
CS440: Programming
Languages and Translators

Lecture 14: Type Checking and Unification

Spring 2023

Stefan Muller

Type checking isn’t too hard

let rec sum (l: int list) : int =

match (l: int list) with

| ([]: int list) -> (0 : int)

| (h::t : int list) -> ((h: int) + (sum t: int): int)

Lecture 0 2

ℎ: 𝑖𝑛𝑡
𝑠𝑢𝑚: 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 → 𝑖𝑛𝑡 𝑡: 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡

𝑠𝑢𝑚 𝑡 ∶ 𝑖𝑛𝑡
ℎ + 𝑠𝑢𝑚 𝑡 ∶ 𝑖𝑛𝑡

Type checking isn’t too hard… even if we only
have inputs
let rec sum (l: int list) : int =

match (l: int list) with

| ([]: int list) -> (0 : int)

| (h::t : int list) -> ((h: int) + (sum t: int): int)

Lecture 0 3

ℎ: 𝑖𝑛𝑡
𝑠𝑢𝑚: 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 → 𝑖𝑛𝑡 𝑡: 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡

𝑠𝑢𝑚 𝑡 ∶ 𝑖𝑛𝑡
ℎ + 𝑠𝑢𝑚 𝑡 ∶ 𝑖𝑛𝑡

??

??

??

?? ?? ??

Type inference is a little harder

let rec sum l =

match l with

| [] -> 0

| h::t -> h + sum t

Lecture 0 4

Type inference is a little harder

let rec sum (l:) =

match l with

| [] -> 0

| h::t -> h + sum t

Lecture 0 5

??

Type inference is a little harder

let rec sum (l:) =

match (l:) with

| [] -> 0

| h::t -> h + sum t

Lecture 0 6

??

??

Type inference is a little harder

let rec sum (l:) =

match (l:) with

| [] -> 0

| h::t -> h + sum t

Lecture 0 7

??

??

Type inference is a little harder

let rec sum (l: int list) : int =

match (l: int list) with

| [] -> (0 : int)

| h::t -> ((h: int) + (sum (t: int list) : int): int)

Lecture 0 8

??

??

??

??

?? ??

??

?? ?? ??

Unification variables help us keep track of
what we still have to figure out
• We’ll use ?1, ?2, ?3, etc.

• Need to fill in the same type everywhere ?1 appears

• NOT the same as type variables ‘a, ‘b, etc., but difference is subtle

Lecture 0 9

When we see something whose type we
don’t know, add a unif. var.
let rec sum (l: ?1) : ?2 =

match l with

| [] -> 0

| h::t -> h + sum t

Lecture 0 10

Keep unification variables consistent

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> 0

| h::t -> h + sum t

Lecture 0 11

We can refine unification variables when we
get more information
let rec sum (l: ?3 list) : ?2 =

match (l: ?3 list) with

| [] -> 0

| h::t -> h + sum t

Lecture 0 12

We can refine unification variables when we
get more information
let rec sum (l: ?3 list) : ?2 =

match (l: ?3 list) with

| [] -> (0: ?2)

| h::t -> ((h: ?3) + (sum (t: ?3 list): ?2): ?2)

Lecture 0 13

We can refine unification variables when we
get more information
let rec sum (l: ?3 list) : int =

match (l: ?3 list) with

| [] -> (0: int)

| h::t -> ((h: ?3) + (sum (t: ?3 list): int): int)

Lecture 0 14

We can refine unification variables when we
get more information
let rec sum (l: int list) : int =

match (l: int list) with

| [] -> (0: int)

| h::t -> ((h: int) + (sum (t: int list): int): int)

Lecture 0 15

Unification

• Making types “look like” each other

• e.g., unify(?1, ?3 list)

• e.g., unify(?3, int)

Lecture 0 16

What if you can’t unify?

let rec sum_bad (l: ?1) : ?2 =

match (l: ?1) with

| [] -> 0

| h::t -> h +. sum t

Lecture 0 17

What if you can’t unify?

let rec sum_bad (l: ?3 list) : int =

match (l: ?3 list) with

| [] -> (0: int)

| h::t -> (h +. sum t: int)

Lecture 0 18

What if you can’t unify?

let rec sum_bad (l: ?3 list) : int =

match (l: ?3 list) with

| [] -> (0: int)

| h::t -> ((h: ?3) +. (sum (t: ?3 list) : int): int)

Lecture 0 19

What if you can’t unify?

let rec sum_bad (l: float list) : int =

match (l: float list) with

| [] -> (0: int)

| h::t -> ((h: float) +. (sum (t: float list) : int): int)

Lecture 0 20

What if you can’t unify?

let rec sum_bad (l: float list) : int =

match (l: float list) with

| [] -> (0: int)

| h::t -> ((h: float) +. (sum (t: float list) : int): int)

unify(float, int)

A: Type error

Lecture 0 21

The goal of unification is to produce a
substitution σ
• A mapping from unification variables to types

• e.g., [?1 -> ?3 list, ?2 -> int, ?3 -> int]

Lecture 0 22

Unification example

Lecture 0 23

O C A M L

P TA T E

1 2 3

4 5

6

Across
1. SB 104, SB 218E, e.g.
4. A functional language used at Jane Street Capital
6. [], h::t, (x, y), for example

Down
1. Maker of the Spectra 70 computer (abbr.)
2. ____ e with
3. ____ solver, which we hope we don’t need for

type inference
4. int ____, the type of “Some 42”
5. Xavier ____, inventor of 4-Across

?8

?D

?3

?7

?2

?6

T

?1

?5

?A

Unification example

Lecture 0 24

O ?5 ?6 ?7 ?8?4

P?9 ?A ?B ?C ?D ?E ?F

1 2 3

4 5

6

Across
1. SB 104, SB 218E, e.g.
4. A functional language used at Jane Street Capital
6. [], h::t, (x, y), for example

Down
1. Maker of the Spectra 70 computer (abbr.)
2. ____ e with
3. ____ solver, which we hope we don’t need for

type inference
4. int ____, the type of “Some 42”
5. Xavier ____, inventor of 4-Across

?8

?D

?3

?7
?2

?6

?B

?1

?5

?A

Unification example

Lecture 0 25

?4 ?5 ?6 ?7 ?8

?4

?9

?9 ?A ?B ?C ?D ?E ?F

1

2
3

4

5

6

Across
1. SB 104, SB 218E, e.g.
4. A functional language used at Jane Street Capital
6. [], h::t, (x, y), for example

Down
1. Maker of the Spectra 70 computer (abbr.)
2. ____ e with
3. ____ solver, which we hope we don’t need for

type inference
4. int ____, the type of “Some 42”
5. Xavier ____, inventor of 4-Across

4

?8

?D

?3

?7
?2

?6

?9

?1

?5

?A

Unification example

Lecture 0 26

?4 ?5 ?6 ?7 ?8

?4

?9

?9 ?A ?B ?C ?D ?E ?F

1

2
3

4

5

6

Across
1. SB 104, SB 218E, e.g.
4. A functional language used at Jane Street Capital
6. [], h::t, (x, y), for example

Down
1. Maker of the Spectra 70 computer (abbr.)
2. ____ e with
3. ____ solver, which we hope we don’t need for

type inference
4. int ____, the type of “Some 42”
5. Xavier ____, inventor of 4-Across

4

?1 -> R, ?2 -> M, ?3 -> S, ?4 -> O, ?5 -> C, ?6 -> A,
?7 -> M, ?8 -> L, ?9 -> P, ?A -> A, ?B -> T, ?C -> T,
?D -> E, ?E -> R, ?F -> N

Substituting types

• We write [σ]τ to mean “τ with all of the substitutions in σ”

• [?1 -> int list, ?2 -> int](?1 -> ?2) = int list -> int

• “Simultaneous substitution”: keep substituting until things don’t
change
• [?1 -> ?3 list, ?2 -> int, ?3 -> int](?1 -> ?2) = int list -> int

Lecture 0 27

We build up a substitution as we unify

let rec sum l =

match l with

| [] -> 0

| h::t -> h + sum t

Lecture 0 28

We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match l with

| [] -> 0

| h::t -> h + sum t

Lecture 0 29

We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> 0

| h::t -> h + sum t

Lecture 0 30

We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> 0

| h::t -> h + sum t

Lecture 0 31

?1 -> ?3 list,

We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> (0: ?2)

| h::t -> h + sum t

Lecture 0 32

?1 -> ?3 list,
?2 -> int

We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> (0: ?2)

| h::t -> (h: ?3) + (sum (t: ?3 list) : ?2) : ?2

Lecture 0 33

?1 -> ?3 list,
?2 -> int

We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> (0: ?2)

| h::t -> (h: ?3) + (sum (t: ?3 list) : ?2) : ?2

Lecture 0 34

?1 -> ?3 list,
?2 -> int
?3 -> int

Q: What if we have leftover unification
variables when we’re done?
let rec length (l: ?1) : ?2 =

match (l: ?1) with

| [] -> (0: ?2)

| h::t -> (1: ?4) + (length (t: ?3 list) : ?2) : ?2

Lecture 0 35

?1 -> ?3 list,
?2 -> int
?4 -> int

Q: What if we have leftover unification
variables when we’re done?
let rec length (l: ?1) : ?2 =

match (l: ?1) with

| [] -> (0: ?2)

| h::t -> (1: ?4) + (length (t: ?3 list) : ?2) : ?2

A: They become type variables (but it’s a little complicated)

Lecture 0 36

?1 -> ?3 list,
?2 -> int
?4 -> int
?3 -> ‘a

	Slide 1: CS440: Programming Languages and Translators
	Slide 2: Type checking isn’t too hard
	Slide 3: Type checking isn’t too hard… even if we only have inputs
	Slide 4: Type inference is a little harder
	Slide 5: Type inference is a little harder
	Slide 6: Type inference is a little harder
	Slide 7: Type inference is a little harder
	Slide 8: Type inference is a little harder
	Slide 9: Unification variables help us keep track of what we still have to figure out
	Slide 10: When we see something whose type we don’t know, add a unif. var.
	Slide 11: Keep unification variables consistent
	Slide 12: We can refine unification variables when we get more information
	Slide 13: We can refine unification variables when we get more information
	Slide 14: We can refine unification variables when we get more information
	Slide 15: We can refine unification variables when we get more information
	Slide 16: Unification
	Slide 17: What if you can’t unify?
	Slide 18: What if you can’t unify?
	Slide 19: What if you can’t unify?
	Slide 20: What if you can’t unify?
	Slide 21: What if you can’t unify?
	Slide 22: The goal of unification is to produce a substitution σ
	Slide 23: Unification example
	Slide 24: Unification example
	Slide 25: Unification example
	Slide 26: Unification example
	Slide 27: Substituting types
	Slide 28: We build up a substitution as we unify
	Slide 29: We build up a substitution as we unify
	Slide 30: We build up a substitution as we unify
	Slide 31: We build up a substitution as we unify
	Slide 32: We build up a substitution as we unify
	Slide 33: We build up a substitution as we unify
	Slide 34: We build up a substitution as we unify
	Slide 35: Q: What if we have leftover unification variables when we’re done?
	Slide 36: Q: What if we have leftover unification variables when we’re done?

