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Type inference: basic idea

• infer(e: expression) : typ =
• Call infer recursively on subexpressions of e

• Figure out the type of e from the types of subexpressions
• Use unification to enforce any constraints on types

• If we ever don’t know the type of something, make a new unification variable
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We need to know the types of variables

let x = 1 in

let y = 2 in

x + y
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A context keeps track of the types of variables

• infer(ctx: context, e: expression) : typ =
• Call infer recursively on subexpressions of e

• Figure out the type of e from the types of subexpressions
• Use unification to enforce any constraints on types

• If we see a variable, look it up in ctx (if not in ctx, it’s unbound)

• If we ever don’t know the type of something, make a new unification variable

• How do we represent a context?
• Map? Association list?
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We need to know the types of variables

let x = 1 in

let y = 2 in

x + y
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[x -> int]

[x -> int, y -> int]

Context does not store the 
values of variables! We’re not 

computing anything here!



How do we compute the type of e from the 
types of subexpressions?
• Depends on what e is.

• Example: e = e1 + e2

• Remember: e1 + e2 has type int if e1, e2 have type int
• Let t1 = infer(ctx, e1)

• Let t2 = infer(ctx, e2)

• Unify(t1, int)

• Unify(t2, int)

• (If neither unification failed) return int
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We also need to keep track of substitutions

• infer([x -> ?1], x + List.length x)

• infer([x -> ?1], x) = ?1

• infer([x -> ?1], List.length x) = int unify(?1, ?2 list)

• unify(?1, int)

• unify(int, int)

• return int

• But ?1 can’t be int and ?2 list!
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Infer should also return a substitution

• infer([x -> ?1], x + List.length x)

• infer([x -> ?1], x) = (?1, [])

• infer([][x -> ?1], List.length x) = (int, [(?1, ?2 list)])

• unify([[(?1, ?2 list)]]?1, [[(?1, ?2 list)]]int) = unify(?2 list, int) 
-> Shape Mismatch
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Apply current substitution to 
the context

Apply current substitution to 
the types in unification



Infer should also return a substitution

• infer([x -> ?1], (List.length x)::x)

• infer([x -> ?1], List.length x) = (int, [(?1, ?2 list)])

• infer([[(?1, ?2 list)]][x -> ?1], x)
= infer([x -> ?2 list], x) = (?2 list, [])

• unify([[]]int list, ?2 list) = [(?2, int)]

• return (int list, [] @ [(?1, ?2 list)] @ [(?2, int)])
= (int list, [(?1, ?2 list); (?2, int)])
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Append all substitutions at 
the end



A context keeps track of the types of variables

• infer(ctx: context, e: expression) : typ * subst =
• Call infer recursively on subexpressions of e

• Need to apply previous substitutions to ctx

• Figure out the type of e from the types of subexpressions
• Use unification to enforce any constraints on types
• If we see a variable, look it up in ctx (if not in ctx, it’s unbound)
• If we ever don’t know the type of something, make a new unification variable

• How do we represent a context?
• Map? Association list?
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