LL Parsing
CS 440: Programming Languages and Translators, Spring 2019
Lecture 12, Mon 3/4

Notation
• \(a, b, \ldots \in T \) (a and b stand for members of T; a, b, … are members of T) Was \(\Sigma \) for regular expressions.
• \(x, y, \ldots \in T^* \)
• \(A, B, \ldots \in V \)
• \(W, X, \ldots \in T \cup V \)
• \(\alpha, \beta, \ldots \in (T \cup V)^* \) Sentential form

LL(k) Parser
Basic idea of LL(k) parsing
• Top-down parser with \(\leq k \) characters lookahead (\(k = 1 \) easiest case)
• Top-down: Begin with start symbol, repeatedly replace leftmost nonterminal with a rhs of one of its rules
• Represents a leftmost derivation of a terminal string

Lookahead
• Given nonterminal \(A \) to replace with rules \(A \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \)
• How do we know which rhs \(\alpha \) to use? Are there other rules to use?
• Get to look at next \(k \) characters in LL(k) parsing

Rule prediction using First sets
• Look at LL(1) parsing: Contains basic ideas needed for larger \(k \).
• Define First(\(\beta \)) \(\subseteq T \) using \(\text{First}(\beta) = \{ a \in T \mid \beta \rightarrow^* a x, \text{some } x \in T^* \} \).
 (Put off for a bit how to calculate First sets.)
• To decide which \(\alpha \) to use in \(A \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \)
 • Use rule \(A \rightarrow \alpha_i \) where lookahead symbol \(b \in \text{First}(\alpha_i) \)
 • Note requirement that the First sets of \(\alpha_1, \alpha_2, \text{etc.} \) must be pairwise disjoint.
• Once you know First sets, it’s easy to define a parsing table\(^1\) where
 • Table(\(A, a \)) includes rule \(A \rightarrow \alpha \) where \(a \in \text{First}(\alpha) \)
 • The input has a parsing error if no such rule exists.
 • Note if a table entry contains > 1 rule, the parse is not deterministic and the grammar is not LL.

General LL(1) parser
• Modify grammar: Add new start symbol \(S' \) and rule \(S' \rightarrow S \) where \(S \) is the nominal start symbol.

\(^1\) Parsing table is a.k.a. Prediction table.
Symbol $ used to signal end-of-input.

Basic algorithm:
- Concatenate $ to end of input string
- Push $ onto empty stack of terminals / nonterminals [$ on top, $ on bottom]
- while top of stack ≠ $ {
 - Let a be next character of remaining input
 - if $, error: input ended early
 - Pop top of stack
 - if it's a terminal b,
 - If $, remove a from input and continue loop
 - else (it's a nonterminal A)
 - Check Table(A, a) for entry A → a or Error (i.e., empty)
 - On Error, complain and go to recovery routine
 - Otherwise push a onto stack
 }
 // (Loop has ended, top of stack was $)
 - if next input character = $
 - We parsed successfully
 - else Error: we have leftover input

Calculating First Sets
- We want to calculate First(α) for each rule A → α so that when expanding nonterminal A during a parse, we can figure out which A → ⋯ rule to use. (Rule A → α goes into table entry Table(A, b) where b ∈ First(A).)
- Turns into more general problem of First(β) for various β.
- Notation: First(A → α) is First(α) [we're just mentioning which of various possible uses of α we're interested in].
- Note: First(α) can have > 1 element
 - Consider A → B where B → a | b. First(B → a) = {a} and First(B → b) = {b}, but First(A → B) = {a, b}
- Worse, there's First(A → ε). ("ε-rule")
 - We'll put this off for a bit.
- Version 1: Definition of First(α), assuming no rules of form A′ → ε:
 - First(α) = {a ∈ T | α →* a β, some β ∈ (T | V)*}
 - Base case: First(A → a β) = {a}
 - Recursive case: First(A → B β) ⊇ First(B → β) for all rules B → β (rules with B on lhs).
- We have a couple of worries if ε-rules (A → ε) are allowed.
- The easier one to deal with is First(A β) where A → ε.
 - In this case, define First(A β) ⊇ First(A) − {ε} ∪ First(β)
- The trickier one is First(A) where A → ε
 - In this case, we need to know what kinds of symbols can follow any use of A.
 - E.g., say we have A → ε, and B → αA a β.
• When parsing, if the stack is $A \gamma$ (A at top), and the next input symbol is a, then applying the rule $A \rightarrow \varepsilon$ is reasonable. (Presumably, we're in the middle of following the $B \rightarrow \alpha A a \beta$ rule.)

• **Version 2** : Definition of $\text{First}(\alpha)$ where grammar can include ε-rules (rules of the form $A' \rightarrow \varepsilon$).

 • **Note**: The definition of First will be mutually recursive with the definition of Follow.

 • **Define** $\text{First}(\alpha) = \{ \alpha \rightarrow^* a \beta, \text{some } \beta \in (T \cup V)^* \} \cup \{ \varepsilon \text{ if } \alpha \rightarrow^* \varepsilon \text{ is possible} \}$

 • **Base case**: $\text{First}(A \rightarrow a \beta) = \{ a \}$. (This is the same as in version 1.)

 • **Recursive case 1**: $\text{First}(A \rightarrow B \delta) \supseteq \text{First}(B \rightarrow \beta) - \{ \varepsilon \}$ for all rules $B \rightarrow \beta$ (with B on lhs). (This is like version 1 except for dropping ε from $\text{First}(B \rightarrow \beta)$.)

 • **Recursive case 2**: For $A \rightarrow B \delta$ where $A \rightarrow B \delta$ is a rule and $B \rightarrow^* \varepsilon$ can occur, $\text{First}(A \rightarrow B \delta)$ also includes $\text{Follow}(B)$. This case is new for version 2: If $A \rightarrow B \delta \rightarrow^* \varepsilon \delta = \delta$, then if we want to apply the rule $A \rightarrow B \delta$, if the next character is a first character for δ, we can continue (and eventually turn $B \delta$ into δ).

 • **Define** $\text{Follow}(A)$ to be the set of terminal symbols that can directly follow A in a derivation (not necessarily a leftmost derivation).

 • $\text{Follow}(A) = \{ a \in T | S' \rightarrow^* \alpha A \beta \rightarrow^* \alpha A a \beta' \text{ for some } \alpha, \beta, \beta' \in (T \cup V)^* \}$

 • **Base case**: For each rule $B \rightarrow \alpha A a \beta$ (some B etc.) we get $a \in \text{Follow}(A)$.

 • **Recursive case 1**: For each rule $B \rightarrow \alpha A \beta$, we get $\text{First} (\beta) - \{ \varepsilon \} \subseteq \text{Follow} (A)$ [fixed 3/5]

 • **Recursive case 2**: For the same $B \rightarrow \alpha A \beta$, if $\beta \rightarrow^* \varepsilon$ is possible (i.e., if $\varepsilon \in \text{First}(\beta)$), then $\text{Follow}(B) \subseteq \text{Follow}(A)$ [fixed 3/5]

Parsing table when ε-rules exist

• There are now two kinds of entries in the parsing table

 • $\text{Table}(A, a)$ includes rule $A \rightarrow \alpha$ when $a \in \text{First}(\alpha)$ and α is not ε.

 • $\text{Table}(A, a)$ includes rule $A \rightarrow \varepsilon$ when $a \in \text{Follow}(A)$.

• Again, if any table entry contains >1 rule, the grammar is not $LL(1)$.

• And if a table entry is empty, then that nonterminal / terminal character causes a parse error

Sample Calculation (from the textbook)

Grammar

• $S \rightarrow a A B b$

• $A \rightarrow c | \varepsilon$

• $B \rightarrow d | \varepsilon$

First sets

• First $S \supseteq$ First $a A B b = \{ a \}$

• First $A \supseteq$ First $c \cup$ First $\varepsilon = \{ c, \varepsilon \}$

• First $B \supseteq$ First$(d) \cup$ First$(\varepsilon) = \{ d, \varepsilon \}$
• These are the only calculations to do, so the \supseteq above can be turned into equality.

Follow sets

• Follow(B): From $S \rightarrow a\ A\ B\ b$, the $B\ b$ part tells us
 • Follow(B) $\supseteq \{b\}$

• Follow(A): $S \rightarrow a\ A\ B\ b$, the $A\ B$ tells us
 • Follow(A) \supseteq First($B\ b$) \cup First(b) = $\{d,\ e\} \cup \{b\} = \{b,\ d\}$

• These are the only calculations to do, so the \supseteq above can be turned into equality

Table elements

nonterminal S, terminal $a : S \rightarrow a\ A\ B\ b$ (terminal $b,\ c,\ d$ are errors)
nonterminal A, terminal $c : A \rightarrow c$
nonterminal A, b or $d : A \rightarrow e$

So A with a is an error
nonterminal B, terminal $d : B \rightarrow d$
nonterminal B, terminal $b : B \rightarrow e$

B with $a,\ c$: error

Parsing table for grammar above

<table>
<thead>
<tr>
<th>NT</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$S \rightarrow a\ A\ B\ b$</td>
<td>$error$</td>
<td>$error$</td>
<td>$error$</td>
</tr>
<tr>
<td>A</td>
<td>$error$</td>
<td>$A \rightarrow e$</td>
<td>$A \rightarrow c$</td>
<td>$A \rightarrow e$</td>
</tr>
<tr>
<td>B</td>
<td>$error$</td>
<td>$B \rightarrow e$</td>
<td>$error$</td>
<td>$B \rightarrow d$</td>
</tr>
</tbody>
</table>