
CS440: Programming 
Languages and Translators

Lecture 16: Type Inference

Spring 2023

Stefan Muller



Type inference: basic idea

• infer(e: expression) : typ =
• Call infer recursively on subexpressions of e

• Figure out the type of e from the types of subexpressions
• Use unification to enforce any constraints on types

• If we ever don’t know the type of something, make a new unification variable

Lecture 16

::

+

1 2

[]

int int

int
?1 list

unify(?1, int)

int list



We need to know the types of variables

let x = 1 in

let y = 2 in

x + y

Lecture 16



A context keeps track of the types of variables

• infer(ctx: context, e: expression) : typ =
• Call infer recursively on subexpressions of e

• Figure out the type of e from the types of subexpressions
• Use unification to enforce any constraints on types

• If we see a variable, look it up in ctx (if not in ctx, it’s unbound)

• If we ever don’t know the type of something, make a new unification variable

• How do we represent a context?
• Map? Association list?

Lecture 16



We need to know the types of variables

let x = 1 in

let y = 2 in

x + y

Lecture 16

[x -> int]

[x -> int, y -> int]

Context does not store the 
values of variables! We’re not 

computing anything here!



How do we compute the type of e from the 
types of subexpressions?
• Depends on what e is.

• Example: e = e1 + e2

• Remember: e1 + e2 has type int if e1, e2 have type int
• Let t1 = infer(ctx, e1)

• Let t2 = infer(ctx, e2)

• Unify(t1, int)

• Unify(t2, int)

• (If neither unification failed) return int

Lecture 16



We also need to keep track of substitutions

• infer([x -> ?1], x + List.length x)

• infer([x -> ?1], x) = ?1

• infer([x -> ?1], List.length x) = int unify(?1, ?2 list)

• unify(?1, int)

• unify(int, int)

• return int

• But ?1 can’t be int and ?2 list!

Lecture 16



Infer should also return a substitution

• infer([x -> ?1], x + List.length x)

• infer([x -> ?1], x) = (?1, [])

• infer([][x -> ?1], List.length x) = (int, [(?1, ?2 list)])

• unify([[(?1, ?2 list)]]?1, [[(?1, ?2 list)]]int) = unify(?2 list, int) 
-> Shape Mismatch

Lecture 16

Apply current substitution to 
the context

Apply current substitution to 
the types in unification



Infer should also return a substitution

• infer([x -> ?1], (List.length x)::x)

• infer([x -> ?1], List.length x) = (int, [(?1, ?2 list)])

• infer([[(?1, ?2 list)]][x -> ?1], x)
= infer([x -> ?2 list], x) = (?2 list, [])

• unify([[]]int list, ?2 list) = [(?2, int)]

• return (int list, [] @ [(?1, ?2 list)] @ [(?2, int)])
= (int list, [(?1, ?2 list); (?2, int)])

Lecture 16

Append all substitutions at 
the end



A context keeps track of the types of variables

• infer(ctx: context, e: expression) : typ * subst =
• Call infer recursively on subexpressions of e

• Need to apply previous substitutions to ctx

• Figure out the type of e from the types of subexpressions
• Use unification to enforce any constraints on types
• If we see a variable, look it up in ctx (if not in ctx, it’s unbound)
• If we ever don’t know the type of something, make a new unification variable

• How do we represent a context?
• Map? Association list?

Lecture 16



Lecture 16


	Slide 1: CS440: Programming Languages and Translators
	Slide 2: Type inference: basic idea
	Slide 3: We need to know the types of variables
	Slide 4: A context keeps track of the types of variables
	Slide 5: We need to know the types of variables
	Slide 6: How do we compute the type of e from the types of subexpressions?
	Slide 7: We also need to keep track of substitutions
	Slide 8: Infer should also return a substitution
	Slide 9: Infer should also return a substitution
	Slide 10: A context keeps track of the types of variables
	Slide 11

