Final Project: Unifier

CS 440: Programming Languages and Translators
Due Wed May 1, 11:59 pm

Unifier
The final project is a program to find the most general unifier for a set of textual equations. (See Lecture 18 for a discussion of unification.) Your (Haskell) program should define a function solve :: String -> String that (1) Takes a string representation of a unification problem, (2) Parses it using a recursive descent parser, (3) Uses the unification algorithm to solve the problem, and (4) Returns a pretty-printed version of the solution (or "FAIL" if there is no solution).

• The syntax for a unification problem is:

 Problem → { Equation EquationTail }
 Equation → Term = Term
 EquationTail → , Equation EquationTail | ε

 An example: { f(X, b) = f(Y, Z), g(c) = Y }

• The syntax for Term should be the one from Homework 6 with some small changes:

 • A Variable includes only upper-case letters. As a regular expression, a Variable is [A-Z][A-Z0-9_]*
 • Similarly, an Identifier includes only lower-case letters: [a-z][a-z0-9_]*
 • We'll also include nonnegative integer constants: Constant has the form [0-9][0-9]*

• The datatype for Term should include CONST Int (in addition to Var, ID, and FCN).

• The unification algorithm is the one discussed in Lecture 18.

• To pretty-print the solution, follow the syntax above for Problem, with the left-hand Term of each equation restricted to be a variable. For example, a solution to the problem { f(X, b) = f(Y, Z), g(c) = Y } might be "{X = g(c), Z = b, Y = g(c)}". (You're encouraged to add a space or two in places to make the solution more readable.)

Collaboration
This is a one-person project. (Sorry, no teams.) On the other hand, if there's code you can use from a homework assignment, you can use it, even if you did the homework assignment as part of a team. This includes the parser from Homework 5 and the substitution functions from Homework 6. (The unification algorithm is basically the one-person part of the assignment.)

With the discussion in Lecture 18 and the code in Homeworks 5 and 6, this should be enough information for you to do the whole project, but we'll discuss it more in class.