Lambda (A) calculus
Very simple powerful PL
"V iverial" model af functional PLS
simple to reason about!

$$
\begin{aligned}
& M::=x \mid \lambda \times . M 1 M_{\uparrow} M \\
& \text { inaction application } \\
& \text { "abstraction" }
\end{aligned}
$$

That's a!!!

Examples

Af. ff Self-apply notypes, so this is fine! dg. Af. $\lambda x . g(f x)$ Composition
Abstractions are right-associative, app. left-assoc.

$$
\begin{aligned}
& \text { Abstractions are right-associarre qp. }) \\
& \lambda_{x} \cdot \lambda_{y} \lambda_{z} \cdot x y \lambda_{x}\left(\lambda_{y}\left(\lambda_{z} .(x y) z\right)\right)
\end{aligned}
$$

Application has higher precedence than abstraction

$$
\lambda_{x . x y} \lambda_{z} x z=\lambda_{x} .\left((x y)\left(\lambda_{2} .(x z)\right)\right)
$$

Free + bound variables
Abstractions bind variables
-A var. is bound if it's in the scope of a binding

$$
\begin{aligned}
& \lambda \underset{x}{\sim}(\lambda \leftarrow x . x)
\end{aligned}
$$

Substitution
$[N / x] M$ Substitute N for free, x '; in M ?

$$
\begin{aligned}
& {[y / x] x=y} \\
& {\left[y(x)(x z z(\lambda x \cdot x))=y z\left(\lambda x \cdot x^{x^{N}}\right)^{\text {Not free! }}\right.} \\
& {[y / x)(\lambda z \cdot x x)=\lambda z \cdot y y} \\
& {[y / x)(\lambda y \cdot y x) \neq \lambda y \cdot y y \quad y \text { is "captwed" }}
\end{aligned}
$$

"This refers to some outer y
α-equivalence
"Names of bound variables don't matter"

$$
\begin{aligned}
& \lambda_{x} \equiv_{\alpha} \lambda y \cdot y \equiv_{\alpha} \lambda_{z \cdot z} \\
& \lambda_{x} \lambda y \cdot x y \equiv_{\alpha} \lambda_{a} \cdot \lambda b \cdot a b
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \lambda_{x .} \lambda_{y} . y_{y x} \stackrel{?}{\equiv} \lambda_{q .} \lambda_{f} .99 f \quad N_{0} \\
& \lambda x . x(\lambda y-z y) \stackrel{?}{=}, \lambda_{i . i}\left(\lambda_{j} . k_{j}\right) N_{0} \\
& \lambda x . d y \cdot \lambda z . x z y \equiv \lambda_{a} \cdot \lambda y \cdot \lambda b \text {. aby Yes }
\end{aligned}
$$

Preventing captive: If we're substituting a tern wa Free Vo y in to $\lambda y . M$, α-convert (convert to α-equivalent term)

$$
\begin{aligned}
& \left.[y \mid x]\left(\lambda_{y \cdot} \cdot x\right)=L y / x\right)\left(\lambda_{2} .2 x\right)=\lambda_{z} . z y \\
& {[N / x] x=N} \\
& {[N / x] \text { y }=y \quad x \neq y} \\
& {[N / x](\lambda x . M)=\lambda x . M \quad \text { free variables }} \\
& {[N(x)(\lambda y . M)=\lambda y[N(x) M \quad y \notin F V(N)} \\
& {[M / \alpha]\left(M_{1} M_{2}\right)=[V / x) M_{1}\left[V(x) M_{2}(\text { If } y \notin F V(N), \alpha \text {-convert so it ix't })\right.}
\end{aligned}
$$

Computing in λ-calculus
β-reduction

$$
\left.\begin{array}{c}
(\lambda x \cdot M) N \vec{\beta} \cdot[N / x] M \\
(\lambda x \cdot \lambda y \cdot x y)(\lambda x \cdot x y)(\lambda y \cdot y) \\
\vec{\alpha}(\lambda x \cdot \lambda z \cdot x z)(\lambda x \cdot x y)(\lambda y \cdot y) \\
\vec{\beta} \quad(\lambda z \cdot(\lambda x \cdot x y) z)(\lambda y \cdot y) \\
\vec{b} \\
\vec{b} \\
\vec{b} \\
\vec{D}
\end{array}(\lambda \cdot x \cdot x y)(\lambda y \cdot y)\right)
$$

η (Eta) reduction
If $x \in F V(M)$, then $\lambda_{x} . M \times \underset{\rightarrow}{\rightarrow} M$

$$
\text { Sort of like } \begin{aligned}
& \text { let add l } l \\
&=\text { List.map }((t))) l \\
& \equiv \text { let add } 1=\text { List. } \operatorname{map}((t) 1)
\end{aligned}
$$

$$
\left\{(\lambda y \cdot y) w z \rightarrow w^{2} \quad\right. \text { ways/orders }
$$

Normal form -No β - reductions are possible Not every. expression. "has" (can be reduced to) a normal form!

$$
(d x . x x)(\lambda x . x x) \rightarrow(\lambda x . x x)(d x . x x) \rightarrow \ldots
$$

$(\lambda x \cdot x)((\lambda y \cdot y) z) \vec{D}(\lambda y \cdot y) z \rightarrow \vec{n} \boldsymbol{z}$ E Call by name (lazy) $\underset{\beta}{\Rightarrow}(\| x \cdot x) \geq \vec{\beta} 2 \in$ Call by value (eager)

CBV may not terminate even it M has a formal form

$$
(\lambda x-z)((\lambda x+x)(\lambda x \cdot x+x)) \frac{G B N}{\rho} z
$$

However! If 2 reductions terminate, both are guarantee to have the sue result (ie, normal firms are unique) "Church-Rosser Property/Theoren"
Diamond Property. It in 4^{0} or more reductions
such $M^{4} \rightarrow^{*} M_{1} \vec{\beta}^{*} M_{2}$ and $M_{1} \vec{\beta}^{*} M_{3}$, then \exists some M_{4} such that $M_{2} \vec{p}^{*} \cdot M_{4}$ and $M_{3} \vec{p}^{*} M_{4}$

Proof outline:
Lemma:. |f $M_{1} \underset{\vec{p}}{\substack{\text { sister } \\ M_{2}}}$ and $M_{1} \vec{\beta} M_{3}$, then there exists M_{4} such that $M_{2} \rightarrow^{*} M_{4}$ and $M_{3} \vec{p}^{*} M_{4}$

Corollary: If $M_{1} \cdot \vec{\beta}^{*} M_{2}$ and $M_{1} \vec{\beta}^{*} M_{3}$ and M_{2} and M_{3} are in normal form, then $M_{2}=M_{3}$.

