9.5 Graph Connectivity

For an undirected graph

- **Connected vertices**: Vertices \(x \) and \(y \) are connected if there is a path from \(x \) to \(y \).
 - Having a walk from \(x \) to \(y \) is sufficient: A walk can always be truncated to a path.)
- **Connected graph**: Every pair of distinct vertices is connected. (**Disconnected graph** otherwise.)
- **Connected component**: A connected subgraph of maximal size (can't add any more vertices and keep it connected).
- **Isolated vertex**: Is not connected to any other vertex.

Vertex connectivity
- Graph \(G \) is **\(k \)-vertex-connected**
 - iff (\(V \) set of \(k-1 \) vertices, removing [and their edges] them leaves \(G \) connected)
 - iff (\(\exists \) set of \(k-1 \) vertices whose removal disconnects \(G \))
 - (If \(\exists \) \(k-1 \) vertices whose removal disconnects \(G \), then \(G \) is not **\(k \)-vertex-connected**)
- **Vertex connectivity**: \(\kappa(G) \)
 - = largest \(k \) such that \(G \) is \(k \)-vertex-connected
 - = minimum number of vertices whose removal guarantees disconnection of the graph

Minimum degree of \(G \): \(\delta(G) \) = the min of all the vertex degrees of \(G \)
- Note: \(\kappa(G) \leq \delta(G) \)

Edge connectivity: \(k \)-edge-connectivity and **edge connectivity** \(\lambda(G) \) are similar to vertex connectivity (except when you remove an edge, you leave the vertices behind). \(\lambda(G) \leq \delta(G) \).

Questions

1. Draw a graph with vertices \(V = \{ 1, 2, \ldots, 10 \} \), edges \(E = \{ \{ 1, 2 \}, \{ 2, 3 \}, \{ 5, 7 \}, \{ 6, 8 \}, \{ 6, 9 \}, \{ 6, 10 \}, \{ 9, 10 \} \} \). What are its connected components? Any isolated vertices?

2. Is a cyclic graph 1-vertex-connected? 2-vertex-connected? What is \(\delta(a \) cyclic graph)? \(\kappa(a \) cyclic graph)?
Illinois Institute of Technology

Activity 22

3. What are vertex and edge connectivity of graph to right? (Assume there’s a vertex at each intersection.)

4. (Ex 9.5.2) What are vertex and edge connectivity of graph to right?

9.6 Graph Coloring

- A graph coloring is a map of vertices to values called colors. If #colors = k, it’s a \textit{k-coloring}
 - Colors can be any values, not just Red, Blue, etc.
 - In a valid graph coloring, the endpoints of each edge have different colors.
 - $X(G) =$ the chromatic number of graph $G =$ the smallest k such that there is a valid k-coloring of G.

Questions

5. How many colors does K_n = the clique (fully connected graph) with n vertices require? The \textbf{clique number} $\omega(G)$ is the largest n such that K_n is a subgraph of G. What is the relationship between $\omega(G)$ and $X(G)$?
6. How many colors does \(C_3 \) (the cycle with 3 vertices) require? \(C_4 \)? \(C_5 \)? Generalize this observation: \(X(C_n) = ?? \).

7. How many colors does the bipartite graph \(K_{m,n} \) need?

8. Give valid colorings for these graphs:

9. One example of graph coloring is with scheduling conflicts: You have a vertex for each event and an edge between each pair of vertices that interfere with each other. What does \(X(G) \) represent?
Greedy Coloring Algorithm
- Determining $X(G)$ is hard in general. The greedy coloring algorithm uses a sequence of locally-optimal decisions to color a graph. Can do a pretty reasonable job.
- For graph with n vertices, let $\{1, 2, \ldots, n\}$ be the set of colors (we may not use them all).
- Order the vertices in any arbitrary order. For each vertex v in order:
 - Take the set of colors assigned to the neighbors of v, find the lowest color not in the set, and assign it to v.
 - (E.g., if the neighbors’ colors are $\{1, 3\}$, then v gets color 2. If no neighbors are colored yet, v gets color 1.)

Questions
9. Color this graph using the greedy coloring algorithm

10. Number the vertices of this graph left-to-right, top-to-bottom and apply the greedy coloring algorithm; what do you get?

11. Number the vertices of this graph clockwise starting at the top (outer vertices first, then inner vertices) and apply the greedy coloring algorithm; what do you get?

