells us that \(S_1\) will establish \(D(S_2)\), so running \(S_2\) won't cause an error.]

• If \(\sigma \models D(S_1)\) then \(\bot \notin M(S_1, \sigma)\).

• If \(\sigma \models wp(S_1, D(S_2))\), then \(M(S_1, \sigma) \models D(S_2)\).

• If \(M(S_1, \sigma) \models D(S_2)\), then \(\bot \notin M(S_2, M(S_1, \sigma))\).

• \(D(\text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi}, q) = D(B) \land (B \rightarrow D(S_1)) \land (\neg B \rightarrow D(S_2))\)

• \(D(\text{if } B_1 \rightarrow S_1 \text{ do } S_2 \text{ od}, q) = D(B_1) \lor (B_1 \rightarrow D(S_1)) \land (B_1 \rightarrow D(S_2))\)

Note we need \((B_1 \lor B_2)\) to avoid failure of the nondeterministic if-fi due to none of the guards holding.

• This definition extends easily to if-fi with more than two guarded commands.

• \(D(\text{while } B \text{ do } S_1 \text{ od}) = D(B) \land (\neg B \rightarrow D(S_1))\)

• \(D(\text{do } B_1 \rightarrow S_1 \text{ do } B_2 \rightarrow S_2 \text{ od}) = D(B_1) \lor (B_1 \rightarrow D(S_1)) \land (B_2 \rightarrow D(S_2))\)

The domain predicate for nondeterministic do-od is like that for if-fi except that having none of the guards hold does not cause an error.

Calculating \(wp\) for loop-free programs

• With the domain predicates, it's easy to extend \(wlp\) for \(wp\) for loop-free programs because we don't have to argue for termination of a loop.

• **Definition**: \(wp(S, q) = D(S) \land D(w) \land w\), where \(w = wlp(S, q)\).

• \(D(S)\) tells us that running \(S\) won't cause an error, \(D(w)\) tells us that \(w\) makes sense, and \(w\) tells us that running \(S\) will establish \(q\) (if \(S\) terminates).

Example 10: If a program does a division, then the \(wp\) and \(wlp\) can differ.

• Let \(p_2 = wp(x := y; z := v/x, z > x+2) = wp(x := y, p_1)\)

• Where \(p_1 = wp(z := v/x, z > x+2) = D(z := v/x) \land D(w) \land w\)

 where \(w = wlp(z := v/x, z > x+2) = v/x > x+2\)

 \(p_1 = D(z := v/x) \land (v/x > x+2) \land v/x > x+2 = x \neq 0 \land v/x > x+2 \iff x \neq 0 \land v/x > x+2\)

• So \(p_2 = wp(x := y, p_1) = wp(x := y, x \neq 0 \land v/x > x+2)\)
 \(= wlp(x := y, x \neq 0 \land v/x > x+2)\), since \(x := y\) causes no errors
 \(= y \neq 0 \land v/y > y+2\)

Example 11: Let's calculate \(p_0 = wp(x := b[k], sqrt(x) \geq 1)\). When \(S = x := b[k]\) and \(q = sqrt(x) \geq 1\), then

• \(p_0 = wp(S, q) = D(S) \land D(w) \land w\)

 where \(w = wlp(S, q) = wlp(x := b[k], q = sqrt(x) \geq 1) = sqrt(b[k]) \geq 1\)

• Breaking this down,
• \(wlp(S, q) = wlp(x := b[k], \sqrt{x} \geq 1) \iff \sqrt{b[k]} \geq 1 \), so
 \[D(wlp(S, q)) \equiv D(\sqrt{b[k]} \geq 1) = D(b[k]) \land b[k] \geq 0 = 0 \leq k < \text{size}(b) \land b[k] \geq 0. \]

 \[D(S) = D(x := b[k]) = D(k) \land 0 \leq k < \text{size}(b) \iff 0 \leq k < \text{size}(b) \]
• Combining, we get
 \[wp(x := b[k], \sqrt{x} \geq 1) \equiv D(wlp(x := b[k], \sqrt{x} \geq 1)) \land wlp(x := b[k], \sqrt{x} \geq 1) \land D(x := b[k]) \]
 \[\iff (\sqrt{b[k]} \geq 1) \land (0 \leq k < \text{size}(b) \land b[k] \geq 0) \land (0 \leq k < \text{size}(b)) \]
 \[\iff 0 \leq k < \text{size}(b) \land b[k] \geq 0 \land \sqrt{b[k]} \geq 1 \]
 (which, if we decide to simplify numerically),
 \[\iff 0 \leq k < \text{size}(b) \land b[k] \geq 1 \]
Weakest Preconditions

Part 2: Calculating wp, wlp; Domain Predicates

CS 536: Science of Programming, Spring 2021

A. Why

- The weakest precondition and weakest liberal preconditions are the most general preconditions that a program needs in order to run correctly.

B. Objectives

At the end of this activity you should be able to

- Describe the relationship between \(wp(S, q_1 \lor q_2) \), \(wp(S, q_1) \), and \(wp(S, q_2) \) and how it differs for deterministic and nondeterministic programs.
- Be able to calculate the \(wlp \) of a simple loop-free program.

C. Problems

1. How are \(wp(S, q_1 \lor q_2) \) and \(wp(S, q_1) \) and \(wp(S, q_2) \), related if \(S \) is deterministic? If \(S \) is nondeterministic?

For Problems 2 – 4, just syntactically calculate the \(wlp \); don't also logically simplify the result.

2. Calculate the \(wlp \) in each of the following cases.
 a. \(wlp(k := k - s, n = 3 \land k = 4 \land s = -7) \).
 b. \(wlp(n := n^*(n-k), n = 3 \land k = 4 \land s = -7) \).
 c. \(wlp(n := n^*(n-k); k := k - s, n > k + s) \)

3. Let \(Q(k, s) = 0 \leq k \leq n \land s = \text{sum}(0, k) \) where \(\text{sum}(u, v) \) is the sum of \(u, \ u+1, \ldots, \ v \) (when \(u \leq v \)) or 0 (when \(u > v \)).
 a. Calculate \(wp(k := k+1; s := s+k, Q(k, s)) \).
 b. Calculate \(wp(s := s+k+1; k := k+1, Q(k, s)) \).
 c. Calculate \(wp(s := s+k; k := k+1, Q(k, s)) \). (This one isn't compatible with \(s = \text{sum}(0, k) \).)

4. Calculate the \(wp \) below.
 a. \(wp(\text{if } B \text{ then } x := x/2 \text{ fi}; y := x, x = 5 \land y = z) \).
 b. \(wp(\text{if } x \geq 0 \text{ then } x := x^2 \text{ else } x := y \text{ fi}; x := c^x, a \leq x < y) \)

For Problems 5 and 6, don't forget the domain predicates. You can logically simplify as you go.

5. Calculate \(p \) to be the \(wp \) in \(\{ p \} x := y/b[k] \ (x > 0) \).

6. Calculate \(p_1 \) and \(p_2 \) to be the \(wp \)'s in \(\{ p_1 \} y := \text{sqrt}(b[k]) \ (z < y) \) and \(\{ p_2 \} k := x/k \ (p_1) \).