CS440: Programming
Languages and Translators

Lecture O

Spring 2023

Outline

Programming Languages
Translators: Compilers and Interpreters
Types of Programming Languages

B W

Syllabus

You can program without programming
languages... if you really want

nano? REAL HEY. REAL WELL, REAL NO, REAL | [REAL PROGRANMNERS
PROGRAMMERS PROGRAMMERS | | PROGRAMMERS| | PROGRAMMERS | | USE A MAGNETIZED
USE emacs USE vim. VSE ed. USE cot. NEECLE AND A

\ | | | ETEHD‘:’ HAND.

b R K) R

xked

Computer Architecture in One Slide

42

126
35

Op Code Datal Data?2

Lecture O

You can program without programming
languages... if you really want

Altair 8800
1974

You can program without programming
languages... if you really want

Instruction tape for Harvard Mark |
~1944

Lecture O

Assembly code makes instructions more
human-readable

push
mowv
sub
mov
mov

mov
Xor
mov
mov
mov
cmpq
je
mov
mov
test
je
lea
lea
mov
mov
mov
callg
lea
mov
callg
lea
mov
callg
mov
mov
mov
mov
callg
mov

%rbp

%rsp,%rbp
50x30,%rsp
wrdi,-0x28(%rbp)
%Fs:0x28,%rax

%rax,-0x8(%rbp)
%eax,%eax
-0x28(%rbp),%rax
(%rax),%rax
%rax,-0x10(%rbp)
SOx0,-0x10(%rbp)

7c2 <MergeSort+0x88=
-0x16(%rbp),%rax
Ox8(%rax),%rax
%rax,%rax

7c2 <MergeSort+0x88->
-0x18(%rbp),%rdx
-0x20(%rbp),%rcx
-0x18(%rbp),%rax
%rox,%rsi

%rax,%rdi

877 <FrontBackSplits>
-Ox20(%rbp),%rax
%¥rax,%rdi

73a <MergeSort=
-0x18(%rbp),%rax
%rax,%rdi

73a <MergeSorts
-0x18(%rbp),%rdx
-Ox20(%rbp),%rax
%rdx,%rsi

%¥rax,%rdi

7d9 <SortedMerge=
%rax,%rdx

e o e N e

»»

Lecture O

1010101010010001000100
1111001010100100010000
0111110110000110000...

If we can turn text into binaries, why not
easier-to-write text?

Rear Admiral Grace Hopper
(1906-1992)

Binary/Assembly

Lecture O

Outline

2. Translators: Compilers and Interpreters
3. Types of Programming Languages
4. Syllabus

There are different ways of translating a
programming language

3

i
ytecode

xh
ﬂ ?
Binary/Assembly »

Ex.: Python Ex.: Java
Ex.: C, C++

¥

Lecture O

Outline

3. Types of Programming Languages
4. Syllabus

All programming languages are the same...
in a deep sense

“Turing completeness”

But the choice of language still matters in a very real sense—languages
are tools!

Programming Language =

Syntax What programs look like

Semantics What programs mean

Syntax vs. semantics: Python

Syntax Semantics

A A

| | |

Source Code
Interpreter —

File "main.py", line 1 File "main.py", line 2, in func
def func (); return 5 + "hello"
A TypeError: unsupported operand
type(s) for +: 'int' and 'str'

def func (): SyntaxError: invalid syntax
return 5 + “hello”

Lecture O 14

Syntax vs. semantics: OCam|

Syntax

A
| |
————

Line 5, characters 18-25:
Error: This expression has

type string but an
expression was expected of

type int

let func () = 5 + “hello”

Lecture O

Semantics

A

Compiler

)

15

Semantics =

Static

Dynamic

Analyzed at compile time

Where do we check types?

Happens at run time

Lecture O

16

We can divide programming languages by
whether they have static or dynamic types

e Static languages: types checked at compile time: no type errors at
runtime

* Dynamic languages: types checked at run time, can have type errors

* (Weakly typed languages): types checked at compile time, but can be
avoided, resulting in unexpected behavior or type errors at run time

We can also divide programming languages based
on paradigm (how you think about programming)

* Imperative: tell computer what to do

* Functional: describe the computation mathematically

* Object-oriented: objects perform computation and carry data
* Scripting

* Relational

* Domain-specific

* Logic

T e | oymamic

Imperative Typescript, Pascal Python, Javascript

Functional Haskell, OCaml Scheme, Racket

Object-oriented C++, C#, Java

Lecture O

Knowing the right paradigm to use can make
programming easier

Task: Sort a linked list (using merge sort)

C Python OCaml

Knowing about the language and how it’s
translated can help you write faster code

Merge sort, 10,000 elements

6.43

0.014 0.01

C Python OCaml (bytecode) OCaml (native)

Knowing about the language and how it’s
translated can help you write faster code

Merge sort, 10,000 elements
10000 6430

1000

100

Time (ms)

14

10
10 7

C Python OCaml (bytecode) OCaml (native)

Type systems can express different levels of
guarantees

e C node *mergesort(node *1ist)
* Takes a pointer to a node and returns a pointer to a node.

e OCaml mergesort : int list -> int list
* Takes an integer list and returns an integer list.

e Haskell mergesort :: IO ([int] -> [int])
» Takes an integer list, returns an integer list and performs I/O (e.g., printing).

o Coq mergesort : forall (11 : list int), exists (12: int list),
Sorted 12 /\ Permutation 11 12

* Takes an integer list and returns a sorted permutation of it.

Different languages are up to different tasks

24

Outline

Programming Languages
Translators: Compilers and Interpreters

Types of Programming Languages

e

Syllabus

Lecture O

25

Course Goals

* Learn to evaluate and discuss programming languages
e Learn the lingo (impressing people with jargon isn’t the point, but is a side
effect)
F'te 1y TFe:ty
' + (91, 62) !T1>< T-y

e Reason precisely about what programs mean
* Inject mathematical rigor into programming

 Become a creator of PLs, not just a consumer

Sections/Attendance

* Section 01: In-person

» Attendance not recorded, but attendance/participation may be used to
“break ties”

e Section 02: Online
* Lecture videos will be posted to Blackboard after each lecture

Course Staff

e Instructor: Stefan Muller

e Office Hours: Mon., 11am-12pm (Online — link to come)
Thur., 2-3pm (SB 218E)

* TA: Xincheng Yang

e Office Hours: Tue., 2-4pm (Online — appt. link to come)
Wed., 2-4pm (SB 004)

Course Website: http://cs.iit.edu/~cs440/
Important info, notes, etc.

CS440: Programming Languages and Translators, Spring 2023

Instructor: Stefan Muller, smuller2@iit.edu
Office Hours: TBA

TA: TBA

Lectures:

Section 01: Tue, Thur 10:00-11:15 AM, SB 104
Section 02: Online only

Schedule Resources Policies

Schedule

Note: this schedule is tentative and subject to change.

For the readings posted:

"PDB" = "Purple Dragon Book" (Aho et al.)

"FPO" = "Functional Programming in OCaml" (linked below)

"TAPL" = Types and Programming Languages (Pierce)

"PFPL" = Practical Foundations for Programming Languages (Harper)

Topic Readings Notes

January 10 [INtro Languages and course overview

12 Compiler structure, interpreters, OCaml

17 OCaml OCaml evaluation, types, expressions

19 Functions and recursion

24 More on types

26 Lists and tail recursion

31 Records and algebraic data types
February 2 Higher-order functions

7 Higher-order functions

9 Side effects

14 Interpreters Building an interpreter

16 Closures

http://cs.iit.edu/~cs440/

Other ways to get help

e Discord: IIT CS server, #cs440 channel
* If you’re not on it, we’ll send an invitation

* Academic Resource Center (ARC): www.iit.edu/arc
* FREE subject matter tutoring and academic coaching

Discord Office Hours | Email ARC
General questions about lectures, logistics, etc. \/ \/
General discussion, clarifications, about HW questions \/ \/
Specific questions about your HW answers \/ \/
More in-depth personal tutoring \/
Personal matters (accommodations, other requests, etc.) \/

http://www.iit.edu/arc

Collaboration and Academic Honesty

* Discussing general concepts is encouraged

* Discussing broad strategies for doing lab tasks is OK— don’t discuss
actual answers or code

* If, after your discussion, you don’t take any notes/pictures and write up your
code/solutions by yourself, you’re probably OK

 Cite collaborators and any other resources in your write-up

* Not allowed:
* Working together
* Sharing answers details on the course website
* Looking for answers on the internet

This is the short version: read the

Lecture O 31

(Tentative) Schedule

* Intro (1 week — you are here)

e Learn OCaml (~4 weeks)

* Interpreters (~2 weeks)

* Midterm

* Type checking (~2 weeks)

* Spring break

* Formal semantics (~2 weeks)

* Formal type systems (~2 weeks)

* Other topics and wrap-up (~3 weeks)

Labs/Projects/Homeworks/Problem sets

e 6-7 homeworks, ~2 weeks each
e Lab 0 Out ~Thursday, Due 1/26

* Written and programming
* Work individually

Late Days:

e 7 per student, extend deadline 24 hours

* No more than 2 per assignment

* |f no more late days, 10% late penalty per day
* No work accepted >48 hours late

Exams

* Midterm (tentatively Mar. 2)
* Final (finals week)

e Details TBA

* (No using late days, sorry)

Grading

e 50% Homeworks >=30 A
e 20% Midterm SO B
| 70-80 C

* 30% Final
60-70 D

<60 E

Textbooks

gio On Com pilers/interpreters: NS
\xj, * “Purple Dragon Book”: Aho et al. Compilers: Principles, -

L AR Y

O% M Techniques and Tools (279 ed.)

* Appel. Modern Compiler Implementation in ML
* Nystrom. Crafting Interpreters

For more math-y details:
* Pierce. Types and Programming Languages

Practical Foundations for
PROGRAMMING
LANGUAGES

* Harper. Practical Foundations for Programming
Languages

Lecture O 39

For Thursday: Bring laptops if you can!

	Slide 1: CS440: Programming Languages and Translators
	Slide 2: Outline
	Slide 3: You can program without programming languages… if you really want
	Slide 4: Computer Architecture in One Slide
	Slide 5: You can program without programming languages… if you really want
	Slide 6: You can program without programming languages… if you really want
	Slide 7: Assembly code makes instructions more human-readable
	Slide 8: If we can turn text into binaries, why not easier-to-write text?
	Slide 9: Outline
	Slide 10: There are different ways of translating a programming language
	Slide 11: Outline
	Slide 12: All programming languages are the same… in a deep sense
	Slide 13
	Slide 14: Syntax vs. semantics: Python
	Slide 15: Syntax vs. semantics: OCaml
	Slide 16
	Slide 17: We can divide programming languages by whether they have static or dynamic types
	Slide 18: We can also divide programming languages based on paradigm (how you think about programming)
	Slide 19
	Slide 20: Knowing the right paradigm to use can make programming easier
	Slide 21: Knowing about the language and how it’s translated can help you write faster code
	Slide 22: Knowing about the language and how it’s translated can help you write faster code
	Slide 23: Type systems can express different levels of guarantees
	Slide 24: Different languages are up to different tasks
	Slide 25: Outline
	Slide 26: Course Goals
	Slide 27: Sections/Attendance
	Slide 28: Course Staff
	Slide 29: Course Website: http://cs.iit.edu/~cs440/ Important info, notes, etc.
	Slide 30: Other ways to get help
	Slide 31: Collaboration and Academic Honesty
	Slide 35: (Tentative) Schedule
	Slide 36: Labs/Projects/Homeworks/Problem sets
	Slide 37: Exams
	Slide 38: Grading
	Slide 39: Textbooks
	Slide 40

