This assignment contains 5 written tasks and 2 programming tasks for a total of 42 points.

0 Logistics and Submission - Important

1. Make sure you read and understand the collaboration policy on the course website.

2. This assignment contains a mix of written and programming questions. For the written questions, submit typed or neatly handwritten and scanned answers on in .pdf, .doc, or .docx format.

3. You will answer the programming questions in `hw6.ml`. As usual, don’t touch any line beginning with `(*>`, and don’t change the names or types of any functions in the file.

4. Submit both `hw6.ml` and your written answers on Blackboard under HW6.

1 STLC

In this section, refer to the syntax and typing rules for the Simply-typed λ calculus, given in lecture.

Task 1.1 (Written, 12 points).

Give the STLC types of the following expressions:

(a) $\lambda x : \text{unit.} \lambda y : \text{unit} \times \text{unit.} x$

(b) $(\lambda x : \text{unit.} x, ())$

(c) $\lambda x : \text{unit} \times \text{unit.} \text{fst} x$

(d) $(\text{fst} (\lambda x : \text{unit.} x, \lambda x : \text{unit.} x)) ()$

Task 1.2 (Written, 9 points).

Give a typing derivation for

$$\emptyset \vdash (\lambda x : \text{unit.(}x,x)) () : \text{unit} \times \text{unit}$$

Continued on the next page.
2 Continuation-Passing Style

Task 2.1 (Written, 9 points).

For each of the functions below, say whether it’s in CPS. If not, explain why not in a sentence or two.

(a) let callfst f g k = f 0 k
(b) let exn a k e = match a with Some a -> k a | None -> e ()
(c) let app f x k = k (f x)

Task 2.2 (Programming, 6 points).

Write a function compose that takes two CPS functions \(f: 'a \rightarrow ('b -> 'k) \rightarrow 'k \) and \(g: 'b \rightarrow ('c -> 'k) \rightarrow 'k \), and returns their composition, which is also a CPS function of type \('a \rightarrow ('c -> 'k) \rightarrow 'k \). The composed function should take its input \(a \), call \(f \) on it, then call \(g \) on the result before passing it to \(k \).

For example,

\[
\text{compose (fun a k -> k (a + 1)) (fun b k -> k (b * 2)) 1 (fun x -> x) = 4}
\]

Your function must be in CPS; all call must be tail calls.

Task 2.3 (Programming, 6 points).

Write a function prod: \(\text{int list} \rightarrow (\text{int} \rightarrow 'k) \rightarrow 'k \). The call \(\text{prod l k} \) should call \(k \) with the result of multiplying together all of the integers in \(l \). We will assume the product of the empty list is 1, so \(\text{prod [] k} \) will call \(k \) with 1, and, e.g., \(\text{prod [1; 2; 3] k} \) will call \(k \) with \(1 * 2 * 3 = 6 \).

Here’s the catch: If at any point in the list, you encounter a 0, you should immediately call \(k \) with 0, since you know that the final result will be 0 regardless of what is in the rest of the list.

Your function must be in CPS, with the exception that you can call the normal \(* \) (integer multiplication) function and use its result as usual; all other calls must be tail calls.

3 Standard Final Questions

Task 3.1 (Written, 0 points).

How long (approximately, in hours/minutes of actual working time) did you spend on this homework, total? Your honest feedback will help us with future homeworks.

Task 3.2 (Written, 0 points).

Who, if anyone, did you collaborate with (and in what way), and what outside sources, if any, did you consult in working on this homework?