State Updates, Satisfaction of Quantified Predicates

CS 536: Science of Programming, Spring 2021

A. Why?

- A predicate is satisfied relative to a state; it is valid if it is satisfied in all states.
- State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes

At the end of this class, you should

- Know what it means to update a state.
- Know what it means for a quantified predicate to be valid or be satisfied in a state.

C. "Updating" States

- To check quantified predicates for satisfaction, we need to look at different states that are related to, but not identical to, our starting state.
- **Example 1:** For \(\{ y = 1 \} \models \forall x \in \mathbb{Z}. x^2 + 1 \geq y - 1 \), we need to know that \(\{ y = 1, x = \alpha \} \models x^2 + 1 \geq y - 1 \) for every \(\alpha \in \mathbb{Z} \). I.e., we need

 -
 - \(\{ y = 1, x = -1 \} \models x^2 + 1 \geq y - 1 \)
 - \(\{ y = 1, x = 0 \} \models x^2 + 1 \geq y - 1 \)
 - \(\{ y = 1, x = 1 \} \models x^2 + 1 \geq y - 1 \)
 - \(\{ y = 1, x = 2 \} \models x^2 + 1 \geq y - 1 \)
 -

- Similarly, for \(\{ z = 4 \} \models \exists x \in \mathbb{Z}. x \geq z \), we need \(\{ z = 4, x = \alpha \} \models x \geq z \) for some particular integer \(\alpha \) (\(\alpha = 5 \) works nicely).

- There is a complicating factor. If the quantified variable already appears in the state, then we need to replace its binding with one that gives the value we're interested in checking.

- **Example 2:** We already know \(\{ z = 4 \} \models \exists x \in \mathbb{Z}. x \geq z \) because \(\{ z = 4, x = 5 \} \models x \geq z \). If we start with the state \(\{ z = 4, x = -15 \} \), which already has a binding for \(x \), we find that the new state \(\models \exists x \in \mathbb{Z}. x \geq z \) because once again, \(\{ z = 4, x = 5 \} \models x \geq z \) holds.

- In **Example 2**, the \(x \) that appears in \(\{ z = 4, x = 5 \} \) is not the same \(x \) that appears within \(\exists x \in \mathbb{Z}. x \geq z \). However, the two \(x \)'s in "\(\{ z = 4, x = 5 \} \models x \geq z \)" are the same \(x \). Giving the two \(x \)'s the same
name causes the confusion. If we gave the x’s different names, there’d be no problem with understanding; let xo be the “outer” x and xi be the “inner” x, then

\{z = 4, xo = -15\} \models \exists x \in \mathbb{Z} . \ x \geq z

because

\{z = 4, xo = -15, xi = 5\} \models xi \geq z

- When we use the same name x, the binding for the outer x becomes invisible, overridden by the binding for the inner x:

\{z = 4, (outer) x = -15\} \models \exists x \in \mathbb{Z} . \ x \geq z \text{ because } \{z = 4, (inner) x = 5\} \models x \geq z

- **Definition:** For any state \(\sigma\), variable x, and value \(\alpha\), the update of \(\sigma\) at x with \(\alpha\) (written \(\sigma[x \mapsto \alpha]\)) is the state that is a copy of \(\sigma\) except that it binds variable x to value \(\alpha\).
 - Let \(\tau = \sigma[x \mapsto \alpha]\), then \(\tau(x) = \alpha\); if variable \(y = x\), then \(\tau(y) = \sigma(y)\).
 - Note \(\tau(x) = \alpha\) regardless of whether \(\sigma(x)\) is defined or not. If \(\sigma(x)\) is defined, its type and exact value are irrelevant.
 - Set theoretically,
 - If x has no binding in \(\sigma\), then \(\sigma[x \mapsto \alpha]\) is \(\sigma \cup \{x = \alpha\}\): It’s like \(\sigma\) but has been extended with \(x = \alpha\).
 - If x has a binding in \(\sigma\), say \(\sigma = \{x = \beta\} \cup \sigma_0\) where \(\sigma_0\) is the rest of \(\sigma\), then \(\sigma[x \mapsto \alpha]\) is \(\sigma_0 \cup \{x = \alpha\}\).
 It’s like \(\sigma\) but has the binding \(x = \alpha\), not \(x = \beta\). (Having two bindings for \(x\) would be illegal.)
 - **Important:** Calling it the “update” of \(\sigma\) is kind of misleading because we’re not modifying \(\sigma^\ast\).
 - Taking \(\sigma[x \mapsto \alpha]\) does not do an update in place; if we define \(\tau = \sigma[x \mapsto \alpha]\), then \(\sigma\) is still \(\sigma\).
 - Conceptually, we aren’t modifying \(\sigma\), we’re creating a new state.
 - We’re not required to give \(\sigma[x \mapsto \alpha]\) a new name; we can write it out explicitly:
 - If \(x = \nu\) where \(\nu\) stands for a variable (not literally the variable \(\nu\)) then if \(\nu = x\), then \(\sigma[x \mapsto \alpha](\nu) = \sigma[x \mapsto \alpha][x] = \alpha\), otherwise (if \(x \neq \nu\)), then \(\sigma[x \mapsto \alpha](\nu) = \sigma(\nu)\).
 - (You have to read \(\sigma[x \mapsto \alpha](\nu)\) left-to-right — we’re taking the function \(\sigma[x \mapsto \alpha]\) and applying it to \(\nu\). I.e., \(\sigma[x \mapsto \alpha](\nu) = (\sigma[x \mapsto \alpha])(\nu)\), where the left pair of parentheses are for grouping and the ones around \(\nu\) are for the function call.)
 - **Example 3:** If \(\sigma = \{x = 2, y = 6\}\), then \(\sigma[x \mapsto 0] = \{x = 0, y = 6\}\):
 - \(\sigma[x \mapsto 0][x] = 0\) (Even though \(\sigma(x) = 2\))
 - \(\sigma[x \mapsto 0][y] = \sigma(y) = 6\) (Since we didn’t update \(y\))
 - \(\sigma[x \mapsto 0][x+y] = 0+6 = 6\) (Since the \(x\) in \(x+y\) gets evaluated to 0)
 - \(\sigma[x \mapsto 0] = x^2 \leq 0\) (Even though our starting \(\sigma \neq x^2 \leq 0\))
 - The value part of an update has to be a semantic value, not a syntactic one, so \(\sigma[x \mapsto x+1]\) isn’t well-formed.
 - In these notes, it may help to remember that since \(x+1\) is in this font, it’s syntactic.

* Unfortunately, “update” is the traditional name, and for myself, I can’t find any word that’s exactly right. We’re not always extending \(\sigma\), we’re not always superseding \(\sigma\), ...
• On the other hand, \(\sigma[x \mapsto \sigma(x+1)] \) or \(\sigma[x \mapsto \alpha \text{ plus one} \) where \(\alpha = \sigma(x) \) do make sense.

Multiple Updates

• We can do a sequence of updates on a state. E.g., \(\sigma[x \mapsto 0][y \mapsto 8] \) is a doubly updated state. Sequences of updates are read left-to-right, so this is \((\sigma(x \mapsto 0))[y \mapsto 8] \).

• **Example 4:** If \(\sigma = \{ x = 2, \ y = 6 \} \), then \(\sigma[x \mapsto 0][y \mapsto 8] = \{ x = 0, \ y = 6 \} \mapsto 8 = \{ x = 0, \ y = 8 \} \).
• The order of update doesn't matter if you have two different variables.

• **Example 5:** \(\sigma[x \mapsto 0][y \mapsto 8] = \sigma[y \mapsto 8][x \mapsto 0] \).
• If you update the same variable twice, the second update supersedes the first.

• **Example 6:** \(\sigma[x \mapsto 0][x \mapsto 17] = \sigma[x \mapsto 17] \neq \sigma[x \mapsto 17][x \mapsto 0] = \sigma[x \mapsto 0] \).
• Of course, if the second update is identical to the first, nothing happens: \(\sigma[x \mapsto \alpha][x \mapsto \alpha] = \sigma[x \mapsto \alpha] \).

• If you have to evaluate an expression, be sure to do it in the correct state.
 - Let \(\sigma(x) = 1 \) and let \(\tau = \sigma[x \mapsto 2] \), then \(\tau[z \mapsto \sigma(x)+10] \) maps \(z \) to \(\sigma(x)+10 = 1+10 = 11 \). We can omit \(\tau \) and also write \(\sigma[x \mapsto 2][z \mapsto \sigma(x)+10] \), which gives the same state as \(\tau \).
 - On the other hand, look at \(\tau[z \mapsto \tau(x)+10] \). Since \(\tau = \sigma[x \mapsto 2] \), the value of \(\tau(x)+10 = 12 \), so \(\tau[z \mapsto \tau(x)+10] = \tau[z \mapsto 12] \).
 - If we hadn’t given the name \(\tau = \sigma[x \mapsto 2] \), then we would had to write \(\sigma[x \mapsto 2][z \mapsto \sigma[x \mapsto 2](x) +10] \). (This is pretty ugly, so giving \(\sigma[x \mapsto 2] \) a name like \(\tau \) makes things more readable.)

D. Updating Array Values

• Updating array elements like \(b[0] \) is a bit more complicated than updating simple variables like \(x \) and \(y \). First, let’s extend our notion of updating states to updating general functions.

• **Definition:** If \(\delta \) is a function on one argument and \(\alpha \) and \(\beta \) are valid members of the domain and range of \(\delta \) respectively, then the **update of \(\delta \) at a with \(\beta \)**, written \(\delta[\alpha \mapsto \beta] \), is the function defined by \(\delta[\alpha \mapsto \beta](y) = \beta \) if \(y = \alpha \) and \(\delta[\alpha \mapsto \beta](y) = \delta(y) \) if \(y \neq \alpha \).

• **Definition:** If \(\sigma \) is a (proper) state for an array \(b \) and \(\alpha \) is a valid index value for \(b \), then \(\sigma[b[\alpha] \mapsto \beta] \) means \(\sigma[b \mapsto \eta[\alpha \mapsto \beta]] \) where \(\eta = \) the function \(\sigma(b) \). In words, if \(\sigma \) includes the binding \(b = \) function \(\eta \), then the updating \(\sigma \) at \(b[\alpha] \) with \(\beta \) is just like updating \(\sigma \) at \(b \) with an updated version of \(\eta \), namely \(\eta[\alpha \mapsto \beta] \).

• **Example 7:** Say \(\sigma = \{ x = 3, \ b = (2, 4, 6) \} \), then \(\sigma[b[0] \mapsto 8] = \{ x = 3, \ b = (8, 4, 6) \} \). Here, \(\sigma(b) \) is the function \((2, 4, 6) \) (which means \(\{(0, 2), (1, 4), (2, 6)\} \)), so \(\sigma(b)[0 \mapsto 8] \) (the update of function \(\sigma(b) \)) is the function \((2, 4, 6)(0 \mapsto 8) = (8, 4, 6) \).

E. Satisfaction of Quantified Predicates

• One use of updated states is for describing how assignment works. (We’ll see this later.) The other use for updated states is for defining when quantified predicates are satisfied.
• **Definition:** \(\sigma \models \exists x \in S. p\) if for one or more **witness** values \(\alpha \in S\), it's the case that \(\sigma[x \mapsto \alpha] \models p\). Note we're asking a hypothetical question: "If we were to calculate \(\sigma[x \mapsto \alpha]\), would we find that it satisfies \(p\)?"

 • **Example 8a:** For any state \(\sigma\), we can show \(\sigma \models \exists x . x^2 \leq 0\) using 0 as the witness: \(\sigma[x \mapsto 0] = x^2 \leq 0\), since \(\sigma[x \mapsto 0](x^2 \leq 0) = \sigma[x \mapsto 0](0) = (0^2 \leq 0) = T\).

 • Remember, \(\sigma(x)\) is irrelevant, since \(\sigma[x \mapsto \alpha]\) overrides any value for \(\sigma(x)\).

 • **Example 8b:** If \(\sigma(x)\) is, say 5, it's still the case that \(\sigma \models \exists x. x^2 \leq 0\) using 0 as the witness because we \(\sigma[x \mapsto 0] = x^2 \leq 0\), regardless of \(\sigma(x)\) = 5.

• If there are many successful witness values, we don't have to specify all of them; we just need one.

 • **Example 9:** If \(\sigma(y) = 3\), then \(\sigma \models \exists x . x^2 \leq y\) with \(x = 0\) or 1 as possible witness values.

• **Definition:** \(\sigma \models \forall x \in S. p\) if for every value \(\alpha \in S\), we have \(\sigma[x \mapsto \alpha] \models p\). (Again, this is hypothetical: “If for every \(\alpha\), we were to calculate \(\sigma[x \mapsto \alpha]\), would we find that it satisfies \(p\)?”

 • **Example 10:** To know \(\sigma \models \forall x \in \mathbb{Z} . x^2 \geq x\), we need to know \(\sigma[x \mapsto \alpha] \models x^2 \geq x\) for every \(\alpha \in \mathbb{Z}\).

 Since for every integer \(\alpha\), indeed \(\alpha^2 \geq \alpha\), this does hold. Recall that it doesn't matter what \(\sigma(x)\) is, since we're interested in \(\sigma[x \mapsto \alpha]\).

• When asking if \(\sigma\) satisfies \(\forall x \in S. q\) or \(\exists x \in S. q\), we don't care about \(\sigma(x)\). For a predicate \(p\) in general, for the question “Does \(\sigma \models p\)?” only depends on how \(\sigma\) operates on the non-quantified variables of \(p\).

 • **Example 11:** Since the body of \(\forall x \in \mathbb{Z} . x^2 \geq x\) uses only the quantified variable \(x\), it doesn't matter what bindings \(\sigma\) has when checking \(\sigma \models \forall x \in \mathbb{Z} . x^2 \geq x\). Even \(\sigma = \emptyset\) works: \(\emptyset \models \forall x \in \mathbb{Z} . x^2 \geq x\).

• Note with nested quantifiers, the notation does get more complicated.

 • **Example 12:** \(\sigma \models \forall x > y^2 . \exists z. z \geq x+y^2\) iff (for every \(\alpha \in \mathbb{Z}\), if \(\alpha > \sigma(y)^2\), then there is some \(\beta \in \mathbb{Z}\) such that \(\beta \geq \alpha + \sigma(y)^2\)).

\[
\sigma \models \forall x > y^2 . \exists z. z \geq x+y^2
\]

iff \(\sigma \models \forall x, x > y^2 \rightarrow \exists z, z \geq x+y^2\) \hspace{1cm} \text{defn bounded } \forall

iff for every \(\alpha \in \mathbb{Z}\), \(\sigma[x \mapsto \alpha] \models x > y^2 \rightarrow \exists z, z \geq x+y^2\), \hspace{1cm} \text{defn } \equiv \forall

• Now, \(\sigma[x \mapsto \alpha] \models x > y^2\) implies \(\sigma[x \mapsto \alpha] \models \exists z, z \geq x+y^2\) \hspace{1cm} \text{defn } \equiv \rightarrow

iff \alpha > y^2\) implies \(\sigma[x \mapsto \alpha] \models \exists z, z \geq x+y^2\) \hspace{1cm} \text{defn } \equiv \rightarrow

iff \alpha > y^2\) implies \(\exists \beta, (\sigma[x \mapsto \alpha][z \mapsto \beta] \models z \geq x+y^2\) \hspace{1cm} \text{defn } \equiv \exists

iff \alpha > y^2\) implies \(\exists \beta, \beta \geq \alpha+y^2\) \hspace{1cm} \text{defn } \equiv \geq

• Taking \(\beta = 2\alpha\) for our witness value, we need \(\alpha > y^2\) implies for some \(2\alpha \geq \alpha+y^2\), which is true.

• Note defining intermediate names like "let \(\tau = \sigma[x \mapsto \alpha][z \mapsto \beta]\)" is allowed, if you prefer that style.
Justifying DeMorgan’s Laws for Quantified Predicates

• In general, we want our systems of reasoning to be **sound**: We want the textual transformations that make up logical equivalence to reflect truths about how our semantics work.

• **Example 15**: Here is a check of DeMorgan’s law for existentials, which says \(\neg \exists x. p \leftrightarrow \forall x. \neg p \).

 Semantically, we want each of these to be valid if and only if the other is. So we need \(\sigma \models \neg \exists x. p \) if and only if \(\sigma \models \forall x. \neg p \).

 \[
 \sigma \models \neg \exists x \in S. p \\
 \quad \text{iff } \sigma \not\models \exists x. \\
 \quad \text{iff for no } \alpha \in S \text{ do we have } \sigma[x \mapsto \alpha] \models p \\
 \quad \text{iff for every } \alpha \in S \text{ we have } \sigma[x \mapsto \alpha] \not\models p \\
 \quad \text{iff for every } \alpha \in S \text{ we have } \sigma[x \mapsto \alpha] \models \neg p \\
 \quad \text{iff } \sigma \models \forall x. \neg p
 \]

 defn of \(\sigma \models \neg \)predicate
 defn of \(\sigma \models \exists \) predicate
 equivalence of “no \(\models \)” vs “every \(\not\models \)”
 defn of \(\sigma \models \neg \) predicate
 defn of \(\sigma \models \forall \) universal.

• Showing the semantic property that \(\models \neg \exists x. p \leftrightarrow \forall x. \neg p \) gives us a justification for adding \(\neg \exists x. p \leftrightarrow \forall x. \neg p \) as a proof rule.
Satisfaction, Validity, and State Updates
CS 536: Science of Programming, Spring 2021

A. Why
- A predicate is satisfied or unsatisfied relative to a state.
- A predicate is valid if it is satisfied in all states.
- State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes
At the end of today, you should
- Know how to check a predicate for satisfaction in a state, how to check a predicate for validity, and know how to update a state.

C. Questions
1. Say \(u\) and \(v\) stand for variables (possibly the same variable) and \(\alpha\) and \(\beta\) are values (possibly equal). When is \(\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha]\)? Hint: There are four cases because maybe \(u = v\) and maybe \(\alpha = \beta\).

2. Let \(\sigma(b) = (7, 5, 12, 16)\). Assume out-of-bound indexes cause runtime errors.
 a. Does \(\sigma \models \exists k. 0 \leq k \land k+1 < \text{size}(b) \land b[k] < b[k+1]\)? If so, what was your witness value for \(k\)?
 b. Does \(\sigma \models \exists k. 0 \leq k-1 \land k+1 < \text{size}(b) \land b[k-1] < b[k] < b[k+1]\)? If so, what was your witness value for \(k\)?
 c. Does \(\sigma \models \forall k. 0 \leq k < 4 \rightarrow b[k] > 0\)?
 d. If \(\sigma(k) = -5\), then does \(\sigma \models \exists k. b[k] > 0\)?

3. For each of the situations below, fill in the blanks to describe when the situation holds.
 Fill in _____ ₁ with “some”, “every”, or “this”
 Fill in _____ ₂ with “some” or “every”
 Fill in _____ ₃ with “\(\sigma(x)\) must be undefined”, “\(\sigma(x)\) must be defined and \(\sigma \models p\)”, or “nothing of \(\sigma(x)\)”
 Fill in _____ ₄ with “\(\models p\)” or “\(\not\models p\)”
 a. \(\sigma \models (\exists x \in U. p)\) iff for _____ ₁ state \(\sigma\) and _____ ₂ \(\alpha \in U, \sigma[x \mapsto \alpha] \models ₄\)
 b. \(\sigma \models (\forall x \in U. p)\) iff for _____ ₁ state \(\sigma\) and _____ ₂ \(\alpha \in U, \sigma[x \mapsto \alpha] \models ₄\)
 c. \(\sigma \models (\exists x \in U. p)\) requires _____ ₃.
 d. \(\sigma \models (\forall x \in U. p)\) requires _____ ₃.
e. $\sigma \not\models (\exists x \in U. p)$ iff for _____ 1 state σ for _____ 2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____ 4.
f. $\sigma \not\models (\forall x \in U. p)$ iff for _____ 1 state σ for _____ 2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____ 4.
g. $\not\models (\forall x \in U. p)$ iff for _____ 2 state σ, we have σ _____ 4 ($\forall x \in U. p$).
h. $\not\models (\exists x \in U. p)$ iff for _____ 2 state σ, we have σ _____ 4 ($\exists x \in U. p$).
i. $\not\models (\forall x \in U. p)$ iff for _____ 2 state σ, and for _____ 2 $\alpha \in U$, we have $\sigma[x \mapsto \alpha]$ _____ 4.
j. $\models (\exists x \in U. (\forall y \in V. p))$ iff for _____ 1 state σ, for _____ 2 $\alpha \in U$, and for _____ 2 $\beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ _____ 4.
k. $\not\models (\exists x \in U. (\forall y \in V. p))$ iff for _____ 1 state σ, for _____ 2 $\alpha \in U$, and for _____ 2 $\beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ [\models \models \not\models p].
l. $\models (\forall x \in U. (\exists y \in V. p))$ iff for _____ 1 state σ, for _____ 2 $\alpha \in U$, and for _____ 2 $\beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ [\models \models \not\models p].
m. $\not\models (\forall x \in U. (\exists y \in V. p))$ iff for _____ 1 state σ, for _____ 2 $\alpha \in U$, and for _____ 2 $\beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ _____ 4.

4. Let $p_1 = \exists y. \forall x. f(x) > y$, and let $p_2 = \forall x. \exists y. f(x) > y$. (As usual, assume a domain of \mathbb{Z}.)
a. Is it the case that (regardless of the definition of f), if p_1 is valid then so is p_2? If so, explain why. If not, give a definition of $f(x)$ and show $\models p_1$ but $\not\models p_2$.
b. (Repeat part a in the other direction.) Is it the case that (regardless of the definition of f), if p_2 is valid then so is p_1? If so, explain why. If not, give a definition of $f(x)$ and show $\models p_2$ but $\not\models p_1$.
CS 536: Solution to Activity 4 (Satisfaction, Validity, and State Updates)

1. \(\sigma[u \mapsto a][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto a] \) iff \(u \neq v \) or \((u = v \) and \(\alpha = \beta \). Another way to phrase this is \((\alpha = \beta \) or \(u \neq v \)\)

2. (Quantified statements over arrays) Let \(\sigma(b) = (7, 5, 12, 16) \).
 a. Yes, \(\sigma \models \exists k . 0 \leq k \land k+1 < \text{size}(b) \land b[k] < b[k+1] \) with 1 and 2 as possible witnesses for \(k \).
 b. Yes, \(\sigma \models \exists k . 0 \leq k-1 \land k+1 < \text{size}(b) \land b[k-1] < b[k] < b[k+1] \) with 2 as the only witness that works.
 c. Yes, \(\sigma \models \forall k . b[k] > 0 \)
 d. Yes, if \(\sigma(k) = -5 \), we still have \(\sigma \models \exists k . b[k] > 0 \), with witnesses 0, 1, 2, 3. The key is that for \(\sigma \) to satisfy the existential with witness call it \(\alpha \), then we need \(\sigma[k \mapsto \alpha] \models b[k] > 0 \), which doesn't depend on \(\sigma(k) \) because the update of \(\sigma \) uses \(k = \alpha \), not \(k \) = whatever \(\sigma(k) \) happens to be. Here's a step-by-step explanation (this is way too much detail for a test):
 \[
 \begin{align*}
 \sigma[k \mapsto \alpha] & \models b[k] > 0 \\
 \text{iff } \sigma[k \mapsto \alpha](b[k]) & > \sigma[k \mapsto \alpha](0) \quad \text{defn state } \models \text{ relational test} \\
 \text{iff } (\sigma[k \mapsto \alpha](b))(\sigma[k \mapsto \alpha](k)) & > 0 \quad \text{the value of } 0 \text{ is zero} \\
 \text{iff } (\sigma(b))(\sigma[k \mapsto \alpha](k)) & > 0 \quad \sigma(k \mapsto \alpha)(b) = \sigma(b) \text{ because } b \neq k \\
 \text{iff } (\sigma(b))(\alpha) & > 0 \quad \sigma(k \mapsto \alpha)(k) = \alpha \\
 \text{iff } 7, 5, 12, \text{ or } 16 & > 0 \quad \text{depending on } \alpha \text{ = 0, 1, 2, or 3}
 \end{align*}
 \]

3. (Validity/invalidity of quantified predicates)
 a. this \(\alpha \), some \(\alpha \), \(\models p \)
 b. this \(\alpha \), every \(\alpha \), \(\models p \)
 c. nothing of \(\alpha(x) \)
 d. nothing of \(\alpha(x) \)
 e. this \(\alpha \), every \(\alpha \), \(\not\models p \)
 f. this \(\alpha \), some \(\alpha \), \(\not\models p \)
 g. some \(\alpha \), \(\not\models \forall x \in U. p \)
 h. some \(\alpha \), every \(\alpha \), \(\not\models p \)
 i. some \(\alpha \), some \(\alpha \), \(\not\models p \)
 j. every \(\sigma \), some \(\alpha \), every \(\beta \), \(\not\models p \)
 k. some \(\sigma \), every \(\alpha \), some \(\beta \), \(\not\models p \)
 l. every \(\sigma \), every \(\alpha \), some \(\beta \), \(\models p \)
 m. some \(\sigma \), some \(\alpha \), every \(\beta \), \(\not\models p \)

4. (\(\exists \forall \) predicates versus \(\forall \exists \) predicates, specifically \(p_1 = \exists y . \forall x . f(x) > y \) and \(p_2 = \forall x . \exists y . f(x) > y \))
 a. The relation does hold: \(\models p_1 \) implies \(\models p_2 \). The short explanation is that for each value \(\alpha \) for \(x \), we need to find a value \(\beta \) for \(y \) that satisfies the body, but \(p_1 \) says that there's a value that
works for every α, so we can use that value for β. In more detail, assume p_1 is valid: for every state σ, there is some value β where for every value α, $\sigma[y \mapsto \beta][x \mapsto \alpha] \models f(x) > y$. To show that p_2 is valid, take an arbitrary state τ with value α for x. We need a witness value for the $\exists y$; using p_1 with τ for σ, we get a β for the $\exists y$ of p_1 and use that as the witness for the $\exists y$ in p_2. So then we need $\tau[x \mapsto \alpha][y \mapsto \beta] \models f(x) > y$. Substituting σ for τ and swapping the order of the updates, we need $\sigma[y \mapsto \beta][x \mapsto \alpha] \models f(x) > y$. But that’s exactly what p_1 provided.

b. The relation does not hold: We can have $\models p_2$ but $\not\models p_1$. The easiest example is $f(x) = x$, then validity of p_1 would require us to find an integer value for y that is $> \text{every possible integer value of } x$, and no such value exists.