
1 of 20 

Problem Solving Basics and Computer Programming 
By Ron Pasko and Matt Bauer 

 

Solving Problems with Solutions Requiring Sequential Processing 
 

Overview 

Computer programming is not just programming language syntax and using a development 
environment. At its core, computer programming is solving problems.  We will now turn our attention to 
a structured methodology you can use to construct solutions for a given problem. We will trace the 
following sample problem through each of the steps of our problem solving methodology: 
 
Given the 3 dimensions of a box (length, width, and height), multiply them together to determine the 
volume. 
 
Decomposition 

The first step to solving any problem is to decompose the problem description.  A good way to do this 
would be to perform syntactic analysis on the description.  We can do this in four steps. 
 
1. Identify all of the nouns in the sentence. 
 
Given the 3 dimensions of a box (length, width, and height), calculate the volume. 
 
The nouns in the problem specification identify descriptions of information that you will need to either 
identify or keep track of.  Once these nouns are identified, they should be grouped into one of two 
categories: 
 
Input (items I either already know or am getting from the user) 
Output (items that I find out by manipulating the input) 
 
Input       Output     
Dimensions   Volume We need to calculate this. 

Length  We are told these, 
Width  dimensions are “given”. 
Height  
Box  
Them  
 
2. Eliminate redundant or irrelevant information. 
 
There may be some information in the problem description that made it into our input/output chart that 
we really don’t need to solve the problem (that is, not all of the nouns may be relevant).  Also, there may 
be some nouns that appear redundant (information we already have in our table, just in a different form). 
 
Input       Output     
Dimensions  We don’t need the noun dimensions Volume 

Length  here because we already have length 
Width  width, and height. 
Height  
Box  We do not need the box to calculate volume if we know the dimensions, not needed. 

Them  Another word for dimensions, not needed.   



2 of 20 

 
You may ask why we eliminated “dimensions” instead of “length,” “width,” and “height.”  The rule of 
thumb for eliminating redundant information is to always eliminate the most general item.  In other 
words, you wish to keep the most specific nouns possible in your table.  When in doubt, try to piece it 
together logically:  when figuring out the volume, which nouns would be the most useful to you? 
 
3. Identify all of the verbs in the sentence. 
 
Given the 3 dimensions of a box (length, width, and height), calculate the volume.   
The verbs in the problem specification identify what actions your program will need to take.  These 
actions, known as processing are the steps between your input and your output.  
 
Input    Processing    Output     
Length    calculate    volume 
Width 
Height 
 
4. Link you inputs, processes, and output 
 
This step is as simple as drawing lines between the relevant information in your chart.  Your lines show 
what inputs need to be processed to get the desired output.  In our example, we need to take our length, 
width, and height and multiply them, to give us our desired volume. 
 
Input    Processing    Output     
Length         
 
Width    Calculate    Volume 
 
Height 
 
5. Use external knowledge to complete your solution 
 
In the solution, we have used a general verb calculate.  It is at this point at which we are required to 
determine what “calculate” means.  In some arbitrary problem, calculate could refer to applying some 
mathematical formula or other transformation to our input data in order to reach the desired output.  You 
must oftentimes refer to external knowledge (such as your background in mathematics) to “fill in the 
blanks.”  In this case, our elementary geometry tells us that the volume of a box can be found using the 
following formula: 
 
Volume = length * width * height 
 
Simply apply this “new” knowledge to our previous sketch: 
 
Input    Processing    Output     
Length         
 
Width    Multiply    Volume 
 
Height 
 

 



3 of 20 

Flowcharting 
The second step in solving our problem involves the use of flowcharting.  Flowcharting is a graphical 
way of depicting a problem in terms of its inputs, outputs, and processes.  Though the shapes we will use 
in our flowcharts will be expanded as we cover more topics, the basic elements are as follows: 

 
              Rounded Rectangle (start/end of a program) 
 

     Parallelogram (program input and output)  
 

  
 Rectangle (processing) 
 

 
The flowchart should proceed directly from the chart you developed in step one.  First, lay out your 
starting node, as every one of your programs will have these. 
 

 
Start

 
 
Next, begin adding your program elements sequentially, in the order that your problem description 
indicated.  Connect the elements of your flowchart by uni-directional arrows that indicate the flow of 
your program. 
 
According to our sample problem, we need to take in three items as input (length, width, and height). 
And after we have the user’s input, need to process it.  In this case, we must multiply the dimensions 
together. Finally, since our processing is complete, we should display the output for the user. 
 

Start

Get  User Input

(length, width,

height )

Mult iply  length,

width, height

Display Result

(volume)

End

 



4 of 20 

Pseudocode 
The final step in analyzing our problem is to step from our flowchart to pseudocode.  Pseudocode 
involves writing down all of the major steps you will use in the program as depicted in your flowchart.  
This is similar to writing final statements in your programming language without needing to worry about 
program syntax, but retaining the flexibility of program design. 
 
Like flowcharting, there are many elements to pseudocode design, only the most rudimentary are 
described here. 
Get  used to get information from the user 
Display used to display information for the user 
Compute perform an arithmetic operation 
+ - * / = ()  Standard arithmetic operators 
Store   Store a piece of information for later use 
 
It is important to note that each time you compute a value that you will need later, it is necessary to 
store it even if you will need it right away.   
 
Here is the pseudocode for our example.  It may be helpful to write out your pseudocode next to your 
flowchart. 

Start

Get  User Input

(length, width,

height )

Mult iply  length,

width, height

Display Result

(volume)

End

 
 
Now, on your own, work through the three steps of decomposition, flowcharting, and pseudocode for 
the following example. 
 
You have a store that sells lemons and oranges.  Oranges are $.30 each and lemons are $.15 each.  Your 
program should get from the user the numbers of oranges and lemons he/she wants and outputs the total 
amount of money they owe you.  
 

 
 
 
 
Get length, width, height 
Compute volume 
 volume = length * width * height 
 Store volume 
Display volume 
 
 
 
 
 



5 of 20 

Solving Problems with Solutions Requiring Selection 
 

Overview 

Up to this point, you have solved problems with solutions which were strictly linear in nature, or 
sequential.  In other words, from the start to the end of your pseudocode (or flowchart), each line (or 
figure in the flowchart) is executed once, in order.  However, this raises one important question: What 
happens if a problem requires a solution that has alternate paths through the pseudocode depending on 
the input? How can I make a particular line (or block) of pseudocode optional?   
 
Consider the following: 
Write a program that will accept as input from the user, an answer to the following question:  Is it 
raining?  If it is raining, tell the user to get an umbrella.   
 
Currently, we have not covered anything in problem solving that can help us handle conditions like “If it 
is raining”.  Fortunately, we are not left out in the cold and the rain; there is a concept known as logical 

decision-making 

 

Decomposition - When to use logical decision-making 

It is relatively trivial to identify when to use decision-making when solving a problem.  Simply put, 
whenever you would need to make a real-world decision (such as whether or not to tell the user to bring 
an umbrella), you will need to implement a logical decision-making structure in your solution to the 
problem.  In order to identify such situations in a problem statement, you first look for cues.  From these 
cues, you can decipher the condition that the decision will be based on, and the actions that will be taken 
when this condition is true or false.   
 
These cues may be obvious:  

If it is raining, then tell user to get an umbrella 
 
Condition:  If it is raining 
Action: Tell the user to get an umbrella 
 
or they may be subtle. 

Based on the temperature, either tell the user to bring a heavy jacket (colder than 32 degrees), 
light jacket (between 32 and 50 degrees), or no jacket at all. 

 
Condition: If the temperature is less than 32 degrees 
Action: Tell user to bring a heavy jacket 
 

Condition: If the temperature is between 32 and 50 degrees 
Action: Tell user to bring a light jacket 
 
Condition: If the temperature is greater than 50 degrees 
Action: Tell user not to bring any jacket 
 
Note, for the more subtle cues, look for cases; they are usually constructs that can be reworded into if 
statements.  In the above problem statement, you have three cases: if temperature is less than 32 degrees, 
if it is between 32 and 50 degrees, and if it is above 50 degrees. 
 
It may be helpful to make a cursory sketch of all of the decisions you will need in your program before 
you go any further.  For instance, an initial sketch of our sample problem yields the following: 
 



6 of 20 

 
 
Note: our program description did not tell us what to do if the user says it is not raining, therefore, we do 
not put anything in the “No” branch of our decision. 
 
Flowcharting 
After we have made cursory sketches of all of the decisions in our program, we can immediately move 
on to flowcharting.  Drawing a flowchart for a program containing logical decisions is quite helpful, as it 
helps the programmer see the “big picture” – how all of the decisions interact and affect each other. 
 
For decision-making, we have a brand new flowcharting tool, the diamond. 
 
 
  Diamond (used for decisions).  The “question” being asked goes inside the 

diamond.  An arrow for each “answer” protrudes from the diamond.    
 
Mark each of these arrows with the appropriate “answer.”  The decision diamond in your flowchart 
should look very much like the rough sketch of your decision.  The full flowchart for our example is 
below. 

Start

Ask user if it is
raining.

Is it
raining?

Tell user to get
an umbrella.

End

Yes

No

 
 
 
Pseudocode 
The pseudocode for decision making brings us much closer to the actual implementation of this 
construct in our programming.  Most decisions will begin with the operative word if, as all decisions 
must be declarative statements.  The general structure of a decision should make sense in your mind; if it 
is raining, get an umbrella.  
 
The pseudocode for our example is below, matched with our flowchart for clarity 

Note:  Just like in our rough sketch, 
nothing of note occurs if the user 
answers “no” to “is it raining.”  



7 of 20 

 

Start

Ask user if it is
raining.

Is it
raining?

Tell user to get
an umbrella.

End

Yes

No

 
 
 

The following is the pseudocode and flowchart for a modification of our example:  If it is raining, tell 
the user to get an umbrella.  Otherwise, say it is sunny.   
 
The extension of this concept in our flowchart is trivial, we simply do something with the “no” branch.  
The only change is in our pseudocode, we have added the else, or condition not true, case.  Again, the 
pseudocode reflects English rather well: 
 
If it is raining, tell user to get an umbrella… else tell the user that it is sunny. 
 
 

Ask user if it is raining 
Get answer 
If answer is yes 

 Display “Get an umbrella” 

Ask user if it is raining 
Get answer 
If answer is yes 
 Display “Get an umbrella” 
Else  

 Display “It is sunny” 

Start

Ask user if it is
raining.

Is it
raining?

Tell user to get
an umbrella.

End

YesNoTell user it is
sunny



8 of 20 

Now, on your own, work through the three steps of decomposition, flowcharting, and pseudocode for 
the following example. 
 
Given 2 numbers, determine whether or not their sum is greater than 100.  
 
Conditions 
Most programming languages provide the following relational operators (sometimes with slightly 
different syntax) to make mathematical comparisons between data within your conditions: 
 
> greater than   < less than 
>= greater than/equal to  <= less than/equal to 
== equal to   ~= not equal to 
 
Also, the following logical operators (or similar) are usually provided:  
&& and    || or  ! not 
 
Though the relational operations (>, >=, etc.) are self-explanatory, the and,  or and not operations 
deserve a brief explanation.  Both and and or allow you to create compound conditions.  And implies 
that a condition is true only if all of its components are true.   Or implies that a condition evaluates to 
true if any of its components are true.  Not reverses the truth value of a condition. This will be discussed 
in greater depth later. 
 
All conditions in computer programming must evaluate to a Yes/No (or True/False) question.  You 
cannot, for instance, have a condition which branches like this: 
 

 
 
Computers only understand two things: 0 and 1… true and false.  Thankfully, we can rewrite all 
conditions into a string of Yes/No questions.  The above can be translated into the following: 
 

 
Notice that the “> 16” case does not appear in the conditional expression (if a number is not less than 16 
and does not equal 16, it must be greater than 16).  Because of this obvious consequence, our flowchart 
and pseudocode do not have to explicitly state the final case.  This is known as the default case.   
 
Again, a flowchart an its resulting pseudocode should be relatively easy to discern from the above 
picture. 
 

 
 
���� You cannot do that in a 

single condition in a program! 



9 of 20 

Note the default case explained by the final ELSE in the pseudocode.  If neither of the above if 
statements are true, the else is invoked by default.  Furthermore, this if/else chain is mutually exclusive.  
In other words, if one condition is true, none of the following conditions are tested.  This is clear from 
the flowchart. 
 
In the case where multiple conditions would be true, your flowchart would look much different.  
Consider the following: 
 
 

Ask user for age 
Get age 
If age < 16 
 Display “Too young to drive” 
Else if age = 16 
 Display “Better clear the road” 
Else 

 Display “You’re getting old”  

Start

Ask user's age

Age < 16?
Print: "too young

to drive"

End

Yes

No

Age ==

16?

Print: "Better clear
the road"

Yes

Print: "You're
getting old"

No



10 of 20 

Write a program that tells the user what type of movie they can attend based on their age, if they are 
with their parents, and their amount of money. 
 
Under 13:    G 
Under 13 w/ parent:   G, PG 
13 and Over and Under 16  G, PG 
Under 16 w/ parent   G, PG, R 
16 and Over    G, PG, R 
Matinee:    $7.50 
Evening:    $10.50 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
: 

  

Notice our cursory sketches are 
getting quite complicated.  In order to 
simplify things, always treat 
decisions of different types 
separately.  For instance, the amount 
of money you have does not effect 
what rating of movie you can view, 
so these decisions are treated 
separately 

If age < 13 
 If with parent 
  Print “Can go to G & PG show’ 
 Else 

  Print “Can to go G show” 
Else If age < 16 

If with parent 
  Print “Can go to G, PG & R show’ 
 Else 

  Print “Can to go PG & G show” 
Else  
 Print “Can go to G, PG, & R show” 
 

If money < 7.50 
 Print “Not enough money” 
Else If money < $10.50 
 Print “Can to go to the matinee Show” 
Else 

 Print “Can go to the evening & matinee show” 



11 of 20 

The flowchart and pseudocode are much more complicated for this example.  However, recall that we 
also have the ability to combine conditions using and and or operators.  This will be demonstrated in 
the following example. 
Write a program that will take as input the user’s bank account balance and the type and level of 
account they have.  Based on this information and the below rate table, determine the interest rate they 
are receiving. 
 
Type of account  Level  Minimum Balance  Interest Rate 
Personal   Standard  $0    1.2% 
Personal   Gold   $1000    1.9%    
Personal   Gold   $5000    2.3%    
Business   Standard  $1500    1.7% 
Business   Platinum  $10000   2.5%    
 
Initially, you will notice that there are no “cue” words in the problem statement.   However, it is clear 
that there are easily identifiable cases (just look at the table).  From these cases, we can sketch our logic: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Wow.  That is a very large sketch.  Normally, we would need a condition for every yes/no decision in 
our sketch.  However, using ANDs and ORs we can condense this a bit and translate into pseudocode. 

Ask for user account type, account level, and balance. 
Store account type, account level, and balance. 
 

If  account type is “personal” and account level is “standard” and balance >= 0 
  print “Interest Rate is 1.2%” 
Else If  account type is “personal” and account level is “gold” and balance >= 5000 
  print “Interest Rate is 2.3%” 
Else If  account type is “personal” and account level is “standard” and balance >= 1000 
  print “Interest Rate is 1.9%” 
Else If  account type is “business” and account level is “standard” and balance >= 1500 
  print “Interest Rate is 1.7%” 
Else If  account type is “business” and account level is “gold” and balance >= 10000 
  print “Interest Rate is 2.5%” 
Else 

Print “Error: the account information you entered is incorrect.  



12 of 20 

Now, on your own, work through the three steps of decomposition, flowcharting, and pseudocode for 
the following example. 
 
Write a program that will take as input the type of restaurant the user ate at, the cost of the meal, the 
number of people in his/her party, and how good the service was.  Determine the dollar amount of the 
tip: 
 
Base Tip: 
Diner: 12% 
Good Restaurant:  15% 
Fancy Restaurant: 20%  
 
Additions/Subtractions: 
Poor Service: -2% 
Good Service: +0% 
Excellent Service: +2% 
1-5 in party: +0% 
6-10 in party: +3% 
more than 10: +5% 



13 of 20 

Solving Problems with Solutions Requiring Iteration  

 

Overview 

In the previous section, you received your first glimpse of solutions to problems that do not follow a 
strict linear form.  Instead, you worked with programs that were able to branch off into one or more 
directions based on a certain decision or condition.  However, this simple execution (where the only 
deviation from our “path” is a fork in the road) is not nearly powerful enough to tackle problems that are 
more advanced than the trivial examples we have covered thus far. 
 
Consider the following: 

 
Write a small program that will display the numbers 1 - 10.   
 
Using the knowledge you currently possess, you would most likely write a program that uses individual 
lines of code that print out each number.  The pseudocode for such an answer looks like this: 
 
Display 1 
Display 2 
Display 3 
Display 4 
Display 5 
Display 6 
Display 7 
Display 8 
Display 9 
Display 10 
 
As far as code-length goes, programming such an application is indeed possible.  However, what if the 
problem statement was modified thusly: 
 
Write a small program that will display the numbers 1 - 100.   
 
If you had not guessed it before, you should know at this point that a good programmer would never 
write (nor want to write!) an application made up of 100 lines, each saying display x.  Indeed, there 
must be a way to avoid the repetition.  Like any good tool, most programming languages provide us with 
a quick and easy way to solve such problems: iteration, also known as loops. 
 
Decomposition - Identifying the need for a loop 

Before we approach what the structure of a loop looks like, it is important to present the types of 
situations that you will encounter that will lend itself well to iteration.  Stated simply, one should use a 
loop at any point where you wish to repeat a process, idea, or function.   
 
For example, see if you can determine which of the following problems might be best solved using a 
loop: 
 
A. Solving the equation 2x2 + x + 5 for all x between 5 and 10 
B. Summing inputted integers until the user enters -1 
C. The user enters in the current year and then his/her birth year.  Your program computes the users 

age.  Perform this task again if he or she wishes. 
 



14 of 20 

Trick Question!  The answer is all of them.  Let’s briefly overview each problem to see why a loop 
would be necessary. 
 
Solve the equation 2x2 + x + 5 for all x between 5 and 10 
This problem is very similar to the one we were approached with at the beginning of this section.  
Instead of writing the code which computes 2x2 + x + 5 six times (one for each of the following x= 5, 6, 
7, 8, 9, 10), we can say repeat this equation for each of the values of x.   
 
Summing inputted integers until the user enters –1. 
Without loops, this program is impossible:  In essence, (without loops) you would need to have an 
infinite number of read statements all in a row to perform this task.  Instead, we notice that as long as the 
user has not entered –1, repeat the addition and read statements.  Remember, always look for indications 
that you will be repeating something.   
 
The user enters in the current year and then his/her birth year.  Your program computes the user’s age.  
Perform this task again if he or she wishes. 
This is a less intuitive use for loops.  On the outside, it appears you are only performing one task: 
finding out the number of years the person has been living.  However, you’ll notice by reading the 
problem statement carefully that, if the user chooses, you should run the program again.  In essence, you 
will be repeating your entire program.  In this case, the “something” that you will be repeating is not a 
single statement or equation, but a large block of code. 
 
Flowcharting & Pseudocode 
Loops are quite powerful: they allow us to do a massive amount of work with a minimal amount of 
programming.  Amazingly, there is no need to learn any additional structural tools in order to think 
about loops.  You have everything you need to know already at hand.  If you are comfortable with 
logical decision-making, iteration should be easy. 
 
Let’s create a flowchart for the problem A (Solve the equation 2x2 + x + 5 for all x between 5 and 10). 
 
The first task is to step back from the problem and plan how you would like to attack it.  After you have 
devised this general plan of attack, you may proceed with the flowcharting and pseudocode. 
 
Consider very carefully how you approach such a problem on a high-school mathematics exam.  Your 
program should take x and start it at 5.  Next, substitute 5 for each value of x in the equation (2(5)2 + (5) 
+ 5) and then solve (answer = 60).  Now take the next x, which is obviously 6 (5 + 1).  Solve the 
equation for x = 6 and continue on.  The last value of x you will do this for is 10. 
 
Now that we know how to approach the problem, let’s sketch it out.  We will discuss the flowchart and 
pseudocode in detail for this first example. 



15 of 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again, there is very little structurally different about this flowchart compared to others we have studied.  
The only subtle change is that a certain execution path will lead you, not farther into the program, but to 
a previous section of code (note that after you “add 1 to x” you proceed back to the decision “x <= 10?”)   
 
In the pseudocode, we represent the lines of code we wish to repeat by indenting them (much how we 
did with if/else statements in the previous sections).  When we hit the return statement in the 
pseudocode, we only repeat those lines that have been indented (note that we do not repeat “set x = 5”).   
 
Also note that instead of an if statement, we are making a decision using the term while.  In the 
pseudocode, while indicates that we will be repeating a certain chunk of code (that which is indented) 
until the condition (in this case “x <= 10”) becomes false.  Once this condition becomes false, we skip 
all of the indented code.  In other words, when x = 11, we skip to the quit line. 
 
Oftentimes, working through loops can be rather tricky.  It may be helpful to maintain a table to help 
you makes sense of loop execution by keeping track of decisions and variable values.  For instance, we 
can trace through our entire program in the following manner: 

Set x to 5 
While x <= 10 

Compute 2x2 + x + 5 
 Store answer  

Print answer 
Increment x  
Return to While Statement 

Quit 
 

Start

set  variable x=5

compute 2x^2 +x + 5

P rint  answer

add 1 t o  x

 x  <=

10?

Yes

End

No



16 of 20 

 
We can approach the other two problems in the same manner.  Keep in mind what you want to repeat: it 
is that block of code that will be “inside” the loop. 
 
B.  Summing inputted integers until the user enters –1. 
Approach:  Read integer, check if it is –1, if so quit.  If not, add this number to the sum and repeat read.  
Remember that the symbol ‘!=’ is standard in most programming languages for “not equal to.” 

Code segment  currently executing What's going on x answer
Set x to 5 We make x = 5 5

While x <= 10
Check to make sure x <= 10.  If so, continue with 

indented loop code.  If not, skip indented loop code.

compute 2x2 + x + 5 2 * 52 + 5 + 5 = 60 60

print answer The answer is 60, print 60

increment x Make x = x + 1… x = 5 + 1… x = 6 6

return to while statement return to while statement

While x <= 10 6 < = 10, so continue

compute 2x2 + x + 5 2 * 62 + 6 + 5 = 83 83

print answer The answer is 83, print 83

increment x Make x = x + 1… x = 6 + 1… x = 7 7

return to while statement return to while statement

While x <= 10 7 < = 10, so continue

compute 2x2 + x + 5 2 * 72 + 7 + 5 = 110 110

print answer The answer is 110, print 110

increment x Make x = x + 1… x = 7 + 1… x = 8 8

return to while statement return to while statement

While x <= 10 8 < = 10, so continue

compute 2x2 + x + 5 2 * 82 + 8 + 5 = 141 141

print answer The answer is 141, print 141

increment x Make x = x + 1… x = 8 + 1… x = 9 9

return to while statement return to while statement

While x <= 10 9 < = 10, so continue

compute 2x2 + x + 5 2 * 92 + 9 + 5 = 176 176

print answer The answer is 176, print 176

increment x Make x = x + 1… x = 9 + 1… x = 10 10

return to while statement return to while statement

While x <= 10 10 < = 10, so continue

compute 2x2 + x + 5 2 * 102 + 10 + 5 = 215 215

print answer The answer is 215, print 215

increment x Make x = x + 1… x = 10 + 1… x = 11 11
return to while statement return to while statement

While x <= 10 11 <= 10  is false!  

compute 2x2 + x + 5 SKIP 

print answer SKIP 

increment x SKIP 

return to while statement SKIP 

QUIT END OF PROGRAM



17 of 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are two things worthy of discussion in the above example.  Firstly, notice how we read user input 
once outside the loop and then again inside the loop.  The reason we do this is because the decision (x != 
-1?)  wouldn’t make any sense if x did not have a value.  Before this decision can be made, you must 
input the first number (outside the loop).  If the condition is true, we can add this number to the sum and 
read the next one.  The second and subsequent times user input is read, it is done inside the loop.   
 
The second important note is the (sum = 0) statement at the beginning of the program.  It is a very good 
idea to set all of your variables in a program to some initial value before you use them; if they are not 
given values by you, they will be left with whatever “garbage” value the computer had stored in its 
place.  This is especially true of “accumulators” (variables which are used to accumulate a value, such as 
a counter or a sum).  For instance, if you remove the (sum = 0) statement from the program and the 
computer had the number –5515 stored in sum’s memory location, the sum would be meaningless (if the 
user entered the first number as 5, the updated sum would then read  
–5510 [-5515 + 5]). 
 
The trace table for this program is as follows:  Sample User data used:   5, 9, 3, 6, -1 
Code segment currently executing What's going on  x sum 

Set sum = 0 sum = 0  0 

Read x user inputs 5 5  

x != -1? 5 != -1, continue   

sum = sum + x sum = sum + 5, sum = 0 + 5  5 

Read next x user inputs 9 9  

return to while statement return to while statement   

Set sum to 0  
Read x 

While x != -1 
sum = sum + x 

Read next x 
Return to While Statement 

Quit 
 

Start

End

No

sum = sum + X

set  sum = 0

Yes

X not

-1?

read t he next  X

read X



18 of 20 

x != -1? 9 != -1, continue   

sum = sum + x sum = sum + 9, sum = 5 + 9  14 

Read next x user inputs 3 3  

return to while statement return to while statement   

x != -1? 3 != -1, continue   

sum = sum + x sum = sum + 3, sum = 14 + 3  17 

Read next x user inputs 6 6  

return to while statement return to while statement   

x != -1? 6 != -1, continue   

sum = sum + x sum = sum + 6, sum = 17 + 6  23 

Read next x user inputs -1 -1  

return to while statement return to while statement   

x != -1? -1 != -1, false!   

sum = sum + x SKIP   

Read next x SKIP   

return to while statement SKIP   

Quit END OF PROGRAM   

 
 
C.  The user enters in the current year and then his/her birth year.  Your program computes the users 
age.  Perform this task again if he or she wishes. 
On its surface, this application appears to be the simplest of all of those in this section.  However, it is 
covered because its loop is somewhat more difficult to visualize. 
 
Approach:  Get the current year from the user, get the user’s birth year from the user, compute and 
display the users age.  Ask if the user wishes to continue or to quit.  If ”continue”, repeat the program.  If 
”quit”, exit the program. 



19 of 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that decision is being set to “” for the same reason sum was initialized to 0 in the previous 
program.   
 
The trace table for this program is as follows (assuming “c” indicates continue and “q” indicates quit): 
Sample User data used:   2002, 1980, c, 2002, 1990, q 

 
 
 
 
 

Set Decision to “” 
While Decision != “quit” 

Read Year 
Read Birth_year 
Age = Year – Birth_Year 
Display Age 
Display “Do you wish to quit?” 
Read Decision 
Return to While Statement 

Quit 
 

Start

End

Yes

read Year

read Birt h_Year

compute Age

Display Age. Ask user if

he/she want s t o  go again.

read Decision

No

Decision

= quit ?

set  Decision t o  ""



20 of 20 

 

 
 

A Note on Loop Construction Style 
 
You may have noticed that in the flowcharts and pseudocode presented, the While decision always 
comes near the top of the chart/code.  These schematics could be easily (perhaps, more easily) drawn 
with the while decision near the bottom (this would avoid, for instance, needing to read data an extra 
time outside of the loop).  However, it is proper convention to place the decision before the block of 
code that will be repeated. Most loops in programming languages (with one notable exception) are 
precondition tested, that is, in order to execute the loop the first time, the condition the while statement 
is checking for must be true.  In other words, the variable decision must not be “q” in order for the loop 
to iterate the first time.  This is why decision is initialized to “”. 
  
 
 

Code segment currently executing What's going on Year Birth_Year Age Decision

Set Decision to "" decision = "" ""

While Decision != "q" "" != "q" true, continue

Read Year Get year from user, 2002 2002

Read Birth_Year Get birth year from user, 1980 1980

Age = Year - Birth_year Age = 2002 - 1980 = 22 22

Display Age Display Age, Display 22

Display "Do you wish to quit? Display "Do you wish to quit?

Read Decision Get Decision from user, c c

Return to While Statement Return to While Statement

While Decision != "q" "c" != "q" true, continue

Read Year Get year from user, 2002 2002

Read Birth_Year Get birth year from user, 1990 1990

Age = Year - Birth_year Age = 2002 - 1990 = 12 12

Display Age Display Age, Display 12

Display "Do you wish to quit? Display "Do you wish to quit?

Read Decision Get Decision from user, q q

Return to While Statement Return to While Statement

While Decision != "q" "q" != "q" true, false!

Read Year SKIP 2002

Read Birth_Year SKIP 1990

Age = Year - Birth_year SKIP 12

Display Age SKIP

Display "Do you wish to quit? SKIP

Read Decision SKIP q

Return to While Statement SKIP

Quit END PROGRAM


