6. What is Datawarehousing?

- **Problem:** Data Analysis, Prediction, Mining
 - **Example:** Walmart
 - Transactional databases
 - Run many “cheap” updates concurrently
 - E.g., each store has a database storing its stock and sales
 - Complex Analysis over Transactional Databases?
 - Want to analyze across several transactional databases
 - E.g., compute total Walmart sales per month
 - Distribution and heterogeneity
 - Want to run complex analysis over large datasets
 - Resource consumption of queries affects normal operations on transactional databases

- **Solution:**
 - **Performance**
 - Store data in a different system (the datawarehouse) for analysis
 - Bulk-load data to avoid wasting performance on concurrency control during analysis
 - **Heterogeneity and Distribution**
 - Preprocess data coming from transactional databases to clean it and translate it into a unified format before bulk-loading

6. Datawarehousing Process

- 1) Design a schema for the warehouse
- 2) Create a process for preprocessing the data
- 3) Repeat
 - A) Preprocess data from the transactional databases
 - B) Bulk-load it into the warehouse
 - C) Run analytics

6. Overview

- **The multidimensional datamodel (cube)**
 - Multidimensional data model
 - Relational implementations
- **Preprocessing and loading (ETL)**
- **Query language extensions**
 - ROLL UP, CUBE, ...
- **Query processing in datawarehouses**
 - Bitmap indexes
 - Query answering with views
 - Self-tuning
6. Multidimensional Datamodel

- Analysis queries are typically aggregating lower level facts about a business
 - The revenue of Walmart in each state (country, city)
 - The amount of toy products in a warehouse of a company per week
 - The call volume per zip code for the Sprint network
 - ...

6. Commonality among these queries:
- At the core are facts: a sale in a Walmart store, a toy stored in a warehouse, a call made by a certain phone
- Data is aggregated across one or more dimensions
 - These dimensions are typically organized hierarchically: year – month – day – hour, country – state – zip
- Example
 - The revenue (sum of sale amounts) of Walmart in each state

6. Example 2D

<table>
<thead>
<tr>
<th>Toy</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Puppet</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Fishing Rod</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Books</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Mobile</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>King Lear</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

6. Generalization to multiple dimensions

- Given a fixed number of dimensions
 - E.g., product type, location, time
- Given some measure
 - E.g., number of sales, items in stock, ...
- In the multidimensional datamodel we store facts: the values of measures for a combination of values for the dimensions

6. Data cubes

- Given n dimensions
 - E.g., product type, location, time
- Given m measures
 - E.g., number of sales, items in stock, ...
- A datacube (datahypercube) is an n-dimensional datastructure that maps values in the dimensions to values for the m measures
 - Schema: D_1, ..., D_n, M_1, ..., M_m
 - Instance: a function
 \[\text{dom}(D_1) \times \cdots \times \text{dom}(D_n) \rightarrow \text{dom}(M_1) \times \cdots \times \text{dom}(M_m) \]

6. Dimensions

- Purpose
 - Selection of descriptive data
 - Grouping with desired level of granularity
- A dimension is defined through a containment-hierarchy
- Hierarchies typically have several levels
- The root level represents the whole dimensions
- We may associate additional descriptive information with elements in the hierarchy (e.g., number of residents in a city)
6. Dimension Example

Location
- **Levels:** location, state, city

Schema
- location
- state
- city

Instance
- Illinois
- Schaumburg
- Madison
- Whitewater

6. Dimension Schema

Schema of a Dimension
- A set D of category attributes D_1, \ldots, D_n, Top_D
 - These correspond to the levels
 - A partial order \rightarrow over D which represents parent-child relationships in the hierarchy
 - These correspond to upward edges in the hierarchy
 - Top_D is larger than anything else
 - For every D_i, $D_i \rightarrow \text{Top}_D$
 - There exists D_{min} which is smaller than anything else
 - For every D_i, $D_{\text{min}} \rightarrow D_i$

6. Dimension Schema Example

Schema of Location Dimension
- Set of categories $D = \{\text{location, state, city}\}$
- Partial order
 - $\{\text{city} \rightarrow \text{state}, \text{city} \rightarrow \text{location}, \text{state} \rightarrow \text{location}\}$
- $\text{Top}_D = \text{location}$
- $D_{\text{min}} = \text{city}$

6. Remarks

- In principle there does not have to exist an order among the elements at one level of the hierarchy
 - E.g., cities
- Hierarchies do not have to be linear

6. Cells, Facts, and Measures

- Each cell in the cube corresponds to a combination of elements from each dimension
 - Facts are non-empty cells
 - Cells store measures
- Cube for a combination of levels of the dimension

Facts

- Targets of analytics
 - E.g., revenue, #sales, #stock
- A fact is uniquely defined by the combination of values from the dimensions
 - E.g., for dimensions time and location
 - Revenue in Illinois during Jan 2015
- **Granularity:** Levels in the dimension hierarchy corresponding to the fact
 - E.g., state, month
Facts (Event vs. Snapshot)

- **Event Facts**
 - Model real-world events
 - E.g., Sale of an item

- **Snapshot Facts**
 - Temporal state
 - A single object (e.g., a book) may contribute to several facts
 - E.g., number of items in stock

Measures

- A measure describes a fact
 - May be derived from other measures

- **Two components**
 - Numerical value
 - Formula (optional): how to derive it
 - E.g., \(\text{avg}(\text{revenue}) = \frac{\text{sum}(\text{revenue})}{\text{count}(\text{revenue})} \)

- We may associate multiple measures to each cell
 - E.g., **number of sales and total revenue**

Measures - Granularity

- Similar to facts, measures also have a granularity

- How to change granularity of a measure?

- Need algorithm to combine measures
 - Additive measures
 - Can be aggregated along any dimension
 - Semi-additive/non-additive
 - Cannot be aggregated along some/all dimensions
 - E.g., snapshot facts along time dimension
 - Number of items in stock at Jan + Feb + ... = items in stock during year
 - Median of a measure

Design Process (after Kimball)

- **Comparison to classical relational modeling**
 - Analysis driven
 - No need to model all existing data and relationships relevant to a domain
 - Limit modeling to information that is relevant for predicted analytics
 - Redundancy
 - Tolerate redundancy for performance if reasonable
 - E.g., in dimension tables to reduce number of joins

Design Process – Steps

- **1) Select relevant business processes**
 - E.g., order shipping, sales, support, stock management

- **2) Select granularity**
 - E.g., track stock at level of branches or regions

- **3) Design dimensions**
 - E.g., time, location, product, ...

- **4) Select measures**
 - E.g., revenue, cost, #sales, items in stock, #support requests

Design Process Example

- **Coffee shop chain**
 - **Processes**
 - Sell coffee to customers
 - Buy ingredients from suppliers
 - Ship supplies to branches
 - Pay employees
 - HR (hire, advertise positions, ...)
 - Which process is relevant to be analysed to increase profits?
Design Process Example

• 1) Selecting process(es)
 – sell coffee to customers
• 2) Select granularity
 – Single sale?
 – Sale per branch/day?
 – Sale per city/year?

Design Process Example

• 1) Selecting process(es)
 – sell coffee to customers
• 2) Select granularity
 – Sale of type of coffee per branch per day
 – Sufficient for analysis
 • Save storage
• 3) Determine relevant dimensions
 – Location
 – Time
 – Product, ...

Design Process Example

• 1) Selecting process(es)
 – sell coffee to customers
• 2) Select granularity
 – Sale of type of coffee per branch per day
• 3) Determine relevant dimensions
 – Location (country, state, city, zip, shop)
 – Time (year, month, day)
 – Product (type, brand, product)
• 4) Select measures
 – cost, revenue, profit?

Relational representation

• How to model a datacube using the relational datamodel
 • We start from
 – Dimension schemas
 – Set of measures
Star Schema

- A data cube is represented as a set of dimension tables and a fact table
- Dimension tables
 - For each dimension schema \(D = (D_1, \ldots, D_k, Top_D) \) we create a relation
 - \(D \ (PK, D_1, \ldots, D_k) \)
 - Here \(PK \) is a primary key, e.g., \(D_{min} \)
- Fact table
 - \(F(\text{FK}_1, \ldots, \text{FK}_n, M_1, \ldots, M_m) \)
 - Each \(\text{FK}_i \) is a foreign key to \(D_i \)
 - Primary key is the combination of all \(\text{FK}_i \)

Star Schema - Remarks

- Dimension tables have redundancy
 - Values for higher levels are repeated
- Fact table is in 3NF
- \(Top_D \) does not have to be stored explicitly
- Primary keys for dimension tables are typically generated (surrogate keys)
 - Better query performance by using integers

Snowflake Schema

- A data cube is represented as a set of dimension tables and a fact table
- Dimension tables
 - For each dimension schema \(D = (D_1, \ldots, D_k, Top_D) \) we create a relation multiple relations connected through \(\text{FKs} \)
 - \(D_i \ (PK, A_1, \ldots, A_l, \text{FK}_j) \)
 - \(A_l \) is a descriptive attribute
 - \(\text{FK}_j \) is foreign key to the immediate parent(s) of \(D_i \)
- Fact table
 - \(F(\text{FK}_1, \ldots, \text{FK}_n, M_1, \ldots, M_m) \)
 - Each \(\text{FK}_i \) is a foreign key to \(D_i \)
 - Primary key is the combination of all \(\text{FK}_i \)

Snowflake Schema - Remarks

- Avoids redundancy
- Results in much more joins during query processing
- Possible to find a compromise between snowflake and star schema
 - E.g., use snowflake for very fine-granular dimensions with many levels

Snowflake Schema - Example

- Coffee chain example

6. Extract-Transform-Load (ETL)

- The preprocessing and loading phase is called extract-transform-load (ETL) in datawarehousing
- Many commercial and open-source tools available
- ETL process is modeled as a workflow of operators
 - Tools typically have a broad set of build-in operators: e.g., key generation, replacing missing values, relational operators,
 - Also support user-defined operators
6. Extract-Transform-Load (ETL)

Some ETL tools
- Pentaho Data Integration
- Oracle Warehouse Builder (OWB)
- IBM InfoSphere Information Server
- Talend Studio for Data Integration
- CloverETL
- Cognos Data Manager
- Pervasive Data Integrator
- ...

Operators supported by ETL
- Many of the preprocessing and cleaning operators we already know
 - Surrogate key generation (like creating existentials with skolems)
 - Fixing missing values
 - With default value, using trained model (machine learning)
 - Relational queries
 - E.g., union of two tables or joining two tables
 - Extraction of structured data from semi-structured data and/or unstructured data
 - Entity resolution, data fusion

6. ETL Process

- Operators can be composed to form complex workflows

6. Typical ETL operators

Elementizing
- Split values into more fine-granular elements
- Standardization
- Verification
- Matching with master data
- Key generation
- Schema matching, Entity resolution/Deduplication, Fusion

Control flow operators
- AND/OR
- Fork
- Loops
- Termination
 - Successful
 - With warning/errors

Elementizing
- Split non 1NF data into individual elements

Examples
- name: “Peter Gertsen” -> firstname: “Peter”, lastname: “Gertsen”
- Address: “10 W 31st, Chicago, IL 60616” -> street = “10 W 31st”, city = “Chicago”, state = “IL”, zip = “60616”
6. Typical ETL operators

- **Standardization**
 - Expand abbreviations
 - Resolve synonyms
 - Unified representation of, e.g., dates

- **Examples**
 - “IL” -> “Illinois”
 - “m/w”, “M/F” -> “male/female”
 - “Jan”, “01”, “January”, “january” -> “January”
 - “St” -> “Street”, “Dr” -> “Drive”, ...

6. Metadata management

- **Matching master data (lookup)**
 - Check and potentially repair data based on available master data

- **Examples**
 - E.g., using a clean lookup table with (city, zip) replace the city in each tuple if the pair (city, zip) does not occur in the lookup table

6. Querying DW

- **Targeted model (cube vs. relational)**
 - Design specific language for data cubes
 - Add suitable extensions to SQL

- **Support typical analytical query patterns**
 - Multiple parallel grouping criteria
 - Show total sales, subtotal per state, and subtotal per city
 - Windowed aggregates and ranking
 - Show 10 most successful stores
 - Show cumulative sales for months of 2016
 - E.g., the result for Feb would be the sum of the sales for Jan + Feb
6. Cube operations

- **Roll-up**
 - Move from fine-granular to more coarse-granular in one or more dimensions of a datacube
 - E.g., sales per (city,month,product category) to Sales per (state,year,product category)

- **Drill-down**
 - Move from coarse-granular to more fine-granular in one or more dimensions
 - E.g., phonecalls per (city,month) to phonecalls per (zip,month)

6. SQL Extensions

- **Slice**
 - Select data based on restriction of the values of one dimension
 - E.g., sales per (city,month) -> sales per (city) in Jan

- **Dice**
 - Select data based on restrictions of the values of multiple dimensions
 - E.g., sales per (city,month) -> sales in Jan for Chicago and Washington DC

6. GROUPING SETS

- **GROUP BY GROUPING SETS**
 - Explicitly list sets of group by attributes
- **Semantics**:
 - Equivalent to UNION over duplicates of the query each with a group by clause GROUP BY set,
 - Schema contains all attributes listed in any set
 - For a particular set, the attribute not in this set are filled with NULL values

- **Recall that grouping on multiple sets of attributes is hard to express in SQL**
- E.g., give me the total sales, the sales per year, and the sales per month

- **Practice**
6. GROUPING SETS

```sql
SELECT quarter, city, product_type, SUM(profit) AS profit
FROM facttable F, time T, location L, product P
WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID
GROUP BY GROUPING SETS
((quarter, city), (quarter, product_type))
```

<table>
<thead>
<tr>
<th>quarter</th>
<th>city</th>
<th>product_type</th>
<th>profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010Q1</td>
<td>Books</td>
<td>8347</td>
<td></td>
</tr>
<tr>
<td>2012Q2</td>
<td>Books</td>
<td>7836</td>
<td></td>
</tr>
<tr>
<td>2012Q2</td>
<td>Chicago</td>
<td>12344</td>
<td></td>
</tr>
<tr>
<td>2012Q2</td>
<td>Seattle</td>
<td>123435</td>
<td></td>
</tr>
</tbody>
</table>

6. GROUPING SETS

Problem:
- How to distinguish between NULLs based on grouping sets and NULL values in a group by column?

```sql
SELECT quarter, city, product_type, SUM(profit) AS profit
FROM facttable F, time T, location L, product P
WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID
GROUP BY quarter, city
UNION
SELECT quarter, NULL AS city, product_type, SUM(profit) AS profit
FROM facttable F, time T, location L, product P
WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID
GROUP BY quarter, product_type
```

6. GROUPING SETS

Solution:
- `GROUPING predicate`
- `GROUPING(A) = 1 if grouped on attribute A, 0 else`

```sql
SELECT...
GROUPING(product_type) AS grp_prd...
GROUP BY...
```

<table>
<thead>
<tr>
<th>quarter</th>
<th>city</th>
<th>product_type</th>
<th>profit</th>
<th>grp_prd</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010Q1</td>
<td>Books</td>
<td>8347</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2012Q2</td>
<td>Books</td>
<td>7836</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2012Q2</td>
<td>Gardening</td>
<td>12300</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2012Q2</td>
<td>Chicago</td>
<td>12344</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2012Q2</td>
<td>Seattle</td>
<td>124345</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

6. GROUPING SETS

Combining GROUPING SETS

- `GROUP BY A, B` = `GROUP BY GROUPING SETS ((A, B))`
- `GROUP BY GROUPING SETS ((A, B), (A, C), (A))` = `GROUP BY A, GROUPING SETS ((B), (C), ())`
- `GROUP BY GROUPING SETS ((A, B), (B, C), GROUPING SETS ((D, B), (D))` = `GROUP BY GROUPING SETS ((A, B, D), (A, B, D), (B, C, D), (B, C, D))`

6. CUBE

GROUP BY CUBE (set)
- `GROUP BY CUBE (A, B, C)` = `GROUP BY GROUPING SETS ((A), (B), (C), (A,B), (A,C), (B,C), (A,B,C))`
6. CUBE

- GROUP BY ROLLUP (A_1, ..., A_n)
- Group by all prefixes
- Typically different granularity levels from single dimension hierarchy, e.g., year-month-day
 - Database can often find better evaluation strategy

GROUP BY ROLLUP (A, B, C)
= GROUP BY GROUPING SETS
 (A, B, C),
 (A, B),
 (A),
 ()

6. OVER clause

- Agg OVER (partition-clause, order-by, window-specification)
- New type of aggregation and grouping where
 - Each input tuple is paired with the aggregation result for the group it belongs to
 - More flexible grouping based on order and windowing
 - New aggregation functions for ranking queries
 - E.g., RANK(), DENSE_RANK()

6. OVER clause

- Agg OVER (partition-clause, order-by, window-specification)
- New type of aggregation and grouping where
 - Each input tuple is paired with the aggregation result for the group it belongs to
 - More flexible grouping based on order and windowing
 - New aggregation functions for ranking queries
 - E.g., RANK(), DENSE_RANK()

SELECT year, month, city, profit
SUM(profit) OVER () AS ttl
FROM sales

- For each tuple build a set of tuples belonging to the same window
 - Compute aggregation function over window
 - Return each input tuple paired with the aggregation result for its window
- OVER() = one window containing all tuples

<table>
<thead>
<tr>
<th>year</th>
<th>month</th>
<th>city</th>
<th>profit</th>
<th>ttl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1</td>
<td>Chicago</td>
<td>10</td>
<td>47</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>Chicago</td>
<td>5</td>
<td>47</td>
</tr>
<tr>
<td>2010</td>
<td>3</td>
<td>Chicago</td>
<td>20</td>
<td>47</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>Chicago</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>2011</td>
<td>2</td>
<td>New York</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

6. OVER clause

SELECT year, month, city
SUM(profit) OVER (PARTITION BY year) AS ttl
FROM sales

- Only tuples with same partition-by attributes belong to the same window
- Like GROUP BY
6. OVER clause

```sql
SELECT year, month, city
FROM sales
• ORDER BY
  • Order tuples on these expressions
  • Only tuples which are <= to the order as the current tuple belong to the same window
• E.g., can be used to compute an accumulate total
```

```
E.g., can be used to compute an accumulate total
```

```
SUM(profit) OVER (ORDER BY year, month) AS ttl
```

```
Explicit window specification
• Requires ORDER BY
  • Determines which tuples “surrounding” the tuple according to the sort order to include in the window
```

```
PARTITION BY
```

```
AS ttl
FROM sales
```

```
Combining PARTITION BY and ORDER BY
• First partition then order tuples within each partition
```

```
SUM(profit) OVER (PARTITION BY year ORDER BY month)
AS ttl
```

```
• Combining PARTITION BY and ORDER BY
  • First partition then order tuples within each partition
```

```
Explicit window specification
• Requires ORDER BY
  • Determines which tuples “surrounding” the tuple according to the sort order to include in the window
```

```
SUM(profit) OVER (PARTITION BY year ORDER BY month
RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS ttl
FROM sales
```

```
Explicit window specification
• Requires ORDER BY
  • Determines which tuples “surrounding” the tuple according to the sort order to include in the window
```
6. OVER clause

```sql
SELECT year, month, city
SUM(profit) OVER (ORDER BY year, month
ROWS BETWEEN 1 PRECEDING
AND 1 FOLLOWING) AS ttl
FROM sales
```

- Explicit window specification
- Requires ORDER BY
- Determines which tuples “surrounding” the tuple according to the sort order to include in the window

Table Example

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>City</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1</td>
<td>Chicago</td>
<td>10</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>Chicago</td>
<td>5</td>
</tr>
<tr>
<td>2010</td>
<td>3</td>
<td>Chicago</td>
<td>20</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>Chicago</td>
<td>45</td>
</tr>
<tr>
<td>2010</td>
<td>1</td>
<td>New York</td>
<td>12</td>
</tr>
</tbody>
</table>

6. MDX

- Multidimensional expressions (MDX)
 - Introduced by Microsoft
 - Query language for the cube data model
 - SQL-like syntax
 - Keywords have different meaning
 - MDX queries return a multi-dimensional report
 - 2D = spreadsheet
 - 3D or higher, e.g., multiple spreadsheets

Example

```sql
SELECT { Chicago, Schaumburg } ON ROWS
  ( [2010], [2011] ).CHILDREN ON COLUMNS
FROM PhoneCallsCube
WHERE ( Measures.numCalls, Carrier.Spring )
```

- Meaning of
 - [] interpret number as name
 - {} set notation
 - () tuple in where clause

Table Example

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>City</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1</td>
<td>Chicago</td>
<td>23423</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>Schaumburg</td>
<td>32132</td>
</tr>
</tbody>
</table>

6. MXD Query

- Basic Query Structure

```sql
SELECT <axis-spec>, ... FROM <cube-spec>, ...
WHERE ( <select-spec> )
```

- Note!
 - Semantics of SELECT, FROM, WHERE not what you would expect knowing SQL

Example

```sql
SELECT { Chicago, Schaumburg } ON ROWS
  ( [2010], [2011] ).CHILDREN ON COLUMNS
FROM PhoneCallsCube
WHERE ( Measures.numCalls, Carrier.Spring )
```

- Select specifies dimensions in result and how to visualize
 - ON COLUMNS, ON ROWS, ON PAGES, ON SECTIONS, ON CHAPTERS
- Every dimension in result corresponds to one dimension in the cube
 - Set of concepts from this dimensions which may be from different levels of granularity
6. MXD - SELECT

• Specify concepts from dimensions
 – List all values as set e.g., {[2010],[2011]}
 – Not necessarily from same level of hierarchy (e.g.,mix years and months)
• Language constructs for accessing parents and children or members of a level in the hierarchy
 – CHILDREN: all direct children
 • E.g., [2010].CHILDREN = {[2010 Jan],…,[2010 Dec]}
 – PARENT: the direct parent
 • E.g., [2010 Jan].PARENT = [2010]
 – MEMBERS: all direct children
 • E.g., Time.Years.MEMBERS = {[1990], [1991],…,[2016]}
 – LASTCHILD: last child (according to order of children)
 • E.g., [2010].LASTCHILD = [2010 Dec]
 – NEXTMEMBER: right sibling on same level
 • E.g., [2010].NEXTMEMBER = [2011]
• [a],[b]: all members in interval between a and b

6. MXD - SELECT

• Nesting of sets: CROSSJOIN
 – Project two dimensions into one
 – Forming all possible combinations

SELECT CROSSJOIN ({ Chicago, Schaumburg },
{ [2010], [2011] })
ON ROWS ({ [2010], [2011] }, CHILDREN)
ON COLUMNS FROM PhoneCallsCube
WHERE (Measures.numCalls)

6. Query Processing in DW

• Large topic, here we focus on two aspects
 – Partitioning
 – Query answering with materialized views

6. Partitioning

• Partitioning splits a table into multiple fragments that are stored independently
 – E.g., split across X disks, across Y servers
• Vertical partitioning
 – Split columns across fragments
 • E.g., R = {A,B,C,D}, fragment F1 = {A,B}, F2 = {C,D}
 • Either add a row id to each fragment or the primary key to be able to reconstruct
• Horizontal partitioning
 – Split rows
 – Hash vs. range partitioning
6. Partitioning

• Why partitioning?
 – Parallel/distributed query processing
 • read/write fragments in parallel
 • Distribute storage load across disks/servers
 – Avoid reading data that is not needed to answer a query
 • Vertical
 – Only read columns that are accessed by query
 • Horizontal
 – only read tuples that may match queries selection conditions

• Vertical Partitioning
 – Fragments F_1 to F_n of relation R such that
 $$\text{Sch}(F_1) \cup \text{Sch}(F_2) \ldots \cup \text{Sch}(F_n) = \text{Sch}(R)$$
 – Store row id or PK of R with every fragment
 – Restore relation R through natural joins

• Horizontal Partitioning
 – Range partitioning on attribute A
 • Split domain of A into intervals representing fragments
 • E.g., tuples with $A = 15$ belong to fragment $[0, 20]$
 – Hash partitioning on attribute A
 • Split domain of A into x buckets using hash function
 • E.g., tuples with $h(A) = 3$ belong to fragment F_3

Outline

0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance