
CS440: Programming
Languages and Translators

Lecture 1

Spring 2023

There are different ways of translating a
programming language

Lecture 0 2

Compiler

Source Code

Binary/Assembly

Interpreter

Source Code

Compiler

Source Code

Bytecode

VM

Ex.: C, C++
Ex.: Python Ex.: Java

Lecture 0 3

“Go straight on to the roundabout;
mind the lorries”

“OK, so keep going that way”;
“Here, you’re going to go straight ahead”

“It means ‘keep going until you
get to this circular intersection;
watch out for trucks.’”

Compilers vs. interpreters

• Compiler
• Translates the program to a form executable by the machine (or assembly)

• Compile, then can run the executable: compiler no longer involved

• Interpreter
• Doesn’t translate to machine-readable format

• Might compile to bytecode or intermediate representation

• Runs (“interprets”) program directly

• Can’t run without the interpreter

Lecture 0 4

Compilers translate code in phases

Lecture 0 5

Source
Code

Lexical
Analyzer Tokens Parser

Abstract
Syntax

Lowering
Intermed.

Rep.
Code
Gen.

Target
Code

Analysis Optimization

a = b + c - 1 VAR a
EQUAL
VAR b
OP +
VAR C
OP -
CONST 1

Assign

a +

b -

c 1

temp = c – 1
a = b + temp

subl %rax, 1
addl %rax, %rbx

“Front End” “Back End”

May have many more phases, several
intermediate representations

Lecture 0 6

Front End is language specific
Back End is machine specific

Lecture 0 7

Source
Code

Lexical
Analyzer Tokens Parser

Abstract
Syntax

Lowering
Intermed.

Rep.
Code
Gen.

Target
Code

Analysis Optimization

a = b + c - 1 VAR a
EQUAL
VAR b
OP +
VAR C
OP -
CONST 1

Assign

a +

b -

c 1

temp = c – 1
a = b + temp

subl %rax, 1
addl %rax, %rbx

“Front End” “Back End”“Middle End”

Can (and usually do) swap out back ends to
target different machines

Lecture 0 8

Intermediate
Representation

Machine-Independent Optimizations

x86

ARM

PowerPC

…

Compiler collections also swap out front ends
for different languages

Lecture 0 9

Intermediate
Representation

Machine-Independent Optimizations

x86

ARM

PowerPC

…

C

C++

Java

…

• More about compilers: CS443

• This class: more about interpreters

Lecture 0 10

Functional Programming

• Strong mathematical foundations

• Very high-level

• Really elegant for expressing many algorithms

Lecture 0 11

xkcd.com/1270

(Alt text: Functional programming combines the flexibility and power of
abstract mathematics with the intuitive clarity of abstract mathematics)

• Statically typed, functional
• (also has imperative and object-oriented features)

• Strong, expressive type system
• (makes implementing many data structures very easy)

• Type inference
• int x = 5;

• x = 5

Lecture 0 12

• Probably the most used functional language

• First appeared 1996
• “ML family” of languages (Standard ML, F#) goes back to the 1970s

• Version 5.0.0 released Dec. 16, 2022

• Industrial-strength compiler
• Actively maintained

• Lots of libraries (standard and 3rd-party)

Lecture 0 13

	Slide 1: CS440: Programming Languages and Translators
	Slide 2: There are different ways of translating a programming language
	Slide 3
	Slide 4: Compilers vs. interpreters
	Slide 5: Compilers translate code in phases
	Slide 6: May have many more phases, several intermediate representations
	Slide 7: Front End is language specific Back End is machine specific
	Slide 8: Can (and usually do) swap out back ends to target different machines
	Slide 9: Compiler collections also swap out front ends for different languages
	Slide 10
	Slide 11: Functional Programming
	Slide 12
	Slide 13

