This assignment contains 7 written tasks, for a total of 50 points.

0 Logistics and Submission - Important

1. Make sure you read and understand the collaboration policy on the course website.

2. There’s no programming on this assignment. Submit typed or neatly handwritten and scanned answers on Blackboard.

1 Inference Rules

Task 1.1 (Written, 10 points).

Write inference rules for the judgments “X is a food” and “X is a sandwich” by converting the following informal English statements into inference rules (one rule per statement):

1. Peanut butter is a food
2. Jelly is a food
3. If X and Y are foods, then “X and Y” is a food.
4. If X is a food, then “X between bread” is a sandwich.
5. If X is a sandwich, X is food.

2 Big-step Semantics

Task 2.1 (Written, 12 points).

Using the rules from class for the IMP language, prove that

\[
\langle \{x \mapsto 0\}, \text{if } x = 0 \text{ then } x := x + 1 \text{ else skip} \rangle \Downarrow \{x \mapsto 1\}
\]

You can use \(\sigma\) instead of \(\{x \mapsto 0\}\).
3 \(\lambda \) Calculus

Task 3.1 (Written, 8 points).

For each of the following pairs of terms, say whether they’re \(\alpha \)-equivalent or not. If not, explain why in a sentence or two.

(a) \(\lambda x.\lambda y.x \ y \equiv \lambda y.\lambda x.x \ y \)

(b) \(\lambda x.\lambda y.x \ b \equiv \lambda a.\lambda b.a \ z \)

(c) \(\lambda x.\lambda y.x \ y \equiv \lambda y.\lambda x.y \ x \)

(d) \((\lambda x.x) \ (\lambda x.x) \equiv (\lambda x.x) \ (\lambda y.y) \)

Task 3.2 (Written, 10 points).

Perform the following substitutions. You may need to \(\alpha \)-convert to avoid capture. Just do the substitution, you don’t need to reduce further.

(a) \([w/x](\lambda x.x \ y) \ (\lambda z.z)\)

(b) \([w/x](f \ x \ ((\lambda x.x) \ z))\)

(c) \([\lambda x.y/f](\lambda y.f \ y) \ z\)

(d) \([\lambda x.x/f](\lambda x.f \ x)\)

(e) \([\lambda x.z/f](\lambda z.f \ z)\)

Task 3.3 (Written, 10 points).

Reduce the following term to a normal form in two different ways. You can use \(\alpha \) conversions, \(\beta \) reductions or \(\eta \) reductions. For each reduction, show each step.

\((\lambda x.\lambda y.x \ x \ y) \ (\lambda f.\lambda y.f \ y) \ ((\lambda y.y) \ (\lambda z.z)) \)

Bonus Task 3.4 (Written, 2 points).

A language has the “Church-Rosser property” if, for any program in the language, any set of reductions results in the same normal form. As we’ve discussed, the lambda calculus has the Church-Rosser property. OCaml does not. Give an OCaml program that can be evaluated in two different ways (e.g., using call-by-name evaluation and call-by-value execution) with two different results. Explain briefly the two different evaluation strategies and the result of each.

Hint: All purely functional languages have the Church-Rosser property, so your example will need to use some non-functional feature of OCaml, such as \texttt{ref} or \texttt{Printf.printf}. You can consider two evaluations of a program to have different results if they print different text.

4 Standard Final Questions

Task 4.1 (Written, 0 points).

How long (approximately, in hours/minutes of actual working time) did you spend on this homework, total? Your honest feedback will help us with future homeworks.
Task 4.2 (Written, 0 points).

Who, if anyone, did you collaborate with (and in what way), and what outside sources, if any, did you consult in working on this homework?