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Type checking isn’t too hard

let rec sum (l: int list) : int =

match (l: int list) with

| ([]: int list) -> (0 : int)

| (h::t : int list) -> ((h: int) + (sum t: int): int)
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Type checking isn’t too hard… even if we only 
have inputs
let rec sum (l: int list) : int =

match (l: int list) with

| ([]: int list) -> (0 : int)

| (h::t : int list) -> ((h: int) + (sum t: int): int)
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𝑠𝑢𝑚: 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 → 𝑖𝑛𝑡 𝑡: 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡

𝑠𝑢𝑚 𝑡 ∶ 𝑖𝑛𝑡
ℎ + 𝑠𝑢𝑚 𝑡 ∶ 𝑖𝑛𝑡
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Type inference is a little harder

let rec sum l =

match l with

| [] -> 0

| h::t -> h + sum t
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Type inference is a little harder

let rec sum (l:         ) =

match l with

| [] -> 0

| h::t -> h + sum t
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Type inference is a little harder

let rec sum (l:         ) =

match (l:         ) with

| [] -> 0

| h::t -> h + sum t
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Type inference is a little harder

let rec sum (l:         ) =

match (l:         ) with

| [] -> 0

| h::t -> h + sum t
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Type inference is a little harder

let rec sum (l: int list) : int =

match (l: int list) with

| [] -> (0 : int)

| h::t -> ((h: int) + (sum (t: int list) : int): int)
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Unification variables help us keep track of 
what we still have to figure out
• We’ll use ?1, ?2, ?3, etc.

• Need to fill in the same type everywhere ?1 appears

• NOT the same as type variables ‘a, ‘b, etc., but difference is subtle
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When we see something whose type we 
don’t know, add a unif. var.
let rec sum (l: ?1) : ?2 =

match l with

| [] -> 0

| h::t -> h + sum t
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Keep unification variables consistent

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> 0

| h::t -> h + sum t
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We can refine unification variables when we 
get more information
let rec sum (l: ?3 list) : ?2 =

match (l: ?3 list) with

| [] -> 0

| h::t -> h + sum t
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We can refine unification variables when we 
get more information
let rec sum (l: ?3 list) : ?2 =

match (l: ?3 list) with

| [] -> (0: ?2)

| h::t -> ((h: ?3) + (sum (t: ?3 list): ?2): ?2)
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We can refine unification variables when we 
get more information
let rec sum (l: ?3 list) : int =

match (l: ?3 list) with

| [] -> (0: int)

| h::t -> ((h: ?3) + (sum (t: ?3 list): int): int)
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We can refine unification variables when we 
get more information
let rec sum (l: int list) : int =

match (l: int list) with

| [] -> (0: int)

| h::t -> ((h: int) + (sum (t: int list): int): int)
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Unification

• Making types “look like” each other

• e.g., unify(?1, ?3 list)

• e.g., unify(?3, int)

Lecture 0 16



What if you can’t unify?

let rec sum_bad (l: ?1) : ?2 =

match (l: ?1) with

| [] -> 0

| h::t -> h +. sum t
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What if you can’t unify?

let rec sum_bad (l: ?3 list) : int =

match (l: ?3 list) with

| [] -> (0: int)

| h::t -> (h +. sum t: int)
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What if you can’t unify?

let rec sum_bad (l: ?3 list) : int =

match (l: ?3 list) with

| [] -> (0: int)

| h::t -> ((h: ?3) +. (sum (t: ?3 list) : int): int)
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What if you can’t unify?

let rec sum_bad (l: float list) : int =

match (l: float list) with

| [] -> (0: int)

| h::t -> ((h: float) +. (sum (t: float list) : int): int)
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What if you can’t unify?

let rec sum_bad (l: float list) : int =

match (l: float list) with

| [] -> (0: int)

| h::t -> ((h: float) +. (sum (t: float list) : int): int)

unify(float, int)

A: Type error
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The goal of unification is to produce a 
substitution σ
• A mapping from unification variables to types 

• e.g., [?1 -> ?3 list, ?2 -> int, ?3 -> int]
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Unification example
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O C A M L

P TA T E

1 2 3

4 5

6

Across
1. SB 104, SB 218E, e.g.
4. A functional language used at Jane Street Capital
6. [], h::t, (x, y), for example

Down
1. Maker of the Spectra 70 computer (abbr.)
2. ____ e with
3. ____ solver, which we hope we don’t need for

type inference
4. int ____, the type of “Some 42”
5. Xavier ____, inventor of 4-Across
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3. ____ solver, which we hope we don’t need for

type inference
4. int ____, the type of “Some 42”
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?1 -> R, ?2 -> M, ?3 -> S, ?4 -> O, ?5 -> C, ?6 -> A,
?7 -> M, ?8 -> L, ?9 -> P, ?A -> A, ?B -> T, ?C -> T,
?D -> E, ?E -> R, ?F -> N



Substituting types 

• We write [σ]τ to mean “τ with all of the substitutions in σ”

• [?1 -> int list, ?2 -> int](?1 -> ?2) = int list -> int

• “Simultaneous substitution”: keep substituting until things don’t 
change
• [?1 -> ?3 list, ?2 -> int, ?3 -> int](?1 -> ?2) = int list -> int
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We build up a substitution as we unify

let rec sum l =

match l with

| [] -> 0

| h::t -> h + sum t
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We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match l with

| [] -> 0

| h::t -> h + sum t
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We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> 0

| h::t -> h + sum t
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We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> 0

| h::t -> h + sum t
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?1 -> ?3 list,



We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> (0: ?2)

| h::t -> h + sum t
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?1 -> ?3 list,
?2 -> int



We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> (0: ?2)

| h::t -> (h: ?3) + (sum (t: ?3 list) : ?2) : ?2
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?1 -> ?3 list,
?2 -> int



We build up a substitution as we unify

let rec sum (l: ?1) : ?2 =

match (l: ?1) with

| [] -> (0: ?2)

| h::t -> (h: ?3) + (sum (t: ?3 list) : ?2) : ?2
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?1 -> ?3 list,
?2 -> int
?3 -> int



Q: What if we have leftover unification 
variables when we’re done?
let rec length (l: ?1) : ?2 =

match (l: ?1) with

| [] -> (0: ?2)

| h::t -> (1: ?4) + (length (t: ?3 list) : ?2) : ?2
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?1 -> ?3 list,
?2 -> int
?4 -> int



Q: What if we have leftover unification 
variables when we’re done?
let rec length (l: ?1) : ?2 =

match (l: ?1) with

| [] -> (0: ?2)

| h::t -> (1: ?4) + (length (t: ?3 list) : ?2) : ?2

A: They become type variables (but it’s a little complicated)

Lecture 0 36

?1 -> ?3 list,
?2 -> int
?4 -> int
?3 -> ‘a
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