
CS440: Programming
Languages and Translators
Lecture 26: What did we do, why is it important, and what’s next?

Spring 2023

Stefan Muller

Logistics/Reminders

• HW6 due tonight

• Course eval open through Sunday
• Bonus points for everyone: 2 * (response rate)2

• Review session: Monday 11-12, SB 106 (and Zoom and recorded)

• Final: Tuesday, May 2, 10:30am-12:30pm, SB 104

Content

• Simple answer: everything!

• All lectures, from the beginning of the semester until this Thursday
• More emphasis on material since midterm

• Only high-level questions about post-HW6 material

• Written questions from HW5, HW6 and the midterm are good
examples of the types of questions I might ask

Format

• 120 minutes, 100 points

• Approx. 50%:
• A few short answer questions

• Give the value of an OCaml expression or say it doesn’t evaluate
(like on midterm)

• Write a proof tree for a big-step semantics or typing derivation
(like HW5, 2.1 and HW6, 1.2)

• Evaluate a lambda calculus term to a normal form
(like HW5, 3.3, but you only have to do one)

• Approx. 50%: 2-3 more long questions

Rules, etc.

• Write in whatever you want (please no red/green/purple pen though)

• You can bring two double-sided 8.5x11” sheets of notes
• Written or typed, can contain anything you want

• One can be the one from the midterm

• Provided reference material (I will give this to you at the exam, no
need to print it or put it on your note sheets):
• Signatures for OCaml list functions

• IMP syntax and big-step rules

• STLC syntax and typing rules

Practice, review

• Practice exam posted on Blackboard today or tomorrow, with
reference material
• Same basic format as real exam, but I make no promises about exact difficulty,

length

• Review session
• Monday, 5/1 11am-12pm (instead of office hours)

• SB 106

• Will also be streamed and recorded – I’ll send out the link

• Come with questions!

Schedule

• Intro (1 week)

• Learn OCaml (~4 weeks)

• Interpreters (~2 weeks)

• Midterm

• Type checking (~2 weeks)

• Spring break

• Formal semantics (~2 weeks)

• Formal type systems (~2 weeks)

• Other topics and wrap-up (~3 weeks)

Programming Languages

Implementing PLs

Reasoning about PLs

Knowing the right paradigm to use can make
programming easier

Lecture 0 8

Task: Sort a linked list (using merge sort)

C Python OCaml

Try writing even a
minimal working web
server in C in an hour!

Knowing about the language and how it’s
translated can help you write faster code

7

6430

14
10

1

10

100

1000

10000

C Python OCaml (bytecode) OCaml (native)

Ti
m

e
(m

s)

Merge sort, 10,000 elements

Lecture 0 9

Type systems can express different levels of
guarantees
• C

• Takes a pointer to a node and returns a pointer to a node.

• OCaml
• Takes an integer list and returns an integer list.

• Haskell
• Takes an integer list, returns an integer list and performs I/O (e.g., printing).

• Coq

• Takes an integer list and returns a sorted permutation of it.

Lecture 0 10

node *mergesort(node *list)

mergesort : int list -> int list

mergesort :: IO ([int] -> [int])

mergesort : forall (l1 : list int), exists (l2: int list),
Sorted l2 /\ Permutation l1 l2

Different languages are up to different tasks

Lecture 0 11

C?

?

Rust?

Schedule

• Intro (1 week)

• Learn OCaml (~4 weeks)

• Interpreters (~2 weeks)

• Midterm

• Type checking (~2 weeks)

• Spring break

• Formal semantics (~2 weeks)

• Formal type systems (~2 weeks)

• Other topics and wrap-up (~3 weeks)

Programming Languages

Implementing PLs

Reasoning about PLs

Compilers vs. interpreters

• Compiler
• Translates the program to a form executable by the machine (or assembly)

• Compile, then can run the executable: compiler no longer involved

• Interpreter
• Doesn’t translate to machine-readable format

• Might compile to bytecode or intermediate representation

• Runs (“interprets”) program directly

• Can’t run without the interpreter

Lecture 0 13

Compilers translate code in phases

Lecture 0 14

Source
Code

Lexical
Analyzer Tokens Parser

Abstract
Syntax

Lowering
Intermed.

Rep.
Code
Gen.

Target
Code

Analysis Optimization

a = b + c - 1 VAR a
EQUAL
VAR b
OP +
VAR C
OP -
CONST 1

Assign

a +

b -

c 1

temp = c – 1
a = b + temp

subl %rax, 1
addl %rax, %rbx

“Front End” “Back End”

Compiler collections also swap out front ends
for different languages

Lecture 0 15

Intermediate
Representation

Machine-Independent Optimizations

x86

ARM

Risc-V

…

C

C++

Java

…
LLVM

Want to see more?
Take CS443 (Compiler Construction)

Lecture 0 16

Intermediate
Representation

Machine-Independent Optimizations

x86

ARM

Risc-V

…

C

C++

Java

…
LLVM

OCaml

Schedule

• Intro (1 week)

• Learn OCaml (~4 weeks)

• Interpreters (~2 weeks)

• Midterm

• Type checking (~2 weeks)

• Spring break

• Formal semantics (~2 weeks)

• Formal type systems (~2 weeks)

• Other topics and wrap-up (~3 weeks)

Programming Languages

Implementing PLs

Reasoning about PLs

Type safety: well-typed programs don’t “go wrong”

• Progress: A well-typed program isn’t wrong (in STLC: stuck)

• Preservation: If a well-typed program takes a step, it’s still well-typed

“Go wrong” can mean lots of other things

• One application we haven’t talked (much) about: parallelism

Functional languages are great for parallelism

let (a, b) = (f (), g ())

• If f and g are functional, it can’t matter what order we execute them
in…

• so why not do them at the same time?

• Deadlocks
• Locking
• Data races

21

POSIX threads

Cilk, Go, Parallel ML, Parallel Haskell, …

So why don’t people
use the abstractions?
(Short answer: user interaction)

Theorem: 𝑇 𝑃 ≤
𝑊

𝑃
+ 𝑆

Use multiple threads to do a lot of things

With parallelism, stops being responsive

23

Many lightweight threads
running AI

One thread listening
for events

Some tasks have higher priority than others

> >

Simple priority syntax

priority sensors
priority short_term_planning
priority long_term_planning
order long_term_planning < short_term_planning
order short_term_planning < sensors

sensethread <- spawn[sensors] { … };
plan1 <- spawn[short_term_planning] { … };
plan2 <- spawn[long_term_planning] { … };

Planning thread
(low priority) Sensor thread

(high priority)

Sup?

…

The program went wrong

• How do we stop programs from going wrong?

We track priorities through code in types

28

order low < high

{
t <- spawn[low] { … };
…
sync(t)

}

• This thread is high-
priority

t <- spawn[high] { … };

cmd[high]

• Spawn a low-priority
thread

• Sync on it

• Spawn a high-priority
thread

• Sync on it

constraint violated at example.prm:5.1-5.8 : high <= low
Type error: constraint violated

We want to sync on e from priority ρ’

29

Γ ⊢ 𝑒 ∶ 𝜏 thread 𝜌 𝜌 ≥ 𝜌′

Γ ⊢ sync 𝑒 ∶ 𝜏 @ 𝜌′

e is higher priority than the current thread

We track priorities through code in types
e is a handle to a thread of priority ρ

What if a thread wants to change its priority?

priority sensors
priority short_term_planning
priority long_term_planning
order long_term_planning < short_term_planning
order short_term_planning < sensors

plan1 <- spawn[long_term_planning]
{ …
if time > deadline – 5ms then

change[short_term_planning];

… }
};

Extension to type system being
done currently by a CS440

Spring 2021 student!

Want to learn

• How to prove progress and preservation?

• More advanced type systems that can express more complex
programs?

• How to design new type systems for things you want to express about
programs?

Take CS534 (Types and Programming Languages)

Hoare Logic can verify other properties

• Remember: ⊨ 𝑃 𝑆 𝑄

• “if P holds before and S terminates, Q holds after”

• ⊨ 𝑛 ≥ 0 𝑥 ≔ fact(𝑛) 𝑥 = 𝑛!

• How do we prove this?

With inference rules!

𝑆𝐾𝐼𝑃
⊨ 𝑃 𝑠𝑘𝑖𝑝 𝑃

𝐴𝑆𝑆𝐼𝐺𝑁
⊨ [𝐸/𝑥] 𝑃 𝑥 ≔ 𝐸 𝑃

⊨ (𝑥 + 1)/𝑥 (𝑥 = 1) 𝑥 ≔ 𝑥 + 1 𝑥 = 1

With inference rules!

𝑆𝐸𝑄
𝑃 𝑆1 𝑄 𝑄 𝑆2 𝑅

⊨ 𝑃 𝑆1; 𝑆2 𝑅
𝑊𝐻𝐼𝐿𝐸

𝑃 ∧ 𝐵 𝑆 {𝑃}

⊨ 𝑃 𝑤ℎ𝑖𝑙𝑒 𝐵 𝑑𝑜 𝑆 𝑃 ∧ ¬𝐵

…
𝑛 ≥ 0 𝑥 ≔ 1; 𝑖 ≔ 2 𝑥 = (𝑖 − 1)!

…
𝑥 = 𝑖 − 1 ! ∧ 𝑖 ≤ 𝑛 𝑥 ≔ 𝑥 ∗ 𝑖; 𝑖 ≔ 𝑖 + 1 { 𝑥 = (𝑖 − 1)! }

𝑥 = (𝑖 − 1)! 𝑤ℎ𝑖𝑙𝑒 𝑖 < 𝑛 𝑑𝑜 𝑥 ≔ 𝑥 ∗ 𝑖; 𝑖 ≔ 𝑖 + 1 𝑥 = 𝑖 − 1 ! ∧ 𝑖 > 𝑛

⊨ 𝑛 ≥ 0 𝑥 ≔ 1; 𝑖 ≔ 2;𝑤ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑛 𝑑𝑜 (𝑥 ≔ 𝑥 ∗ 𝑖; 𝑖 ≔ 𝑖 + 1) 𝑥 = 𝑛!

“Loop
invariant”

Want to learn

• How to use Hoare Logic to prove real things about real programs?

• About total correctness (proving programs terminate)?

• About verifying concurrent programs?

Take CS536 (Science of Programming)

What to take next?

Coding or
theory?

Types?

443

534 536

Write a compiler! Theory!

All the types!
No thanks

Like this stuff (especially the priority type
system) and want to do it more hands-on?

I’m looking for research assistants!
Email me!

	Slide 1: CS440: Programming Languages and Translators
	Slide 2: Logistics/Reminders
	Slide 3: Content
	Slide 4: Format
	Slide 5: Rules, etc.
	Slide 6: Practice, review
	Slide 7: Schedule
	Slide 8: Knowing the right paradigm to use can make programming easier
	Slide 9: Knowing about the language and how it’s translated can help you write faster code
	Slide 10: Type systems can express different levels of guarantees
	Slide 11: Different languages are up to different tasks
	Slide 12: Schedule
	Slide 13: Compilers vs. interpreters
	Slide 14: Compilers translate code in phases
	Slide 15: Compiler collections also swap out front ends for different languages
	Slide 16: Want to see more? Take CS443 (Compiler Construction)
	Slide 17: Schedule
	Slide 18: Type safety: well-typed programs don’t “go wrong”
	Slide 19: “Go wrong” can mean lots of other things
	Slide 20: Functional languages are great for parallelism
	Slide 21
	Slide 22: Use multiple threads to do a lot of things
	Slide 23: With parallelism, stops being responsive
	Slide 24: Some tasks have higher priority than others
	Slide 25: Simple priority syntax
	Slide 26
	Slide 27: The program went wrong
	Slide 28: We track priorities through code in types
	Slide 29
	Slide 30: What if a thread wants to change its priority?
	Slide 31
	Slide 32: Hoare Logic can verify other properties
	Slide 33: With inference rules!
	Slide 34: With inference rules!
	Slide 35
	Slide 36
	Slide 37: What to take next?

