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You can program without programming 
languages… if you really want
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Computer Architecture in One Slide
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You can program without programming 
languages… if you really want
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Altair 8800
1974



You can program without programming 
languages… if you really want
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Instruction tape for Harvard Mark I
~1944



Assembly code makes instructions more 
human-readable
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Assembler Binary

1010101010010001000100
1111001010100100010000
0111110110000110000… 



If we can turn text into binaries, why not 
easier-to-write text?
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Grace Hopper
(1906-1992)

Rear Admiral

Compiler

Binary/Assembly

COBOL
(1959)
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There are different ways of translating a 
programming language
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Compiler

Source Code

Binary/Assembly

Interpreter

Source Code

Compiler

Source Code

Bytecode

VM

Ex.: C, C++
Ex.: Python Ex.: Java
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All programming languages are the same…
in a deep sense
“Turing completeness”

But the choice of language still matters in a very real sense—languages 
are tools!
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Programming Language =

Syntax

+

Semantics
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What programs look like

What programs mean



Syntax vs. semantics: Python
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Interpreter
Source Code

def func ();
return 5 + “hello”

File "main.py", line 1
def func ();

^
SyntaxError: invalid syntaxdef func ():

return 5 + “hello”

File "main.py", line 2, in func
return 5 + "hello"

TypeError: unsupported operand
type(s) for +: 'int' and 'str'

Syntax Semantics



Syntax vs. semantics: OCaml
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let func () = 5 + “hello”

Line 5, characters 18-25:
Error: This expression has 
type string but an 
expression was expected of 
type int

Compiler
Source Code

Syntax Semantics



Semantics =

Static

+

Dynamic
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Analyzed at compile time

Happens at run time

Where do we check types?



We can divide programming languages by 
whether they have static or dynamic types
• Static languages: types checked at compile time: no type errors at 

runtime

• Dynamic languages: types checked at run time, can have type errors

• (Weakly typed languages): types checked at compile time, but can be
avoided, resulting in unexpected behavior or type errors at run time
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We can also divide programming languages based 
on paradigm (how you think about programming)

• Imperative: tell computer what to do

• Functional: describe the computation mathematically

• Object-oriented: objects perform computation and carry data

• Scripting

• Relational

• Domain-specific

• Logic

Lecture 0 18



Lecture 0 19

Static Dynamic

Imperative Typescript, Pascal Python, Javascript

Functional Haskell, OCaml Scheme, Racket

Object-oriented C++, C#, Java



Knowing the right paradigm to use can make 
programming easier
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Task: Sort a linked list (using merge sort)

C Python OCaml



Knowing about the language and how it’s 
translated can help you write faster code
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Knowing about the language and how it’s 
translated can help you write faster code
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Type systems can express different levels of 
guarantees
• C

• Takes a pointer to a node and returns a pointer to a node.

• OCaml
• Takes an integer list and returns an integer list.

• Haskell
• Takes an integer list, returns an integer list and performs I/O (e.g., printing).

• Coq

• Takes an integer list and returns a sorted permutation of it.
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node *mergesort(node *list) 

mergesort : int list -> int list

mergesort :: IO ([int] -> [int])

mergesort : forall (l1 : list int), exists (l2: int list),
Sorted l2 /\ Permutation l1 l2



Different languages are up to different tasks
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C?

?

Rust?
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Course Goals

• Learn to evaluate and discuss programming languages
• Learn the lingo (impressing people with jargon isn’t the point, but is a side 

effect)

• Reason precisely about what programs mean
• Inject mathematical rigor into programming

• Become a creator of PLs, not just a consumer
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Γ ⊢ 𝑒1 ∶ 𝜏1 Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ 𝑒1, 𝑒2 ∶ 𝜏1× 𝜏2



Sections/Attendance

• Section 01: In-person
• Attendance not recorded, but attendance/participation may be used to 

“break ties”

• Section 02: Online
• Lecture videos will be posted to Blackboard after each lecture
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Course Staff

• Instructor: Stefan Muller
• Office Hours: Mon., 11am-12pm (Online – link to come)

Thur., 2-3pm (SB 218E)

• TA: Xincheng Yang
• Office Hours: Tue., 2-4pm (Online – appt. link to come)

Wed., 2-4pm (SB 004)
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Course Website: http://cs.iit.edu/~cs440/
Important info, notes, etc.
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http://cs.iit.edu/~cs440/


Other ways to get help

Discord Office Hours Email ARC

General questions about lectures, logistics, etc.

General discussion, clarifications, about HW questions

Specific questions about your HW answers

More in-depth personal tutoring

Personal matters (accommodations, other requests, etc.)

• Discord: IIT CS server, #cs440 channel
• If you’re not on it, we’ll send an invitation

• Academic Resource Center (ARC): www.iit.edu/arc
• FREE subject matter tutoring and academic coaching

http://www.iit.edu/arc


Collaboration and Academic Honesty

• Discussing general concepts is encouraged

• Discussing broad strategies for doing lab tasks is OK – don’t discuss 
actual answers or code
• If, after your discussion, you don’t take any notes/pictures and write up your 

code/solutions by yourself, you’re probably OK

• Cite collaborators and any other resources in your write-up

• Not allowed:
• Working together

• Sharing answers

• Looking for answers on the internet

Lecture 0 31

This is the short version: read the 
details on the course website



(Tentative) Schedule

• Intro (1 week – you are here)

• Learn OCaml (~4 weeks)

• Interpreters (~2 weeks)

• Midterm

• Type checking (~2 weeks)

• Spring break

• Formal semantics (~2 weeks)

• Formal type systems (~2 weeks)

• Other topics and wrap-up (~3 weeks)
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Labs/Projects/Homeworks/Problem sets

• 6-7 homeworks, ~2 weeks each
• Lab 0 Out ~Thursday, Due 1/26

• Written and programming

• Work individually

Late Days:

• 7 per student, extend deadline 24 hours

• No more than 2 per assignment

• If no more late days, 10% late penalty per day

• No work accepted >48 hours late
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Exams

• Midterm (tentatively Mar. 2)

• Final (finals week)

• Details TBA

• (No using late days, sorry)
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Grading

• 50% Homeworks

• 20% Midterm

• 30% Final
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>=90 A

80-90 B

70-80 C

60-70 D

<60 E



Textbooks
On Compilers/interpreters:

• “Purple Dragon Book”: Aho et al. Compilers: Principles, 
Techniques and Tools (2nd ed.)

• Appel. Modern Compiler Implementation in ML

• Nystrom. Crafting Interpreters

For more math-y details:

• Pierce. Types and Programming Languages

• Harper. Practical Foundations for Programming 
Languages
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For Thursday: Bring laptops if you can!
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