Chapter 3
Arithmetic for Computers

Arithmetic for Computers
- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition
- Example: 7 + 6
 - (0) (0) (1) (1) (0) (Carries)
 - 0 0 1 1 0
 - Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0
Integer Subtraction

- Add negation of second operand
- Example: $7 - 6 = 7 + (-6)$

  ```
  +7:  0000 0000 ... 0000 0111
  -6:  1111 1111 ... 1111 1010
  +1:  0000 0000 ... 0000 0001
  ```
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS `addu, addui, subu` instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS `add, addi, sub` instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - `mfc0` (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - C.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video
Multiplication

Start with long-multiplication approach

- Length of product is the sum of operand lengths

Optimized Multiplier

- Perform steps in parallel: add/shift
- One cycle per partial-product addition
 - That’s ok, if frequency of multiplications is low
Faster Multiplier
- Uses multiple adders
- Cost/performance tradeoff
- Can be pipelined
- Several multiplication performed in parallel

MIPS Multiplication
- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - `mult rs, rt / multu rs, rt`
 - 64-bit product in HI/LO
 - `mfhi rd / mflo rd`
 - Move from HI/LO to rd
 - `mul rd, rs, rt`
 - Least-significant 32 bits of product -> rd

Division
- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

n-bit operands yield n-bit quotient and remainder.
Division Hardware
- Initially dividend in left half
- Requires a flowchart showing the division process
- Terminal nodes labeled appropriately

Optimized Divider
- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
- Same hardware can be used for both

Faster Division
- Can’t use parallel hardware as in multiplier
- Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division) generate multiple quotient bits per step
- Still require multiple steps
MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - `div rs, rt` / `divu rs, rt`
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use `mfhi, mflo` to access result

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
 - -2.34×10^{56}
 - $+0.002 \times 10^{-4}$
 - $+987.02 \times 10^{9}$
- In binary
 - $\pm1.xxxxxxx \times 2^{yyyy}$
- Types `float` and `double` in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)
IEEE Floating-Point Format

- S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
- Normalize significand: $1.0 \leq |\text{significand}| < 2.0$
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the “1.” restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is signed
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 ⇒ actual exponent = 1 – 127 = −126
 - Fraction: 000…00 ⇒ significand = 1.0
 $\pm 1.0 \times 2^{-126} = \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 ⇒ actual exponent = 254 – 127 = +127
 - Fraction: 111…11 ⇒ significand = 2.0
 $\pm 2.0 \times 2^{127} = \pm 3.4 \times 10^{38}$

Double-Precision Range

- Exponents 0000…00 and 1111…11 reserved
- Smallest value
 - Exponent: 00000000001
 ⇒ actual exponent = 1 – 1023 = −1022
 - Fraction: 000…00 ⇒ significand = 1.0
 $\pm 1.0 \times 2^{-1022} = \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110
 ⇒ actual exponent = 2046 – 1023 = +1023
 - Fraction: 111…11 ⇒ significand = 2.0
 $\pm 2.0 \times 2^{1023} = \pm 1.8 \times 10^{308}$
Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2^{-23}
 - Equivalent to $23 \times \log_{10}2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx 2^{-52}
 - Equivalent to $52 \times \log_{10}2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

- Represent -0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - $S = 1$
 - Fraction $= 1000...00_2$
 - Exponent $= -1 + \text{Bias}$
 - Single: $-1 + 127 = 126 = 01111110_2$
 - Double: $-1 + 1023 = 1022 = 01111111110_2$
- Single: $1011111101000...00$
- Double: $1011111111101000...00$

Floating-Point Example

- What number is represented by the single-precision float
 $01000000101000...00$
 - $S = 1$
 - Fraction $= 01000...00_2$
 - Exponent $= 10000001_2 = 129$
 - $x = (-1)^1 \times (1 + 01_2) \times 2^{(129 - 127)}$
 - $= (-1) \times 1.25 \times 2^2$
 - $= -5.0$
Denormal Numbers

- Exponent = 000...0 ⇒ hidden bit is 0
 \[x = (-1)^0 \times (0 + \text{Fraction}) \times 2^{-\text{Bias}} \]
- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0
 \[x = (-1)^0 \times (0 + 0) \times 2^{-\text{Bias}} = \pm 0.0 \]

Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 - 9.999 \times 10^1 + 1.610 \times 10^{-1}
- 1. Align decimal points
 - Shift number with smaller exponent
 - 9.999 \times 10^1 + 0.016 \times 10^1
- 2. Add significands
 - 9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1
- 3. Normalize result & check for over/underflow
 - 1.0015 \times 10^2
- 4. Round and renormalize if necessary
 - 1.002 \times 10^2
Floating-Point Addition

- Now consider a 4-digit binary example
 - \(1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}\) (0.5 + -0.4375)
- 1. Align binary points
 - Shift number with smaller exponent
 - \(1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}\)
- 2. Add significands
 - \(1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}\)
- 3. Normalize result & check for over/underflow
 - \(1.000_2 \times 2^{-4}\), with no over/underflow
- 4. Round and renormalize if necessary
 - \(1.000_2 \times 2^{-4}\) (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined
Floating-Point Multiplication

Consider a 4-digit decimal example
- \(1.110 \times 10^{10} \times 9.200 \times 10^{-5}\)

1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = \(10 + 5 = 5\)

2. Multiply significands
 - \(1.110 \times 9.200 = 10.212 \times 10^{5}\)

3. Normalize result & check for over/underflow
 - \(1.0212 \times 10^{6}\)

4. Round and renormalize if necessary
 - \(1.021 \times 10^{6}\)

5. Determine sign of result from signs of operands
 - +1.021 \times 10^{6}

Floating-Point Multiplication

Now consider a 4-digit binary example
- \(1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)\)

1. Add exponents
 - Unbiased: \(-1 + -2 = -3\)
 - Biased: \((-1 + 127) \times (-2 + 127) = -3 + 254 - 127 = -3 + 127\)

2. Multiply significands
 - \(1.000_2 \times 1.110_2 = 1.1100_2 \times 2^{-3}\)

3. Normalize result & check for over/underflow
 - \(1.110_2 \times 2^{-3}\) (no change) with no over/underflow

4. Round and renormalize if necessary
 - \(1.110_2 \times 2^{-3}\) (no change)

5. Determine sign: +ve \times -ve \Rightarrow -ve
 - \(-1.110_2 \times 2^{-3} = -0.21875\)

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined
FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: $f0, $f1,...,$f31
 - Paired for double-precision: $f0/$f1, $f2/$f3,...
 - Release 2 of MIPS ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwcl, ldcl, swcl, sdcl
 - eg. ldcl $f8, 32(sp)
- FP load and store instructions
 - Fp instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwcl, ldcl, swcl, sdcl
 - eg. ldcl $f8, 32(sp)
- FP load and store instructions
 - Fp instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - eg. add.s $f0, $f1, $f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - eg. mul.d $f4, $f4, $f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, lt, le, ...)
 - Sets or clears FP condition-code bit
 - eg. c.lt.s $f3, $f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - eg. bc1t TargetLabel

FP Example: °F to °C

- C code:
  ```
  float f2c (float fahr) {
    return ((5.0/9.0)*(fahr - 32.0));
  }
  ```
 - fahr in $f12, result in $f0, literals in global memory space
- Compiled MIPS code:
  ```
  f2c: lwcl $f16, const5($gp)
lwc2 $f18, const9($gp)
div.s $f16, $f16, $f18
  lwcl $f18, const32($gp)
subs $f18, $f12, $f18
  mul.s $f0, $f16, $f18
  jr $ra
  ```
FP Example: Array Multiplication

- \(X = X + Y \times Z \)
- All 32 x 32 matrices, 64-bit double-precision elements
- C code:

```c
void mm (double x[][], double y[][], double z[][]) {
    int i, j, k;
    for (i = 0; i < 32; i = i + 1)
        for (j = 0; j < 32; j = j + 1)
            for (k = 0; k < 32; k = k + 1)
                x[i][j] = x[i][j] + y[i][k] * z[k][j];
}
```
- Addresses of \(x, y, z \) in \$a0, \$a1, \$a2, and \(i, j, k \) in \$s0, \$s1, \$s2

FP Example: Array Multiplication

- MIPS code:

```mips
li $t1, 32       # $t1 = 32 (row size/loop end)
li $s0, 0        # i = 0; initialize 1st for loop
L1: li $s1, 0        # j = 0; restart 2nd for loop
L2: li $s2, 0        # k = 0; restart 3rd for loop
sll $t2, $s0, 5   # $t2 = i * 32 (size of row of x)
add $t2, $t2, $s1 # $t2 = i * size(row) + j
sll $t2, $t2, 3   # $t2 = byte offset of [i][j]
add $t2, $a0, $t2 # $t2 = byte address of [i][j]
l.d $f4, 0($t2)  # $f4 = 8 bytes of x[i][j]
L3: sll $t0, $s2, 5       # $t0 = i * 32 (size of row of y)
add $t0, $t0, $s1    # $t0 = i * size(row) + k
sll $t0, $t0, 3      # $t0 = byte offset of [i][k]
add $t0, $a1, $t0    # $t0 = byte address of y[i][k]
l.d $f16, 0($t0) # $f16 = 8 bytes of y[i][k]
mul.d $f16, $f18, $f16 # $f16 = x[i][j] * z[k][j]
add $f16, $f16, $f18  # $f16 = x[i][j] * z[k][j] + $f16
addiu $s2, $s2, 1      # $s2 = k + 1
bne $s2, $t1, L3     # if (k != 32) go to L3
s.d $f4, 0($t2) # x[i][j] = $f4
addiu $s1, $s1, 1      # $s1 = j + 1
bne $s1, $t1, L2     # if (j != 32) go to L2
addiu $s0, $s0, 1      # $s0 = i + 1
bne $s0, $t1, L1     # if (i != 32) go to L1
```

FP Example: Array Multiplication

- MIPS code:

```mips
li $t1, 32       # $t1 = 32 (row size/loop end)
li $s0, 0        # i = 0; initialize 1st for loop
L1: li $s1, 0        # j = 0; restart 2nd for loop
L2: li $s2, 0        # k = 0; restart 3rd for loop
sll $t2, $s0, 5   # $t2 = i * 32 (size of row of x)
add $t2, $t2, $s1 # $t2 = i * size(row) + j
sll $t2, $t2, 3   # $t2 = byte offset of [i][j]
add $t2, $a0, $t2 # $t2 = byte address of [i][j]
l.d $f4, 0($t2)  # $f4 = 8 bytes of x[i][j]
L3: sll $t0, $s2, 5       # $t0 = i * 32 (size of row of y)
add $t0, $t0, $s1    # $t0 = i * size(row) + k
sll $t0, $t0, 3      # $t0 = byte offset of [i][k]
add $t0, $a1, $t0    # $t0 = byte address of y[i][k]
l.d $f16, 0($t0) # $f16 = 8 bytes of y[i][k]
mul.d $f16, $f18, $f16 # $f16 = x[i][j] * z[k][j]
add $f16, $f16, $f18  # $f16 = x[i][j] * z[k][j] + $f16
addiu $s2, $s2, 1      # $s2 = k + 1
bne $s2, $t1, L3     # if (k != 32) go to L3
s.d $f4, 0($t2) # x[i][j] = $f4
addiu $s1, $s1, 1      # $s1 = j + 1
bne $s1, $t1, L2     # if (j != 32) go to L2
addiu $s0, $s0, 1      # $s0 = i + 1
bne $s0, $t1, L1     # if (i != 32) go to L1
```
Accurate Arithmetic
- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Subword Parallelism
- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

x86 FP Architecture
- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance
x86 FP Instructions

<table>
<thead>
<tr>
<th>Data transfer</th>
<th>Arithmetic</th>
<th>Compare</th>
<th>Transcendental</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLD mem(ST(i))</td>
<td>FADD mem(ST(i))</td>
<td>FCOM</td>
<td>FFATAN</td>
</tr>
<tr>
<td>FST: mem(ST(i))</td>
<td>FSUB mem(ST(i))</td>
<td>FUCOM</td>
<td>F2XM1</td>
</tr>
<tr>
<td>FLD1</td>
<td>FMUL mem(ST(i))</td>
<td>FX87N AX:mem</td>
<td>FCOS</td>
</tr>
<tr>
<td>FLDZ</td>
<td>FDiv mem(ST(i))</td>
<td>FST(AX):mem</td>
<td>FPTAN</td>
</tr>
<tr>
<td>FABS</td>
<td>FNANCE</td>
<td>FPREM</td>
<td>FPNM</td>
</tr>
<tr>
<td>FRNDINT</td>
<td>FLYAX</td>
<td>FYL2X</td>
<td>FPUINIT</td>
</tr>
</tbody>
</table>

- Optional variations
 - integer operand
 - P: pop operand from stack
 - R: reverse operand order
 - But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
- Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
- Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Matrix Multiply

- Unoptimized code:

```c
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3.  for (int i = 0; i < n; ++i)
4.    for (int j = 0; j < n; ++j)
5.    {
6.     double cij = C[i+j*n]; /* cij = C[i][j] */
7.     for (int k = 0; k < n; ++k)
8.       cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9.     C[i+j*n] = cij; /* C[i][j] = cij */
10.    }
11. }
```
Matrix Multiply

x86 assembly code:
1. mov (%r10),%xmm0 # Load 1 element of C into %xmm0
2. mov %rsi,%rcx # register %rcx = %rsi
3. xor %eax,%eax # register %eax = 0
4. vmovsd (%rcx),%xmm1 # Load 1 element of B into %xmm1
5. add %r9,%rcx # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1, element of A
7. add %eax,%rax # register %rax = %rax + %eax
8. cmp %eax,%edi # compare %eax to %edi
9. add %r11d,%esi # register %esi = %esi + 1
10. vaddsd %xmm1,%xmm0,%xmm0 # Add %xmm1, %xmm0
11. jg 30 <dgemm+0x30> # jump if %eax > %edi
12. vmovsd %xmm0,(%r10) # Store %xmm0 into C element

Optimized C code:
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5. for (int j = 0; j < n; j++) {
6. __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j] */
7. for (int k = 0; k < n; k++)
8. c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */
9. _mm256_mul_pd(_mm256_load_pd(A+i+k*n),
10. _mm256_broadcast_sd(B+k+j*n)));
11. _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */
12. }
13. }

Optimized x86 assembly code:
1. vmovapd (%r11),%ymm0 # Load 4 elements of C into %ymm0
2. mov %rbx,%rcx # register %rcx = %rbx
3. xor %eax,%eax # register %eax = 0
4. vwbroadcastsd (%rcx),%xmm,0 # Make 4 copies of B element
5. add %eax,%rcx # register %rcx = %rcx + %eax
6. vmulpd (%rcx),%ymm,0 # Parallel mul %ymm,4 A elements
7. add %rcx,%rcx # register %rcx = %rcx + %rcx
8. cmp %rcx,%rcx # compare %rcx to %rcx
9. add %r11d,%esi # register %esi = %esi + 1
10. vmovapd %ymm0,(%r11) # Store %ymm0 into 4 C elements
Right Shift and Division

- Left shift by \(i \) places multiplies an integer by \(2^i \)
- Right shift divides by \(2^i \)
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., \(-5 / 4\)
 - \(11110111 \gg 2 = 11111110 = -2\)
 - Rounds toward \(-\infty\)
 - c.f. \(11110111 \gg\gg 2 = 00111110 = +62\)

Associativity

- Parallel programs may interleave operations in unexpected orders
- Assumptions of associativity may fail

\[
\begin{array}{c|c}
(x+y)+z & x+(y+z) \\
\hline
x & -1.50E+38 & -1.50E+38 \\
y & 1.50E+38 & 0.00E+00 \\
z & 1.0 & 1.0 & 1.50E+38 \\
\hline & 1.00E+00 & 0.00E+00 \\
\end{array}
\]

- Need to validate parallel programs under varying degrees of parallelism

Who Cares About FP Accuracy?

- Important for scientific code
- But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!"
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, *The Pentium Chronicles*
Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent