
CS440: Programming 
Languages and Translators

Lecture 0

Spring 2023



Outline

1. Programming Languages

2. Translators: Compilers and Interpreters

3. Types of Programming Languages

4. Syllabus

Lecture 0 2



You can program without programming 
languages… if you really want

Lecture 0 3

xkcd



Computer Architecture in One Slide

Lecture 0 4

Memory Registers

42

84

35

1

7

0

987

1024

2Program Counter01100111

Op Code Data 1 Data 2 126



You can program without programming 
languages… if you really want

Lecture 0 5

Altair 8800
1974



You can program without programming 
languages… if you really want

Lecture 0 6

Instruction tape for Harvard Mark I
~1944



Assembly code makes instructions more 
human-readable

Lecture 0 7

Assembler Binary

1010101010010001000100
1111001010100100010000
0111110110000110000… 



If we can turn text into binaries, why not 
easier-to-write text?

Lecture 0 8

Grace Hopper
(1906-1992)

Rear Admiral

Compiler

Binary/Assembly

COBOL
(1959)



Outline

1. Programming Languages

2. Translators: Compilers and Interpreters

3. Types of Programming Languages

4. Syllabus

Lecture 0 9



There are different ways of translating a 
programming language

Lecture 0 10

Compiler

Source Code

Binary/Assembly

Interpreter

Source Code

Compiler

Source Code

Bytecode

VM

Ex.: C, C++
Ex.: Python Ex.: Java



Outline

1. Programming Languages

2. Translators: Compilers and Interpreters

3. Types of Programming Languages

4. Syllabus

Lecture 0 11



All programming languages are the same…
in a deep sense
“Turing completeness”

But the choice of language still matters in a very real sense—languages 
are tools!

Lecture 0 12



Programming Language =

Syntax

+

Semantics

Lecture 0 13

What programs look like

What programs mean



Syntax vs. semantics: Python

Lecture 0 14

Interpreter
Source Code

def func ();
return 5 + “hello”

File "main.py", line 1
def func ();

^
SyntaxError: invalid syntaxdef func ():

return 5 + “hello”

File "main.py", line 2, in func
return 5 + "hello"

TypeError: unsupported operand
type(s) for +: 'int' and 'str'

Syntax Semantics



Syntax vs. semantics: OCaml

Lecture 0 15

let func () = 5 + “hello”

Line 5, characters 18-25:
Error: This expression has 
type string but an 
expression was expected of 
type int

Compiler
Source Code

Syntax Semantics



Semantics =

Static

+

Dynamic

Lecture 0 16

Analyzed at compile time

Happens at run time

Where do we check types?



We can divide programming languages by 
whether they have static or dynamic types
• Static languages: types checked at compile time: no type errors at 

runtime

• Dynamic languages: types checked at run time, can have type errors

• (Weakly typed languages): types checked at compile time, but can be
avoided, resulting in unexpected behavior or type errors at run time

Lecture 0 17



We can also divide programming languages based 
on paradigm (how you think about programming)

• Imperative: tell computer what to do

• Functional: describe the computation mathematically

• Object-oriented: objects perform computation and carry data

• Scripting

• Relational

• Domain-specific

• Logic

Lecture 0 18



Lecture 0 19

Static Dynamic

Imperative Typescript, Pascal Python, Javascript

Functional Haskell, OCaml Scheme, Racket

Object-oriented C++, C#, Java



Knowing the right paradigm to use can make 
programming easier

Lecture 0 20

Task: Sort a linked list (using merge sort)

C Python OCaml



Knowing about the language and how it’s 
translated can help you write faster code

0.007

6.43

0.014 0.01
0

1

2

3

4

5

6

7

C Python OCaml (bytecode) OCaml (native)

Ti
m

e 
(s

)

Merge sort, 10,000 elements

Lecture 0 21



Knowing about the language and how it’s 
translated can help you write faster code

7

6430

14
10

1

10

100

1000

10000

C Python OCaml (bytecode) OCaml (native)

Ti
m

e 
(m

s)

Merge sort, 10,000 elements

Lecture 0 22



Type systems can express different levels of 
guarantees
• C

• Takes a pointer to a node and returns a pointer to a node.

• OCaml
• Takes an integer list and returns an integer list.

• Haskell
• Takes an integer list, returns an integer list and performs I/O (e.g., printing).

• Coq

• Takes an integer list and returns a sorted permutation of it.

Lecture 0 23

node *mergesort(node *list) 

mergesort : int list -> int list

mergesort :: IO ([int] -> [int])

mergesort : forall (l1 : list int), exists (l2: int list),
Sorted l2 /\ Permutation l1 l2



Different languages are up to different tasks

Lecture 0 24

C?

?

Rust?



Outline

1. Programming Languages

2. Translators: Compilers and Interpreters

3. Types of Programming Languages

4. Syllabus

Lecture 0 25



Course Goals

• Learn to evaluate and discuss programming languages
• Learn the lingo (impressing people with jargon isn’t the point, but is a side 

effect)

• Reason precisely about what programs mean
• Inject mathematical rigor into programming

• Become a creator of PLs, not just a consumer

Lecture 0 26

Γ ⊢ 𝑒1 ∶ 𝜏1 Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ 𝑒1, 𝑒2 ∶ 𝜏1× 𝜏2



Sections/Attendance

• Section 01: In-person
• Attendance not recorded, but attendance/participation may be used to 

“break ties”

• Section 02: Online
• Lecture videos will be posted to Blackboard after each lecture

Lecture 0 27



Course Staff

• Instructor: Stefan Muller
• Office Hours: Mon., 11am-12pm (Online – link to come)

Thur., 2-3pm (SB 218E)

• TA: Xincheng Yang
• Office Hours: Tue., 2-4pm (Online – appt. link to come)

Wed., 2-4pm (SB 004)

Lecture 0 28



Course Website: http://cs.iit.edu/~cs440/
Important info, notes, etc.

Lecture 0 29

http://cs.iit.edu/~cs440/


Other ways to get help

Discord Office Hours Email ARC

General questions about lectures, logistics, etc.

General discussion, clarifications, about HW questions

Specific questions about your HW answers

More in-depth personal tutoring

Personal matters (accommodations, other requests, etc.)

• Discord: IIT CS server, #cs440 channel
• If you’re not on it, we’ll send an invitation

• Academic Resource Center (ARC): www.iit.edu/arc
• FREE subject matter tutoring and academic coaching

http://www.iit.edu/arc


Collaboration and Academic Honesty

• Discussing general concepts is encouraged

• Discussing broad strategies for doing lab tasks is OK – don’t discuss 
actual answers or code
• If, after your discussion, you don’t take any notes/pictures and write up your 

code/solutions by yourself, you’re probably OK

• Cite collaborators and any other resources in your write-up

• Not allowed:
• Working together

• Sharing answers

• Looking for answers on the internet

Lecture 0 31

This is the short version: read the 
details on the course website



(Tentative) Schedule

• Intro (1 week – you are here)

• Learn OCaml (~4 weeks)

• Interpreters (~2 weeks)

• Midterm

• Type checking (~2 weeks)

• Spring break

• Formal semantics (~2 weeks)

• Formal type systems (~2 weeks)

• Other topics and wrap-up (~3 weeks)

Lecture 0 35



Labs/Projects/Homeworks/Problem sets

• 6-7 homeworks, ~2 weeks each
• Lab 0 Out ~Thursday, Due 1/26

• Written and programming

• Work individually

Late Days:

• 7 per student, extend deadline 24 hours

• No more than 2 per assignment

• If no more late days, 10% late penalty per day

• No work accepted >48 hours late

Lecture 0 36



Exams

• Midterm (tentatively Mar. 2)

• Final (finals week)

• Details TBA

• (No using late days, sorry)

Lecture 0 37



Grading

• 50% Homeworks

• 20% Midterm

• 30% Final

Lecture 0 38

>=90 A

80-90 B

70-80 C

60-70 D

<60 E



Textbooks
On Compilers/interpreters:

• “Purple Dragon Book”: Aho et al. Compilers: Principles, 
Techniques and Tools (2nd ed.)

• Appel. Modern Compiler Implementation in ML

• Nystrom. Crafting Interpreters

For more math-y details:

• Pierce. Types and Programming Languages

• Harper. Practical Foundations for Programming 
Languages

Lecture 0 39



For Thursday: Bring laptops if you can!

Lecture 0 40


	Slide 1: CS440: Programming Languages and Translators
	Slide 2: Outline
	Slide 3: You can program without programming languages… if you really want
	Slide 4: Computer Architecture in One Slide
	Slide 5: You can program without programming languages… if you really want
	Slide 6: You can program without programming languages… if you really want
	Slide 7: Assembly code makes instructions more human-readable
	Slide 8: If we can turn text into binaries, why not easier-to-write text?
	Slide 9: Outline
	Slide 10: There are different ways of translating a programming language
	Slide 11: Outline
	Slide 12: All programming languages are the same… in a deep sense
	Slide 13
	Slide 14: Syntax vs. semantics: Python
	Slide 15: Syntax vs. semantics: OCaml
	Slide 16
	Slide 17: We can divide programming languages by whether they have static or dynamic types
	Slide 18: We can also divide programming languages based on paradigm (how you think about programming)
	Slide 19
	Slide 20: Knowing the right paradigm to use can make programming easier
	Slide 21: Knowing about the language and how it’s translated can help you write faster code
	Slide 22: Knowing about the language and how it’s translated can help you write faster code
	Slide 23: Type systems can express different levels of guarantees
	Slide 24: Different languages are up to different tasks
	Slide 25: Outline
	Slide 26: Course Goals
	Slide 27: Sections/Attendance
	Slide 28: Course Staff
	Slide 29: Course Website: http://cs.iit.edu/~cs440/ Important info, notes, etc.
	Slide 30: Other ways to get help
	Slide 31: Collaboration and Academic Honesty
	Slide 35: (Tentative) Schedule
	Slide 36: Labs/Projects/Homeworks/Problem sets
	Slide 37: Exams
	Slide 38: Grading
	Slide 39: Textbooks
	Slide 40

