Correctness ("Hoare") Triples

Part 1: Definitions and Basic Properties, ver. 2

CS 536: Science of Programming, Fall 2020

A. Why

• To specify a program's correctness, we need to know its precondition and postcondition (what should be true before and after executing it).
• The semantics of a verified program combines its program semantics rule with the state-oriented semantics of its specification predicates.

B. Objectives

At the end of today you should know

• The syntax of correctness triples (a.k.a. Hoare triples).
• What it means for a correctness triples to be satisfied or to be valid.
• That a state in which a correctness triple is not satisfied is a state where the program has a bug.

C. Correctness Triples ("Hoare Triples")

• A correctness triple (a.k.a. "Hoare triple," after C.A.R. Hoare) is a program S plus its specification predicates p and q.
 • The precondition p describes what we're assuming is true about the state before the program begins.
 • The postcondition q describes what should be true about the state after the program terminates.
• Syntax of correctness triples: \{p\} S \{q\} (Think of it as /* p */ S /* q */)
 ⇒ Note: The braces are not part of the precondition or postcondition ⇐

• The precondition of \{p\} S \{q\} is p, not \{p\}. Similarly the postcondition is q, not \{q\}. Saying "The precondition is \{p\}" is like saying "In C, the test in if (B) x++; is if (B)."

D. Satisfaction and Validity of a Correctness Triple

• Informally, for a state to satisfy \{p\} S \{q\}, it must be that if we run S in a state that satisfies p, then after running S, we should be in a state that satisfies q. For a triple to be valid, it must be satisfied in all states.
• Important: If we start in a state that doesn't satisfy p, we claim nothing about what happens when you run S.
• In some sense, “the triple is satisfied” means “the triple is not buggy”.
• Say you (as the user) have been told not to run S when $x < 0$ because S calculates \sqrt{x}.
• And say the triple is $\{x \geq 0\} y := \sqrt{x} \{\sqrt{x}^2 \leq x < (y+1)^2\}$.
• You can't say this program has a bug when you start in a state with $x < 0$, even though the program fails, because you ran the program on bad input.
• Analogous to $\sigma \models p$ and $\models p$ for satisfaction and validity of predicates, we'll use the notations $\sigma \models \{p\} S \{q\}$ and $\models \{p\} S \{q\}$ for satisfaction and validity.

E. Simple Informal Examples of Correctness

• Before going to the formal definitions of partial and total correctness, let's look at some simple examples, informally.
• **Example 1:** $\models \{x > 0\} x := x + 1 \{x > 0\}$. This is satisfied in all states, so the triple is valid.
• **Example 2:** $\not\models \{x > 0\} x := x - 1 \{x > 0\}$. This is not satisfied (= “has a bug”) in the state where x is 1.
• **Example 3:** Make the precondition “stronger” = “more restrictive”:
 $\models \{x > 1\} x := x - 1 \{x > 0\}$ or $\models \{x - 1 > 0\} x := x - 1 \{x > 0\}$
• **Example 4:** Make the postcondition “weaker” = “less restrictive”:
 $\models \{x > 0\} x := x - 1 \{x > -1\}$
• **Example 5:** Change the program: E.g., $\{x > 0\}$ if $x > 1$ then $x := x - 1$ fi $\{x > 0\}$
• **Example 6:** $\models \{(x = 2^k \lor x = 2^{k+1}) \land x \geq 0\} x := x/2 \{x = k \geq 0\}$
 (If x is nonnegative and equals 2^k or 2^{k+1} before dividing x by 2 then after the division, x equals k, which is nonnegative.)
• **Example 7:** $\models \{s = 1 + 2 + \ldots + k\} s := s + k + 1; k := k + 1 \{s = 1 + 2 + \ldots + k\}$
 (If s = the sum of 1 through k, then after adding $k+1$ to s and 1 to k, s is still the sum of 1 through k.)
• **Example 8:** $\models \{s = 1 + 2 + \ldots + k\} k := k + 1; s := s + k \{s = 1 + 2 + \ldots + k\}$
 (This is like Example 7 but we increment k first and then update s by adding k (not $k+1$) to it.)
• **Example 9:**
 $\models \{s = 1 + 2 + \ldots + k\}$
 $k := k + 1$;
 $s := s + k + 1$
 $\{s = 1 + 2 + \ldots + (k-1) + (k+1)\}$
 (This is like Example 8 but we increment k and then add k (not $k+1$) to s. Hope it’s okay that s is not the sum of 1 through k.)
• **Definition:** For a triple $\{p\} S \{q\}$, a variable that appears in S is a program variable; a variable that appears in p or q is a condition variable. A logical variable is a condition variable that is not also a
program variable: It appears in the logical reasoning about the program but not the program itself. ("Logical" in this context doesn't mean "Boolean").

- **Example 10:** \(\equiv \{ x = c_0 \geq 0 \} \rightarrow x := x/2 \{ c_0 \geq 0 \land x = c_0/2 \} \)

(If \(x \) is \(\geq 0 \), then after the assignment \(x := x/2 \), the old value of \(x \) (call it \(c_0 \)) was \(\geq 0 \) and \(x = \) its old value divided by 2. Note \(c_0 \) is a **logical constant**, a logical variable that is a named constant.

F. Having a Set of States that Satisfy a Predicate

- Before looking at the definitions of program correctness, it will help if we extend the notion of a single state satisfying a predicate to having a set of states satisfying a predicate.

- **Notation:** Recall that \(\Sigma = \Sigma \cup \{ \bot \} \), so \(\sigma \in \Sigma \) allows \(\sigma = \bot \), but \(\sigma \in \Sigma \) implies \(\sigma \neq \bot \). Similarly for a set of states \(\Sigma_0 \), if \(\Sigma_0 \subseteq \Sigma_1 \), then we may have \(\bot \in \Sigma_0 \). On the other hand, if \(\Sigma_0 \subseteq \Sigma \), then \(\bot \notin \Sigma_0 \).

- **Notation:** \(\Sigma_0 \sim \bot \) and \(\Sigma_0 \cap \Sigma \) both mean \(\Sigma_0 \) less \(\bot: \Sigma_0 \sim \bot = \Sigma_0 \cap \Sigma = \{ \sigma \in \Sigma_0 \mid \sigma \in \Sigma \} = \{ \sigma \in \Sigma_0 \mid \sigma \neq \bot \} \).

- **Definition:** Let \(\Sigma_0 \subseteq \Sigma_1 \). We say \(\Sigma_0 \) **satisfies** \(p \) if every element of \(\Sigma_0 \) satisfies \(p \). In symbols, \(\Sigma_0 \models p \) iff for all \(\tau \in \Sigma_0 \), \(\tau \models p \). (Note \(\emptyset \models p \), since there exists no \(\tau \in \emptyset \) where \(\tau \models p \).

- Some consequences of the definition:
 - If \(\bot \in \Sigma_0 \), then \(\Sigma_0 \not\models p \) and \(\Sigma_0 \not\models \neg p \).
 - \((\Sigma_0 \models p \land \Sigma_0 \not\models \neg p) \) iff \(\Sigma_0 = \emptyset \).
 - Since \(\bot \not\models p \) (and \(\not\models \neg p \)), we have \(\bot \notin \Sigma_0 \). If \(\tau \not\models \bot \) and \(\tau \models p \) then \(\tau \not\models \neg p \), so \(\tau \notin \Sigma_0 \). So \(\Sigma_0 = \emptyset \).
 - If \(\Sigma_0 \) has size \(\geq 2 \) and \(\bot \notin \Sigma_0 \), then \(\Sigma_0 \not\models \neg p \) iff \(\Sigma_0 \models p \).
 - Either \(\tau \models p \) or \(\tau \models \neg p \) but not both, so \((\tau \models p \) and \(\tau \not\models \neg p) \) or \((\tau \not\models p \) and \(\tau \models \neg p) \).
 - If \(\Sigma_0 \) has size \(\geq 2 \) and \(\bot \notin \Sigma_0 \), then it is **not** the case that \(\Sigma_0 \not\models p \) iff \(\Sigma_0 \models \neg p \).
 - \((\Leftarrow) \) If \(\tau \models \neg p \) then \(\tau \not\models p \), so if \(\tau \in \Sigma_0 \), then \(\Sigma_0 \not\models p \).
 - \((\Rightarrow) \) If \(\bot \notin \{ \tau, \tau' \} \subseteq \Sigma_0 \) where \(\tau \models p \) and \(\tau' \models \neg p \), then \(\tau \not\models \neg p \) (so \(\tau \in \Sigma_0 \) implies \(\Sigma_0 \not\models \neg p \)) and \(\tau' \not\models p \) (so \(\tau' \in \Sigma_0 \) implies \(\Sigma_0 \not\models p \)). So we have \(\Sigma_0 \not\models p \) and \(\Sigma_0 \not\models \neg p \) simultaneously.

G. Total Correctness [9/23] some modifications

- Normally, we want our programs to always terminate in states satisfying their postcondition (assuming we start in a state satisfying the precondition). This property is called **total correctness**.

- **Definition:** The triple \(\{ p \} S \{ q \} \) is **totally correct in** \(\sigma \) or \(\sigma \) satisfies the triple under **total correctness** iff it's the case that if \(\sigma \) satisfies \(p \), then running \(S \) in \(\sigma \) always terminates in states satisfying \(q \).

- In symbols, \(\sigma \models_{\text{tot}} \{ p \} S \{ q \} \) iff \(\sigma \not\models \bot \) and (if \(\sigma \models p \) then \(\bot \notin M(S, \sigma) \) and \(M(S, \sigma) \models q \)).
 - The \(\bot \notin M(S, \sigma) \) clause can actually be dropped because \(M(S, \sigma) \models q \) implies \(\bot \notin M(S, \sigma) \).

1 The sense of “implies” or “if... then...” used here is not like \(\rightarrow \) (which appears in predicates) or \(\Rightarrow \) (which is a relationship between predicates). It’s “if...then” at a semantic level: If this triple is satisfied or if this set is nonempty, then... holds.
• For total correctness, we can’t allow \(\sigma = \bot \) because \(\bot \neq p \) and \(M(S, \bot) = \{\bot\} \neq q \), so \(\sigma \vdash p \) implies \(M(S, \sigma) \vdash q \) would reduce to (false implies false), which is true.

 [9/23] Note for \(\sigma \vdash_{\text{tot}} \{p\} S \{q\} \) we specifically require \(\sigma \neq \bot \) because \(\bot \neq p \), so without banning \(\bot \) explicitly, we’d have \((\sigma \vdash p \rightarrow ...) \) turn into (false \(\rightarrow ... \)), which is true.

• Definition: The triple \(\{p\} S \{q\} \) is totally correct (is valid under total correctness) iff \(\sigma \vdash_{\text{tot}} \{p\} S \{q\} \) for all \(\sigma \). [9/23] (And again, "all \(\sigma \)" refers to \(\sigma \in \Sigma \), the set of well-formed proper states.) [9/23]

 Notation: \(\vdash_{\text{tot}} \{p\} S \{q\} \).

H. Partial vs Total Correctness

• It turns out that reasoning about total correctness can be broken up into two steps: Determine “partial” correctness, where we ignore the possibility of divergence or runtime errors, and then show that those errors won’t occur.

• Definition: The triple \(\{p\} S \{q\} \) is partially correct in \(\sigma \) or \(\sigma \) satisfies the triple under partial correctness iff it’s the case that if \(\sigma \) satisfies \(p \), then whenever running \(S \) in \(\sigma \) converges to a memory state, that state satisfies \(q \).

 In symbols, \(\sigma \vdash \{p\} S \{q\} \) iff \(\sigma \neq \bot \) and \(\sigma \vdash p \) implies (for every \(\tau \in M(S, \sigma) \), if \(\tau \in \Sigma \), then \(\tau \vdash q \)).

 Equivalently, \(\sigma \vdash \{p\} S \{q\} \) iff \(\sigma \in \Sigma \) and \(\sigma \vdash p \) implies \(M(S, \sigma) \) is \(\bot \vdash q \).

 As with total correctness, we can’t allow \(\sigma = \bot \) for partial correctness because \(\bot \neq p \), which would make \((\sigma \vdash p \rightarrow ...) \) true.

• Definition: The triple \(\{p\} S \{q\} \) is partially correct (= is valid under/for partial correctness) iff \(\sigma \vdash \{p\} S \{q\} \) for all \(\sigma \). Notation: \(\vdash \{p\} S \{q\} \).

I. More Phrasings of Total and Partial Correctness [9/23] rewritten

• An equivalent way to understand partial and total correctness uses the property that if \(\sigma \neq \bot \), then \(\sigma \vdash \neg p \) iff \(\sigma \neq p \) and \(\sigma \vdash p \) iff \(\sigma \neq \neg p \).

• For total correctness, if \(\sigma \neq \bot \), then

 • \(\sigma \vdash_{\text{tot}} \{p\} S \{q\} \) iff \(\sigma \vdash p \) implies \(M(S, \sigma) \vdash q \) iff \(\sigma \vdash \neg p \) or \(M(S, \sigma) \vdash q \) iff \(\sigma \vdash \neg p \) or for every \(\tau \in M(S, \sigma) \).

 • If \(S \) is deterministic, then for some \(\tau, M(S, \sigma) = \{\tau\} \) and \(\tau \vdash q \) (so we know \(\tau \neq \bot \))

 • If \(S \) is nondeterministic, then for every \(\tau \in M(S, \sigma) \), we have \((\tau \neq \bot \) and \(\tau \vdash q \).

• For partial correctness, if \(\sigma \neq \bot \), then

 • \(\sigma \vdash \{p\} S \{q\} \) iff \(\sigma \vdash p \) implies \(M(S, \sigma) = \bot \vdash q \) iff \(\sigma \vdash \neg p \) or \(M(S, \sigma) = \bot \vdash q \) iff \(\sigma \vdash \neg p \) or for every \(\tau \in M(S, \sigma) \), either \(\tau = \bot \) or \(\tau \vdash q \).

 • If \(S \) is deterministic, then there is only one \(\tau \) in \(M(S, \sigma) \), and either it’s \(\bot \) or it \(\vdash q \).

J. Unsatisfied Correctness Triples [9/23] rewritten

• It’s useful to figure out when a state doesn’t satisfy a triple because not satisfying a triple tells you that there’s some sort of bug in the program.
Unsatisfied Total Correctness

- For a state \(\sigma \neq \bot \) to not satisfy \(\{p\} S \{q\} \) under total correctness, it must satisfy \(p \) and running \(S \) in it can cause an error and/or in one if its final states, \(q \) is false.
 - We have \(\sigma \models_{\text{tot}} \{p\} S \{q\} \) iff \(\sigma \models \neg p \) or \(M(S, \sigma) \neq q \)
 - So \(\sigma \not\models_{\text{tot}} \{p\} S \{q\} \) iff \(\sigma \models p \) and \(M(S, \sigma) \neq q \)
 - if \(\sigma \models p \) and \((\bot \in M(S, \sigma) \) or for some \(\tau \in M(S, \sigma), \tau \neq \bot \) and \(\tau \neq q \) (i.e., \(\tau \models \neg q \))
- If \(S \) is deterministic, then \(\sigma \models p \) and \(M(S, \sigma) = \{\tau\} \) where \(\tau = \bot \) or \((\tau \neq \bot \) and \(\tau \models q \) (i.e., \(\tau \models \neg q \)).
- If \(S \) is nondeterministic, then \(\sigma \models p \) and \((\bot \in M(S, \sigma) \) or for some \(\tau \in M(S, \sigma), (\tau \neq \bot \) and \(\tau \models q \). \(\tau \models \neg q) \).
- Another characterization: \(\sigma \models p \) and if \(\bot \not\in M(S, \sigma) \), then for some \(\tau \in M(S, \sigma), (\tau \neq \bot \) and \(\tau \models \neg q \).

Unsatisfied Partial Correctness

- For a state \(\sigma \neq \bot \) to not satisfy \(\{p\} S \{q\} \) under partial correctness, it must satisfy \(p \) and running \(S \) in it always terminates in a state satisfying \(\neg q \). In symbols
 - We have \(\sigma \models \{p\} S \{q\} \) iff \(\sigma \models \neg p \) or \(M(S, \sigma) = \bot \)
 - So \(\sigma \not\models \{p\} S \{q\} \) iff \(\sigma \models p \) and \(M(S, \sigma) = \bot \)
 - Now, \(M(S, \sigma) = \bot \) holds iff for every \(\tau \in M(S, \sigma) \), if \(\tau \neq \bot \), then \(\tau \models q \)
 - So \(M(S, \sigma) = \bot \) holds iff for some \(\tau \in M(S, \sigma), (\tau \models \bot \) and \(\tau \models q \) (i.e., \(\tau \models \neg q \))
 - iff for some \(\tau \in M(S, \sigma), (\tau \models \bot \) (since \(\tau \models \neg q \) implies \(\tau \neq \bot \))
 - Substituting back, \(\sigma \not\models \{p\} S \{q\} \) iff \(\sigma \models p \) and \(\tau \models \neg q \) for some \(\tau \in M(S, \sigma) \).
- If \(S \) is deterministic, then \(M(S, \sigma) \) is a singleton, so we need \(\sigma \models p \) and \(M(S, \sigma) = \{\tau\} \) where \(\tau \models \neg q \).
- If \(S \) is nondeterministic, \(M(S, \sigma) \) can include \(\bot \) and states that \(\models q \), but there must be at least one state in \(M(S, \sigma) \) that \(\models \neg q \).
- **Note:** If \(S \) is nondeterministic and partial correctness of \(\{p\} S \{q\} \) fails under \(\sigma \), it's possible that some execution paths of \(S \) don't terminate or terminate in states satisfying \(q \), but there must be some execution path that ends in a state satisfying \(\neg q \).

K. Three Extreme (Mostly Trivial) Cases [9/23] slightly rewritten

- There are three extreme cases where partial correctness occurs for uninformative reasons. First recall the definition of partial correctness: \(\sigma \models \{p\} S \{q\} \) means (if \(\sigma \models p \), then \(M(S, \sigma) = \bot \) or \(\bot \models q \)).
 - **p is a contradiction** (i.e., \(\models \neg p \)). Since \(\sigma \models p \) never holds, the implication (if \(\sigma \models p \) then ...) always holds, so partial correctness of \(\{p\} S \{q\} \) always holds. So for example, \(\{F\} S \{q\} \) is valid under partial correctness, for all \(S \) and \(q \).
 - **S always causes an error.** If \(M(S, \sigma) = \{\bot\} \) then \(M(S, \sigma) = \bot = \emptyset \), which \(\models q \), so again we get partial correctness of \(\{p\} S \{q\} \).
• **q is a tautology** (i.e., $\models q$). Then for any σ, $M(S, \sigma) \models \bot$ only contains states that $\models q$, so whether σ satisfies p or not, we get partial correctness of $\{p\} S \{q\}$. So for example, $\{p\} S \{T\}$ is valid under partial correctness for all p and S.

• For total correctness, recall $\sigma \models_{\text{tot}} \{p\} S \{q\}$ means (if $\sigma \models p$, then $M(S, \sigma) \models q$). (Also, recall that since $\bot \not\models q$, if $M(S, \sigma) \models q$, then $\bot \notin M(S, \sigma)$.)

• **p is a contradiction**. The argument here is the same as for partial correctness, so for all S and q, the triple $\{F\} S \{q\}$ is valid under total correctness.

• **S always causes an error**. Since $M(S, \sigma) = \{\bot\}$, we know $M(S, \sigma) \not\models q$. So total correctness of $\{p\} S \{q\}$ always fails.

• **q is a tautology**. Under total correctness, $\{p\} S \{T\}$ says something interesting. Since $M(S, \sigma) \models T$ implies $\bot \notin M(S, \sigma)$, satisfaction of $\sigma \models_{\text{tot}} \{p\} S \{T\}$ requires S to always terminate under σ. So validity of $\models_{\text{tot}} \{p\} S \{T\}$ happens when S always terminates when started in a state satisfying p.

 • Since total correctness is partial correctness plus termination, as a general principle we find $\sigma \models_{\text{tot}} \{p\} S \{q\}$ iff $\sigma \models \{p\} S \{q\}$ and $\sigma \models_{\text{tot}} \{p\} S \{T\}$.