LL Parsing, part 2
CS 440: Programming Languages and Translators, Spring 2019
Lecture 13, Wed Mar 6

Notation

- \(a, b, \ldots \in T \) (a and b stand for members of T; a, b, … are members of T) Was \(\Sigma \) for regular expressions.
- \(x, y, \ldots \in T^* \)
- \(A, B, \ldots \in V \)
- \(W, X, \ldots \in T \mid V \)
- \(\alpha, \beta, \ldots \in (T \mid V)^* \) Sentential form

Review – \(LL(k) \) Parser

- A top-down parser looks for a parse tree for an inputted terminal string; it begins with start symbol and repeatedly replaces a nonterminal with a rhs of one of its rules.
- An \(LL(k) \) parser always replaces the leftmost nonterminal, so it tries to find the leftmost derivation for the input. It gets to look at \(k \) of the upcoming characters to figure out which rule to use. Typically \(k = 1 \). Recursive descent parsing was an example.
- Table-driven \(LL \) parsers use a table to predict which rule to use.
 - Given nonterminal \(A \) to replace and next character \(a \) of lookahead, prediction table(\(A, a \)) specifies the \(A \to \alpha \) rule to use.
 - If the table entry is empty, we have a parse error (didn't expect to see an \(a \)).
 - When we build the table, if a table entry tries to contain > 1 entry, the grammar is not \(LL(1) \).
- Two kinds of legal next character \(a \) to look at.
 - Rule \(A \to \alpha \) applies if \(a \) is a first character that can be derived from \(\alpha \) \((A \to \alpha \to^* a \gamma) \).
 - Note \(\gamma \) isn't important, it just stands for whatever form happens to be there.
 - Rule \(A \to \epsilon \) applies if \(a \) is a character that can follow a use of \(A \) \((S \to \gamma A \beta \to^* \gamma A a \gamma' \to \gamma \epsilon a \gamma') \).
- Needed a couple of utility functions
 - \(First(\alpha) = \) set of first characters that can be derived from \(\alpha \). (Plus, include \(\epsilon \) if \(\alpha \to^* \epsilon \) is possible.)
 - \(Follow(\alpha) \) is the set of characters that can follow just after a derivation of \(\alpha \). (\(\epsilon \) is never in \(Follow(\alpha) \).)
 - If \(\alpha \to^* a \gamma \) can occur, then \(a \in First(\alpha) \).
 - If \(\alpha \to^* B a \gamma \to^* \epsilon a \gamma \) can occur (note we need \(B \to^* \epsilon \)) then \(a \in First(\alpha) \) and \(a \in Follow(B) \).
 - \(\alpha \to^* B a \gamma \to^* \epsilon a \gamma = a \gamma \)
 - If \(S \to^* \gamma B a \gamma' \) can occur, then \(a \in Follow(B) \).
 - Each grammar rule generates some number of \(First \) and \(Follow \) relationships, depending on the form of the rule.
 - \(A \to a \gamma \) generates the relation \(a \in First(A) \).
• Similarly, \(A \rightarrow \epsilon \) generates \(\epsilon \in \text{First}(A) \).

• \(A \rightarrow \epsilon \) also causes each use of \(A \) to generate a \textit{Follow} relationship:
 • \(B \rightarrow \gamma A \beta \) causes \(\text{First}(\beta) \subseteq \text{Follow}(A) \).
 • If \(\gamma \rightarrow^* \epsilon \) is possible (e.g. \(B \rightarrow A \beta \) or \(B \rightarrow C A \beta \) where \(C \rightarrow \epsilon \)), then \(A \rightarrow \epsilon \) also causes \(\text{First}(\beta) \subseteq \text{First}(B) \).

• Whether or not \(A \rightarrow^* \epsilon \),
 • \(B \rightarrow \gamma A \) causes \(\text{Follow}(B) \subseteq \text{Follow}(A) \)

\textbf{Example: List expressions}

• Here's the syntax for the list expressions we've seen before:
 1. \(E \rightarrow \text{id} \) // Expression
 2. \(E \rightarrow (E Es) \) // Parenthesized list of \(\geq \) one E's
 3. \(Es \rightarrow , E Es \) // , E followed by more E's
 4. \(Es \rightarrow \epsilon \) // empty ends list of E's

• And now the inferences from the rules:
 Rule 1:
 • \(\text{id} \in \text{First}(E) \)

 Rule 2:
 • \((\in \text{First}(E) \)
 • \() \in \text{Follow}(Es) \)
 • \(\text{First}(Es) - \epsilon \subseteq \text{Follow}(E) \)
 • if \(Es \rightarrow^* \epsilon \) then \() \in \text{Follow}(E) \)

 Rule 3:
 • \(, \in \text{First}(Es) \)
 • \(\text{First}(Es) - \{\epsilon\} \subseteq \text{Follow}(E) \)
 • if \(Es \rightarrow^* \epsilon \) then \(\text{Follow}(Es) \subseteq \text{Follow}(E) \)

 Rule 4:
 • \(\epsilon \in \text{First}(Es) \)
 • \(Es \rightarrow^* \epsilon \) is true

• We can calculate the \textit{First} and \textit{Follow} sets by repeatedly passing through the inferences above. Below, the first pass through the inferences is shown i

 , stopping when no new information is created during a pass.
 1. Rule 1: \(\text{id} \in \text{First}(E) \)
 2. Rule 2: \((\in \text{First}(E) \)
 3. Rule 2: \() \in \text{Follow}(Es) \)
 4. Rule 3: \(, \in \text{First}(Es) \)
 5. Rule 4: \(\epsilon \in \text{First}(Es) \)
6. From $\epsilon \in \textit{First}(Es)$: $Es \rightarrow^* \epsilon$ is true

7. Rule 2 (and 3): $\textit{First}(Es) - \epsilon = \{ , \} \subseteq \textit{Follow}(E)$

8. Rule 2: $Es \rightarrow^* \epsilon$, so $\) \in \textit{Follow}(E)$

9. Rule 3: $Es \rightarrow^* \epsilon$, so $\textit{Follow}(Es) = \{ \} \subseteq \textit{Follow}(E)$

Below, the numbers say during what pass we added the information to the entry:

<table>
<thead>
<tr>
<th>\textit{First}</th>
<th>\textit{Follow}</th>
<th>$\rightarrow^* \epsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Es</td>
<td>E</td>
</tr>
<tr>
<td>1: id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1: (</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:)</td>
<td>1:)</td>
<td></td>
</tr>
<tr>
<td>1: ,</td>
<td>2: ,</td>
<td></td>
</tr>
<tr>
<td>1: ϵ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

And here's the prediction table for the parser:

<table>
<thead>
<tr>
<th>Nonterminal</th>
<th>id</th>
<th>(</th>
<th>)</th>
<th>,</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$E \rightarrow \text{id}$</td>
<td>$E \rightarrow (E Es)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Es</td>
<td></td>
<td>$Es \rightarrow \epsilon$</td>
<td>$Es \rightarrow , E Es$</td>
<td></td>
</tr>
</tbody>
</table>

Example: Problems with $E \rightarrow E + E | E * E | \text{id}$

- $\textit{First}, E + E | E * E | \text{id}$ is not LL(1)

- After factoring out the initial E and adding a unique start symbol, we get
 - $S \rightarrow E \$, $E \rightarrow E T$, $T \rightarrow + E T | * E T | \epsilon$, $E \rightarrow \text{id}$

- Below, we analyze the rules for $\textit{First}, \textit{Follow}, \rightarrow^* \epsilon$ properties. The inferences are named (a), (b), … for reference further along.

Inferences

- $S \rightarrow E \$
 - (a) $\$ \in \textit{Follow}(E)$
 - (b) $\textit{First}(E) \subseteq \textit{First}(S)$

- $E \rightarrow \text{id}$
 - (c) $\text{id} \in \textit{First}(E)$

- $E \rightarrow E T$
 - (useless) $\textit{First}(E) \subseteq \textit{First}(E)$
 - (d) $\textit{First}(T) \subseteq \textit{Follow}(E)$
Follow(E) ⊆ Follow(T)

T → + ET

Follow(T) ⊆ Follow(T)

T → * ET

Follow(T) ⊆ Follow(T)

T → ε

ε ∈ First(T)

First(E) ⊆ First(S) {id} ⊆ First(S)

First(T) - ε ⊆ Follow(E) {+, *} ⊆ Follow(E) [along with {\$}]

Since T →* ε, we apply (g) Follow(T) ⊆ Follow(E) but this doesn't change Follow(E)

A third pass does not change any of the sets, so we're done.

Summary

First(S) = {id} Follow(S) = {\$}

First(E) = {id} Follow(E) = {+, *, \$}

First(T) = {+, *, ε} Follow(T) = {\$} True: T →* ε

Problems

The grammar is not LL: Since id ∈ First(E), we can't distinguish between E → ET and E → id.

Having the rules T → + ET and T → * ET makes + and * of equal precedence.