
Building Interpreters:
Recap

CS 440: Programming Languages

Stefan Muller

Slides largely by Michael Lee <lee@iit.edu>

mailto:lee@iit.edu

HW2

- Due tonight, 11:59pm (can take <= 2 late days as usual)

- For hof.ml and trees.ml:

- You may not write any recursive (including tail-recursive) functions,
except on the bonus question (and copy/pasting tree_fold)

- For all parts:

- You can use any operators or library functions we’ve seen, as long as it
isn’t just what you’re supposed to implement.

- Examples of what’s allowed: ^, @, List.init (will be very useful)

- Not allowed: List.concat for implementing concatenate

Midterm: Thursday, 3/2

- In-class, 75 minutes

- Covers Lectures 0-13 (through today), Homeworks 0-2

Non-exhaustive list of topics

- Types of programming languages

- Interpreters vs. compilers

- Structure of an interpreter/compiler

- OCaml programming

- Types, expressions, evaluation, (tail) recursion

- Algebraic data types

- Higher-order functions

- Interpreters

- Environments

Format

- 4-5 (multi-part) questions

- Short answer, some small programming questions

Other info

- Write in blue or black pen only (no pencil)

- I reserve the right to deduct 5 points from exams written in pencil

- You can bring one double-sided 8.5x11” sheet of notes

- Written or typed, can contain anything you want

- I’ll give you type signatures for the usual HOFs

- Anything else you want? Let me know on Discord by tomorrow

Other info (continued)

- I’ll post a practice exam soon

- Instead of Thursday office hours next week, I’ll have a Zoom review

session Wed., 3/1 11-12

§ Overview

“Traditional” Interpreter Workflow

Lexer

Source code

(Plain text)
Tokens

Parser

Syntax tree

Analysis /

Optimization
Evaluator

IR

Our Implementation

Source code

(Plain text)

Parser

Syntax tree

Evaluator

Lexer

Desugarer

Syntax tree
(core language)

Tokens

More on this in

a bit!

Compilation Workflow

Lexer

Source code

(Plain text)
Tokens

Parser

Syntax tree

Analysis /

Optimization
Code

Generator

Bytecode /

Machine codeIR

§ Some implementation details

Identifier bindings

- let and fun forms bind identifiers

within specific scopes

- An expression’s environment

comprises all bindings in effect

when it is evaluated

let x = 44 in
let y = 10 in

x * y

let f = fun x -> x * 10
in
f 44

Identifier bindings

- We use an association list to

represent an environment

- E.g., [(x, ref 44); (y, ref 10)]

- Immutable structure: bindings

are prepended when recursing

- Bindings may be mutably

updated to allow backpatching

Identifier bindings

let x = 44 in

let y = 10 in

x * y

[]env=

eval
[(x, ref 44)]env=

eval

[(y, ref 10); (x; ref 44)]env=

eval

Identifier bindings

[]env=
let x = 44 in

let y = 10 in

let x = 54 in

x * y

eval
[(x, ref 44)]env=

eval

[(x, ref 54); (y, ref 10);
(x; ref 44)]

env=

eval

[(y, ref 10); (x; ref 44)]env=

eval

(shadowed)

let/lambda equivalence

- Note that all let forms can be written as lambda applications!

let x = 44
in x * 10

(fun x -> x * 10) 44⇔

let x = 44 in
let y = 3 + 7 in
x * y

(fun x y -> x * y) 44 (3 + 7)⇔

Evaluation strategies

- Question: when do we evaluate expressions in binding forms?

- E.g., let x = 1 + 2 in …

(fun x -> …) (1 + 2)

- Two general strategies: Eager and Lazy

Eager evaluation

- Evaluate before binding the

identifier

- aka call-by-value:

evaluated “value” is

passed as arg to function

Lazy evaluation

- Evaluate the expression only

when needed

- aka call-by-name:

un-evaluated expression

“name” is passed

- An efficient version may cache

(memoize) evaluated results

instead of re-evaluating

let x = 1 + 2 in x + x + 4

(1 + 2) + (1 + 2) + 4

3 + (1 + 2) + 4

3 + 3 + 4

10

let x = 1 + 2 in x + x + 4

(1 + 2) + (1 + 2) + 4

3 + 3 + 4

10

Eager vs. Lazy

- Eager evaluation is much more common in modern languages

- More predictable behavior; easier to analyze program requirements

- Often more efficient than a non-memoizing lazy evaluator

- Lazy evaluation may avoid doing unnecessary work (e.g., unreferenced

identifiers in a function)

- Control flow can be implemented via regular functions

- Infinite / partially defined data structures are easy to define

Control flow with functions

type my_bool = True | False

let my_if (e: my_bool) (if_b: ‘a) (else_b: ‘a) =
match e with
| True -> if_b
| False -> else_b

my_if True (1 + 2) (42 / 0)

my_if True 3 !!!!

Control flow with functions - Lazy

type my_bool = True | False

let my_if (e: my_bool) (if_b: ‘a) (else_b: ‘a) =
match e with
| True -> if_b
| False -> else_b

my_if True (1 + 2) (42 / 0)

match True with True -> 1 + 2 | False -> 42 / 0

1 + 2

Scope selection

- Question: which bindings (for free variables) are used when evaluating

a function (lambda)?

- E.g., let f = let x = 44 in
fun y ->

x * y
in
let x = 33 in
f 10

- Two strategies: Dynamic and Lexical

Dynamic binding

- Use the scopes in effect where the

function is called

- I.e., free variables are looked up

in the dynamic environment

let f = let x = 5 in
fun y -> x * y

in
(let x = 4 in f 10)
+ (let x = 3 in f 10)

> 70

Lexical binding

- Use the scopes in effect where the

function is defined

- I.e., a function captures or

“closes over” bindings in its

lexical environment

- Lexically bound functions

= Closures

let f = let x = 5 in
fun y -> x * y

in
(let x = 4 in f 10)
+ (let x = 3 in f 10)

> 100

Closure implementation

- A closure couples a function with

its lexical environment

- An efficient version would only

keep required bindings

- Critical for languages with first-

class functions

- Functions may outlive their

defining environment, but need

to hang onto bindings!

Desugaring

- Question: how to add syntactic elements (and associated semantics)?

- Option 1: update parser & evaluator — all syntax is first class

- Option 2: translate new syntactic elements into core language

- Performed during “desugaring” passes (syntactic sugar → core syntax)

- Keeps core language small and easy to reason about / test!

Desugaring

- E.g.,
fun x y z -> body …

fun x ->
fun y ->
fun z -> body

desugar
(can also desugar let -> application)

Short-circuiting and/or

- if x > 0 && y / x > 5 then 1 else 2

- Remember eval case for EBinop (e1, o, e2):

let v1 = eval_expr e1 env in
let v2 = eval_expr e2 env in
eval_op o v1 v2

eval_expr (EBinop (x > 0, And, y / x > 5)) ?

Short-circuiting and/or

- if x > 0 && y / x > 5 then 1 else 2

- if if x > 0 then y / x > 5 else false then 1 else 2

desugar

What did we leave out?

- Parsing!

- Language independent intermediate representations (e.g., LLVM)

- Optimizations (e.g., lean/fast environments, efficient execution)

- Memory management

- Code generation (transpiling, bytecode/machine code generation)

- Take CS 443: Compiler Construction!

	Slide 1: Building Interpreters: Recap
	Slide 2: HW2
	Slide 3: Midterm: Thursday, 3/2
	Slide 4: Non-exhaustive list of topics
	Slide 5: Format
	Slide 6: Other info
	Slide 7: Other info (continued)
	Slide 8: Overview
	Slide 9: “Traditional” Interpreter Workflow
	Slide 10: Our Implementation
	Slide 11: Compilation Workflow
	Slide 12: Some implementation details
	Slide 16: Identifier bindings
	Slide 17: Identifier bindings
	Slide 18: Identifier bindings
	Slide 19: Identifier bindings
	Slide 21: let/lambda equivalence
	Slide 22: Evaluation strategies
	Slide 23: Eager evaluation
	Slide 24: Lazy evaluation
	Slide 25: Eager vs. Lazy
	Slide 26: Control flow with functions
	Slide 27: Control flow with functions - Lazy
	Slide 28: Scope selection
	Slide 29: Dynamic binding
	Slide 30: Lexical binding
	Slide 31: Closure implementation
	Slide 32: Desugaring
	Slide 33: Desugaring
	Slide 34: Short-circuiting and/or
	Slide 35: Short-circuiting and/or
	Slide 36: What did we leave out?

