
ARTICLE IN PRESS
J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Reevaluating Amdahl’s law in the multicore era
Xian-He Sun ∗, Yong Chen
Computer Science Department, Illinois Institute of Technology, United States

a r t i c l e i n f o

Article history:
Received 5 December 2008
Received in revised form
22 March 2009
Accepted 9 May 2009
Available online xxxx

Keywords:
Multicore architecture
Scalability
Scalable computing
Memory wall

a b s t r a c t

Microprocessor architecture has entered the multicore era. Recently, Hill and Marty presented a
pessimistic view of multicore scalability. Their analysis was based on Amdahl’s law (i.e. fixed-workload
condition) and challenged readers to develop bettermodels. In this study,we analyzemulticore scalability
under fixed-time andmemory-bound conditions and from the data access (memorywall) perspective.We
use the same hardware cost model of multicore chips used by Hill and Marty, but achieve very different
and more optimistic performance models. These models show that there is no inherent, immovable
upper bound on the scalability of multicore architectures. These results complement existing studies and
demonstrate that multicore architectures are capable of extensive scalability.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Multicore architectures integratemultiple processing units into
one chip to overcome the physical constraints of unicore architec-
tures, and their exponentially growing power consumption. Multi-
core architectures provide a more cost-effective chip organization
than their unicore counterparts. Pollack’s Rule [9] states thatmicro-
processor performance increases are roughly proportional to the
square root of the increase in complexity. This means that to pro-
vide a 40% performance improvement in a unicore design, we need
to double the number of logical units. Multicore architectures of-
fer a cost-effective alternative, deliveringmore computing capabil-
ity via parallel processing, while consuming less power and board
space.
Multicore architectures provide a new dimension to scale

up the number of processing elements (cores) and, therefore,
the potential computing capacity. While the technology is
readily available and some companies are making large-scale
multicore processorswith hundreds of cores [8,18–20], the leading
manufacturers currently provide the smallest number of cores.
IBM’s Cell processor [3] has eight cores (plus a master core).
Sun Microsystems’ T2 processor [21] also has eight cores. AMD’s
mainstream processors – Phenom families [14], announced in
2007, have only four cores. The Dunnington processor [16]
announced by Intel in 2008 has six cores. Although Intel does
have a roadmap to build a special-purpose 80-core processor
by 2011 [17], their approach is conservative and slow moving
compared to the roadmaps of smaller companies. These leading

∗ Corresponding author.
E-mail addresses: sun@iit.edu (X.-H. Sun), chenyon1@iit.edu (Y. Chen).

manufacturers may share the same pessimistic view of multicore
scalability as that expressed theoretically by Hill and Marty [6].
History seems to be repeating itself. Two decades ago,

mainstream vendors, worried about the pessimistic implications
of Amdahl’s law, made parallel machines only with 2 to 8
processors, such as the IBM 7030 Stretch Data Processing System
and Cray Y-MP [15]. Contemporary startups of the time such
as nCUBE and Thinking Machines made parallel computers
with hundreds or thousands of processors. The introduction
of the scalable computing concept in 1988 [4], Gustafson’s
law, changed the course of parallel system designs to large
ensemble sizes. The leading manufactures quickly joined in
then making massively parallel machines. Today, IBM’s Petaflop
machine, the Roadrunner, at Los Alamos National Laboratory has
25,200 processors [22]. Sun Microsystems’ Ranger supercomputer
at the Texas Advanced Computing Center has 15,744 quad-
core processors, for example. The emergence and success of
these massively parallel systems does not automatically extend
to multicore architecture. Hill and Marty [6] recently applied
Amdahl’s concepts tomulticore architectures and, citing hardware
design limitations, pessimistically concluded that the future
of scalable multicore processors is questionable. Some others
follow up with more limitations of multicore scalability based
on Amdahl’s law [12]. We apply scalable computing principles
that emerged in the decades following Amdahl’s 1967 work to
multicore architectures and the hardware model proposed by
Hill and Marty. Our study shows that multicore architectures
are fundamentally scalable and not limited by Amdahl’s law. In
addition to reevaluating the future of multicore scalability, we
identify what we believe will ultimately limit the performance of
multicore systems: thememory wall [13]. While the memory-wall

0743-7315/$ – see front matter© 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2009.05.002

Please cite this article in press as: X.-H. Sun, Y. Chen, Reevaluating Amdahl’s law in the multicore era, J. Parallel Distrib. Comput. (2009), doi:10.1016/j.jpdc.2009.05.002

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:sun@iit.edu
mailto:chenyon1@iit.edu
http://dx.doi.org/10.1016/j.jpdc.2009.05.002

ARTICLE IN PRESS
2 X.-H. Sun, Y. Chen / J. Parallel Distrib. Comput. () –

problem may never be solved completely, we are optimistic that
its effects at scale can be mitigated to some extent. Thus, based
on our observations and analyses, and in contrast to the work of
Hill and Marty, we are optimistic as to the future of scalability and
multicore architectures.

1.1. Fixed-size and scalable computing

The original idea presented by Amdahl [1] was a general
observation about the performance improvement limitation of
any enhancement, and was later summarized as Amdahl’s law.
Amdahl’s law states that if a portion of a computation, f , can be
improved by a factorm, and the other portion cannot be improved,
then the portion that cannot be improved will quickly dominate
the performance, and further improvement of the improvable
portion will have little effect. Speedup is defined as sequential
execution time over parallel execution time in parallel processing.
Let f be the portion of the workload that can be parallelized andm
be the number of processors; then the parallel processing speedup
implied by Amdahl’s law is:

SpeedupAmdahl =
1

(1− f)+ f
m

. (1)

When m increases to infinity, the speedup upper bound is:
limm→∞ SpeedupAmdahl =

1
1−f . Since most applications have a

sequential potion that cannot be parallelized, by Amdahl’s law,
parallel processing is not scalable. For instance, if 90% of an
application can be parallelized and 10% cannot, then with 8 to 16
processors, the 10% sequentialworkwill contribute about 50%–80%
of the total execution time, and addingmore processors for parallel
processing will have a diminishing effect.
A tacit assumption in Amdahl’s law is that the problem size,

or the workload, is fixed to that which runs on the unenhanced
system. The speedup emphasizes time reduction of a given
problem. Amdahl’s law is thus also called the fixed-size speedup
model [2,7,10,11]. In 1988, Gustafson introduced the concept of
scalable computing and the fixed-time speedup model [4]. The
fixed-time speedup model argues that powerful machines are
designed for large problems and problem size should scale up
with the increasing of computing capability. For many practical
workloads (e.g. real time applications), the problem size scale-up
is bounded by the execution time. Thus, the fixed-time speedup is
defined as:

SpeedupFT =
Sequential Time of Solving Scaled Workload
Parallel Time of Solving Scaled Workload

. (2)

Supposing the original workload, w, and the scaled workload
w′, finish in the same amount of time with sequential processing
and parallel processing with m processors, respectively; and
assuming the scale of theworkload is in the parallel processing part
only; we havew′ = (1− f)w + fmw. Therefore,

SpeedupFT =
Sequential Time of Solvingw′

Parallel Time of Solvingw′

=
Sequential Time of Solvingw′

Sequential Time of Solvingw

=
w′

w
=

(1− f)w + fmw

w
= (1− f)+mf . (3)

This equation is known as Gustafson’s law [4]. It states that
the fixed-time speedup is a linear function of m if the workload
is scaled up to maintain a fixed execution time. Gustafson’s law
suggests that it is beneficial to build a large-scale parallel system
as the speedup can grow linearly with the system size.
Many applications cannot scale up to meet the time bound

constraint due to some physical constraints. In practice, the

physical constraint is often the memory limitation. With this
consideration in mind, Sun and Ni proposed the memory-bounded
speedup model [10,11]. Let w∗ be the scaled workload under
a memory space constraint. The memory-bounded speedup is
defined as:

SpeedupMB =
Sequential Time of Solvingw∗

Parallel Time of Solvingw∗
. (4)

Assume that each computing node is a processor-memory
pair. Increasing the number of processors, then, will increase the
memory capacity as well. Let y = g(x) be the function that reflects
the parallel workload increase factor as the memory capacity
increasesm times. That isw = g(M), andw∗ = g(m ·M), whereM
is thememory capacity of one node.We havew∗ = g(m ·g−1(w)).
Thus memory-bounded speedup is:

SpeedupMB =
(1− f)w + f · g(m · g−1(w))

(1− f)w + f ·g(m·g−1(w))

m

. (5)

Eq. (5) looks complicated, but for any power function g(x) =
axb and for any rational numbers a and b, we have:

g(mx) = a(mx)b = mb · axb = mbg(x) = g(m)g(x)

where g(m) is the power function with the coefficient as 1.
Since many algorithms have a polynomial complexity in terms
of computation and memory requirement, and we can always
take the highest degree term to represent the complexity of the
algorithm, we can simplify Eq. (5) into:

SpeedupMB =
(1− f)w + f · g(m)w

(1− f)w + f ·g(m)w

m

=
(1− f)+ f · g(m)

(1− f)+ f ·g(m)

m

. (6)

We provide a quick example to illustrate the calculation of g(m)
for matrix multiplication. The computation requirement of matrix
multiplication is y = 2N3 and thememory requirement is x = 3N2,
where N is the dimension of the two N ×N source matrices. Thus:

g(x) = 2
(√
x
3

)3
=
2

3
3
2
x
3
2 , and g(x) = x

3
2 .

Therefore, the memory-bounded speedup for matrix multipli-
cation is:

SpeedupMB =
(1− f)+ f · g(m)

(1− f)+ f ·g(m)

m

=
(1− f)+ f ·m3/2

(1− f)+ f ·m1/2
. (7)

In general, if we assume each element stored in memory will
be used at least once, we havew∗ ≥ w′, and thememory-bounded
speedup is greater than or equal to the fixed-time speedup.
Eq. (6) is also known as Sun and Ni’s law [2,7,10,11]. It is

a generalization of Amdahl’s law and Gustafson’s law, where
Amdahl’s law is a special case with g(m) = 1, and Gustafson’s law
is a special case with g(m) = m. In general, the computational
workload increases faster than the memory requirement, thus
g(m) > m and the memory-bounded speedup model gives
a higher speedup than the fixed-size and fixed-time speedup.
Memory-bounded speedup is natural for domain decomposition
based applications and can be applied at different levels of a
memory hierarchy system. It becomes more and more important
with increasing awareness of thememory-wall problem [13].

1.2. A simple cost model for multicore chips

Hill and Marty [6] give a simple hardware model for multicore
chips. This hardware cost model assumes that a multicore chip
under study can contain at most n base core equivalents (BCEs) and
each single BCE implements the baseline core. This assumption

Please cite this article in press as: X.-H. Sun, Y. Chen, Reevaluating Amdahl’s law in the multicore era, J. Parallel Distrib. Comput. (2009), doi:10.1016/j.jpdc.2009.05.002

ARTICLE IN PRESS
X.-H. Sun, Y. Chen / J. Parallel Distrib. Comput. () – 3

comes from the fact that the microarchitects can only dedicate
limited resources on a chip. This cost model also assumes that
microarchitects have the technique to create a more powerful
core with perf(r) sequential performance with r BCEs, where the
performance of a single BCE is assumed to be 1. The value of perf(r)
depends on the actual hardware technique and implementation,
but in analysis, it can be an arbitrary function.

1.3. Fixed-size speedup model of multicore

Following Amdahl’s law, Hill and Marty [6] conclude that the
speedup of a symmetric multicore architecture is:

Speedup =
1

1−f
perf (r) +

f ·r
perf (r)·n

. (8)

While it is not given in [6], here we provide the deduction of
Eq. (8) so it can be better related to the scaled scalability analysis
given in Section 2.
According to speedup definition:

Speedup =
Enhanced performance
Original performance

=
TOriginal
TEnhanced

(9)

where the performance is the reciprocal of the execution time. Let
us assume that the problem size is w. Thus the original execution
time is TOriginal = w/perf (1) = w, where a single BCE core has
a performance of 1 as assumed by Hill and Marty [6]. The new
execution time of n-BCE multicore is

TEnhanced =
(1− f)w
perf (r)

+
fw

n
r · perf (r)

,

if we assume these n-BCE resources are built into n/r cores, where
each core has a perf(r) performance.
Therefore, the speedup is:

Speedup =
Enhanced performance
Original performance

=
w/perf (1)

(1−f)w
perf (r) +

fwr
n·perf (r)

=
1

1−f
perf (r) +

f ·r
perf (r)·n

perf(r) is a constant for a given design. Let perf (r) = c and m =
n/r; then Eq. (8) becomes:

Speedup =
c

(1− f)+ f
m

which is the Amdahl’s law that invariably results from a fixed-size
workload assumption.
By Eq. (8), the scalability of multicore architectures is rather

limited. Fig. 1 illustrates the fixed-size speedup of multicore
architectures, where c equals 1. The horizontal axis represents the
number of cores, scaled from 1 to 256. The vertical axis represents
the speedup value. This figure plots the fixed-size speedup results
with f ranging from 0.5 to 0.999. As shown clearly from this figure,
the fixed-size speedup model (Amdahl’s law) illustrates a very
limited scalability of a multicore architecture, and the speedup is
quickly restricted by the sequential portion of a problem under
study. The scalability is acceptable onlywhen the problem is highly
parallelizable, such as the improvable portion being over 99.9%.

2. Scalable computing for multicore architectures

We follow the hardware cost model of Hill and Marty’s study
and analyze the scalability of multicore architectures with the
concept of scalable computing. We assume that the multicore
architecture under study is a symmetric architecture, and assume
each core has its own L1 cache, where the memory bound is
the cumulated capacity of the L1 caches. Please notice that the
memory-bounded condition can be applied at different levels

4 32 64 128 256
0

50

100

150

200

250

Number of Cores

S
p

ee
d

up

f = 0.5
f = 0.8
f = 0.9
f = 0.95

f = 0.99
f = 0.999

Fig. 1. Fixed-size speedup of a multicore architecture.

4 64 128 256 512 1024
0

200

400

600

800

1000

1200

Number of Cores

S
pe

ed
u

p

f = 0.2
f = 0.5
f = 0.8
f = 0.9
f = 0.95
f = 0.99

Fig. 2. Fixed-time speedup of a multicore architecture.

of the underlying memory hierarchy. For instance, should the
capacity of L2 increases proportionally with the number of cores,
the following analyses for L1 can be directly applied to L2.

2.1. Fixed-time speedup model

We take n, the number of base cores, as the scaling factor. The
scalability question is whether we should have a large n.
Following Eq. (8), let n = r; we have

Speedup =
1

1−f
perf (r) +

f
perf (r)

= perf (r).

Let n = r be the initial point, and n = mr as the scaled number
of cores. Following the fixed-time model assumption that the
scaling is only at the parallel portion, for the fixed-time speedup
model we have:

(1− f)w
perf (r)

+
fw
perf (r)

=
(1− f)w
perf (r)

+
fw′

perf (r)m
. (10)

Thus,w′ = mw.
Hence, the scaled speedup, compared with n = r is:

Speedup =
Sequential Time of Solvingw′

Sequential Time of Solvingw

=

(1−f)w
perf (r) +

fw′

perf (r)
w

perf (r)

= (1− f)+mf . (11)

Eq. (11) shows that multicore architectures are scalable under
the scalable computingmodel, and their fixed-time speedup grows
linearly with the scaling factor.
Fig. 2 reveals the scalability of multicore architectures with the

fixed-time speedup model. We compute the speedup following

Please cite this article in press as: X.-H. Sun, Y. Chen, Reevaluating Amdahl’s law in the multicore era, J. Parallel Distrib. Comput. (2009), doi:10.1016/j.jpdc.2009.05.002

ARTICLE IN PRESS
4 X.-H. Sun, Y. Chen / J. Parallel Distrib. Comput. () –

formula (11) under different scenarios where f ranges from 0.2 to
0.99, and plot the results in Fig. 2. The fixed-time speedup model,
as shown in Fig. 2, presents amore optimistic view of themulticore
architecture. For instance, when f equals 0.9, the speedup achieved
is 922with 1024 cores,where byAmdahl’s law, Eq. (8), the speedup
is around 10. When f = 0.99, the fixed-time speedup is 1013 with
1024 cores.
The continuedperformance improvement of fixed-time speedup

is due to the fact that it continuously has enough work for paral-
lel processing. After scaling, the parallel work is fw′, and the total
work is:
(1− f)w + fw′ = [1+ (m− 1)f]w.

Thus, the new parallel work over total work ratio is

f ′ =
mfw

[1+ (m− 1)f]w
=

f
1
m +

m−1
m f

.

When m → ∞, the parallel work ratio approximates to 1.
Under the fixed-time model, multicore architectures are scalable
and not limited by the sequential processing term.

2.2. Memory-bounded speedup model

Following a similar analysis of fixed-time model, and assuming
the scaled workload under memory capacity constraint is w∗,
we have the speedup under memory-bounded model, when the
number of cores is scaled from r tomr, as:

Speedup =
Sequential Time of Solvingw∗

Parallel Time of Solvingw∗

=

(1−f)w
perf (r) +

fw∗

perf (r)
(1−f)w
perf (r) +

fw∗
m·perf (r)

=
(1− f)w + fw∗

(1− f)w + fw∗
m

. (12)

Assume y = g(x) is the function of computing requirement
in terms of memory requirement, w = g(M), and assume g(x)
is a power function. Therefore, following Section 1, the memory-
bounded speedup is:

Speedup =
(1− f)w + f · g(m)w

(1− f)w + f ·g(m)w

m

=
(1− f)+ f · g(m)

(1− f)+ f ·g(m)

m

. (13)

Fig. 3 demonstrates the speedup with the memory-bounded
scaled speedup model for multicore architectures. This figure
reports the speedup value of the matrix multiplication example
(see Section 1). Similar to the fixed-time model, the memory-
bounded speedup model reveals that a multicore architecture can
scale up well as long as the workload size of the application can
be allowed to grow with the number of cores. In addition, the
results of thememory-bounded speedupmodel show that an even
better performance can be achieved when the memory capacity
constraint is used to scale the workload instead of the execution
time constraint. As revealed in Fig. 3, the scalability of a multicore
architecture can increase steadily, in contrast with the fixed-time
model. The memory-bounded speedup model reflects situations
wherememory capacity is the constraint, in the case of the L1 cache
ofmulticore architectures aswe discussed; the fixed-time speedup
model reflects situations where the execution time is limited by
human patience or the workflow situation. Both models exhibit a
promising view of large-scale multicore architectures.

2.3. Putting it all together

Fig. 4 combines the fixed-size, fixed-time and memory-
bounded speedup together for comparison. We pick three
scenarios, f with value 0.5, 0.9 and 0.99, for each speedup model.
The speedups of fixed-size, fixed-time and memory-bounded
models are represented with different line patterns. As illustrated
in this figure, with the scalable computing viewpoint and the
scaled speedup models, a multicore architecture can scale up
well and linearly. The scalable computing notion and models

4 64 128 256 512 1024
0

200

400

600

800

1000

1200

Number of Cores

S
pe

ed
up

f = 0.2
f = 0.5
f = 0.8
f = 0.9
f = 0.95
f = 0.99

Fig. 3. Memory-bounded speedup of a multicore architecture.

4 64 128 256 512 1024
0

200

400

600

800

1000

1200

Number of Cores

S
pe

ed
up

FS, f = 0.5
FS, f = 0.9
FS, f = 0.99
FT, f = 0.5
FT, f = 0.9
FT, f = 0.99
MB, f = 0.5
MB, f = 0.9
MB, f = 0.99

Fig. 4. Fixed-size, fixed-time and memory-bounded speedup of a multicore
architecture.

demonstrate a much more optimistic view than Amdahl’s law
does, and suggest large-scale multicore architectures are of broad
value. The direct comparison also verifies that memory-bounded
speedup is likely to be higher than fixed-time speedup.

2.4. Results and implications

Result 1. The scalable computing concept and two scaled speedup
models, fixed-time speedupmodel andmemory-bounded speedup
model, are applicable to multicore architecture design.

Implication 1. Hill and Marty’s recent conclusion on the scalabil-
ity of multicore architecture [6] is essentially a corollary of Am-
dahl’s law. Their analysis and formulation are correct, but, as Am-
dahl’s law, only apply if users do not increase their computing de-
mands when given more computing power.

Implication 2. The scalable computing concept of parallel pro-
cessing is applicable to multicore architecture. Based on the cur-
rent success of large-scale parallel computers, multicore architec-
tureswith thousands and tens of thousands of cores should be ben-
eficial. Multicore architectures are highly scalable; chip designers
need not re-invent the scaling concepts of parallel processing from
the last several decades.

Implication 3. Sequential processing is not a limiting factor
of multicore scalability, at least not in the sense of scalable
computing.
Nonetheless, we are having difficulties utilizing today’s multicore
systems. A question we have to ask ourselves is: if sequential
processing is not the limiting factor for scalability, then what is?
We believe the limiting factor is data access delay, or the so-
called memory-wall problem. Let us revisit the scalability problem
considering data access as the factor limiting performance.

Please cite this article in press as: X.-H. Sun, Y. Chen, Reevaluating Amdahl’s law in the multicore era, J. Parallel Distrib. Comput. (2009), doi:10.1016/j.jpdc.2009.05.002

ARTICLE IN PRESS
X.-H. Sun, Y. Chen / J. Parallel Distrib. Comput. () – 5

Core 1

L1 Cache

Core 2

L1 Cache

... ... Core n

L1 Cache

L2 Cache

Multicore Processor

L3 Cache / DRAM

... ...

Fig. 5. Multicore architecture.

3. Memory wall and multicore architecture scalability

Multicore processor scalability is not necessarily the same
as multicore-processor parallel processing scalability. For many
applications, such as meta-tasks, high-throughput computing,
or perfectly parallel applications, the sequential portion of the
parallel workload is not the limiting factor for performance.
Nonetheless, the performance of these types of applications is
often limited on multicore architectures.
Fig. 5 illustrates a general structure of a multicore system.

The memory-bounded speedup model gives a performance upper
bound where all the data are stored in the L1 caches. But, for
any actual application with reasonable size, data may have to be
accessed through the memory hierarchy, where long data-access
delay occurs, a.k.a. thememory-wall problem [13], in addition to the
contention of the shared L2 cache and data paths to the lower level
of the memory hierarchy. The memory-wall problem is due to the
disparity of technology advance between CPU speed and memory
data access latency. During last three decades memory latency in
terms of processor cycles has increased roughly from 0.3 cycles in
1980 to 220 cycles in 2005, and the gap is still growing [5]. In the
following, we study the scalability of multicore architecture with
data-access delay as the scalability overhead.
For data-access scalability analysis, we have to change the cost

model slightly. We assume a task as two parts: data processing
work,wp, and data communication (access) work,wc , andw = wp
+ wc . We assume wc is a function of r , but it is independent of
the workload and the number of cores. As in Section 2, the design
choice is to choose an appropriate r to optimize perf(r) under the
same assumption that the performance of a single BCE core is 1, and
the scalability concern is on determining an appropriate number of
base cores, n, for best performance. Following a similar deduction
as given in Section 1, we have the fixed-size speedup as:

SpeedupFS =
1

wc
perf (r) +

wp·r
perf (r)·n

.

For fixed-time speedup, taking n = r as the initial point,
following the fixed-time principle where n = mr , we have:

wc

perf (r)
+

wp

perf (r)
=

wc

perf (r)
+

w′p

m · perf (r)
.

Thus,w′p = mwp.
Therefore, the fixed-time speedup compared with r BCEs is:

SpeedupFT =
wc
perf (r) +

w′p
perf (r)

wc
perf (r) +

wp
perf (r)

=
wc +m · wp

wc + wp
.

If we let f ′ = wp
wc+wp

then we have the familiar format

SpeedupFT = (1− f ′)+mf ′.

For memory-bounded speedup, when the number of cores is
scaled from r tomr, we have:

SpeedupMB =
wc
perf (r) +

fwp∗
perf (r)

wc
perf (r) +

fwp∗
m·perf (r)

=
wc + fwp∗

wc +
fwp∗
m

=
wc + f · g(m · g−1(wp))

wc +
f ·g(m·g−1(wp))

m

.

For any power function g(x), we have a simplified memory-
bounded speedup formula as:

SpeedupMB =
wc + f · g(m)wp

wc +
f ·g(m)wp
m

.

Similar to the analysis in the previous section, it is likely
that the memory-bounded speedup is greater than the fixed-time
speedup since the computing requirement is generally greater
than memory requirement.

Result 2. If we assume the data-access delay is a constant that
does not increase with problem size and the number of cores,
the scalable computing concept and models are still applicable to
multicore architecture.
While the assumption of fixed data-access time is not true
under today’s technology, it is a technical issue not an inherent,
immoveable obstacle.

Implication 4. There is no innate limitation to scalability, but
the need for technical improvements is primarily in memory
performance.
Since the improvement of memory performance cannot be limited
at the microprocessor or cache level only, we have the following
implication.

Implication 5. The scalability issues of multicore architecture
involve the whole architecture design of a computing system.
Thememory-wall problem is a complicated technical issue, yet for
the scalability of multicore architectures we only need the data
delay to be constant. With research and technology advance, we
should be able to mitigate the memory-wall effect and provide a
much better performance than that offered by today’s multicore
architecture.

Implication 6. Scalable computing calls more research to over-
come the technical hurdles, especially in reducing the data access
delay.

4. Conclusion

We have studied the scalability of multicore architectures.
Based on the scalable computing concept where problem size can
be increased with the computing power (the number of cores),
we have derived two sets of performance model for considering
sequential processing and data access (memory wall) as the
hampering factors of scalability. We provide three performance
models: fixed-size, fixed-time, and memory-bounded, for each
hampering factor. The fixed-size performance model with the
sequential processing factor is the symmetric model given by
Hill and Marty [6] based on Amdahl’s law. Unlike the fixed-size
model, the fixed-time and memory-bounded models, where the
problem size increases in accordance with the time and memory
constraints, scale well. They show that multicore architecture is
scalable and has a bright future.
Wehave only studied symmetricmulticore architectureswhere

all the cores are identical. The reason is that asymmetric systems
are much more complex than their symmetric counterparts. They
are worth exploring only if their symmetric counterparts cannot
deliver satisfactory performance. Whereas we have already shown
symmetric multicore architectures are scalable, we believe data

Please cite this article in press as: X.-H. Sun, Y. Chen, Reevaluating Amdahl’s law in the multicore era, J. Parallel Distrib. Comput. (2009), doi:10.1016/j.jpdc.2009.05.002

ARTICLE IN PRESS
6 X.-H. Sun, Y. Chen / J. Parallel Distrib. Comput. () –

access is the real concern for multicore. Asymmetric design may
need to be considered to improve data-access speed.
History is repeating itself. Two decades agowe debated the role

of Amdahl’s law on the scalability of parallel processing. Today, we
seem to be repeating the debate on multicore architecture. Am-
dahl’s assumptions limit scalability, which is constrained by the
sequential execution time. The fixed-time and memory-bounded
performancemodels show that there is no innate limitation to scal-
ability, but the need for technical improvements is primarily in
memory performance. Many technical issues have to be addressed
to reach the potential of scalable computing. For instance, we as-
sume the data-access delay is fixed and is independent of the num-
ber of cores and problem sizes in our modeling. This assumption is
not true under today’s technology for most applications.
The scalability of multicore architecture is an area that is

largely unexplored. The fixed-size assumption of Amdahl’s law
is unrealistic and results in pessimistic predictions; this does
nothing to encourage healthy growth in the scale of multicore
architectures. We hope this study will shatter the pessimistic view
of limited scalability of multicore architectures in the industry
and academia the way similar views were shattered for parallel
processing twenty years ago, and will stimulate a breakthrough in
designing large-scale multicore processors. We welcome further
discussions in this direction that lead to a better understanding of
the scalability of multicore architectures.

Acknowledgments

We would like to thank Dr. John L. Gustafson, Prof. Kirk
Cameron, and Dr. Surendra Byna for their valuable inputs and
discussions. This research was supported in part by National
Science Foundation under NSF grant CCF0621435, CCF0702737,
CNS0751200, CNS0834514, and by United States Department
of Energy (DoE) SciDAC program under the contract No. DOE
DE-FC02-06 ER41442.

References

[1] G.M. Amdahl, Validity of the single-processor approach to achieving large scale
computing capabilities, in: Proc. of AFIPS Conference, 1967.

[2] D.E. Culler, J.P. Singh, A. Gupta, Parallel Computer Architecture: A Hard-
ware/Software Approach, Morgan Kaufmann Publishers, 1999.

[3] M. Gschwind, Chipmultiprocessing and the cell broadband engine, Computing
Frontiers (2006).

[4] J.L. Gustafson, Reevaluating Amdahl’s Law, Communications of the ACM
(1988).

[5] J. Hennessy, D. Patterson, Computer Architecture: A Quantitative Approach,
4th ed., Morgan Kaufmann, 2006.

[6] M. Hill, M.R. Marty, Amdahl’s law in the multicore era, IEEE Computer 41 (7)
(2008) 33–38.

[7] K. Hwang, Z. Xu, Scalable Parallel Computing: Technology, Architecture,
Programming, McGraw-Hill, 1998.

[8] J. Makino, K. Hiraki, M. Inaba, GRAPE-DR: 2-Pflops Massively- Parallel Com-
puter with 512-Core, 512-Gflops Processor Chips for Scientific Computing, in:
Proc. of ACM/IEEE Supercomputing’07, 2007.

[9] F. Pollack, New Microarchitecture Challenges in the Coming Generations of
CMOS Processing Technologies, in: Keynote Speech in the 32nd International
Symposium on Microarchitecture, 1999.

[10] X.-H. Sun, L. Ni, Another view on parallel speedup, in: Proc. of IEEE
Supercomputing ’90, 1990.

[11] X.H. Sun, L. Ni, Scalable problems and memory-bounded speedup, Journal of
Parallel and Distributed Computing (1993).

[12] D.-H. Woo, H.-H Lee, Extending amdahl’s law for energy–efficient computing
in the many-core era, IEEE Computer 41 (12) (2008) 24–31.

[13] W.A. Wulf, S.A. McKee, Hitting the memory wall: Implications of the obvious,
Computer Architecture News 23 (1) (1995) 20–24.

[14] AMD website. http://multicore.amd.com/us-en/AMD-Multi-Core.aspx.
[15] Cray Y-MP on Wikipedia. http://en.wikipedia.org/wiki/Cray_Y-MP.
[16] Intel Announces Dunnington Processor. http://www.intel.com/pressroom/

archive/releases/20080317fact.htm.
[17] Intel pledges 80 cores in five years http://news.cnet.com/2100-1006_

3-6119618.html.
[18] Kilocore Overview. http://www.rapportincorporated.com/kilocore/kilocore_

overview.html.
[19] nVIDIA Tesla C870. http://www.nvidia.com/object/tesla_c870.html.
[20] nVIDIA Quadro FX 3700M. http://www.nvidia.com/object/product_quadro_

fx_3700_m_us.html.
[21] Sun UltraSPARC T2 Processor. http://www.sun.com/processors/

UltraSPARC-T2/.
[22] TOP500 Supercomputing Site. http://www.top500.org.

Xian-He Sun is a Professor of Computer Science and the
director of the Scalable Computing Software laboratory
at Illinois Institute of Technology (IIT), and is a guest
faculty in theMathematics and Computer Science Division
and Computing Division at the Argonne and Fermi
National Laboratory, respectively. Before joining IIT, he
worked at DoE Ames National Laboratory, at ICASE,
NASA Langley Research Center, and at Louisiana State
University, Baton Rouge. Dr. Sun’s research interests
include parallel and distributed processing, software
systems, performance evaluation, and data intensive

computing. More information about Dr. Sun can be found at http://www.cs.iit.edu/
∼sun/.

Yong Chen received his B.E. degree in Computer Engi-
neering in 2000 and M.S. degree in Computer Science in
2003, both from University of Science and Technology of
China. He is currently pursuing his Ph.D. degree in Com-
puter Science from Illinois Institute of Technology. His re-
search focuses on parallel and distributed computing and
computer architecture in general, and on optimizing data-
access performance, parallel I/O, performance modeling
and evaluation in particular. More information about him
can be found at http://www.iit.edu/∼chenyon1.

Please cite this article in press as: X.-H. Sun, Y. Chen, Reevaluating Amdahl’s law in the multicore era, J. Parallel Distrib. Comput. (2009), doi:10.1016/j.jpdc.2009.05.002

http://multicore.amd.com/us-en/AMD-Multi-Core.aspx
http://multicore.amd.com/us-en/AMD-Multi-Core.aspx
http://multicore.amd.com/us-en/AMD-Multi-Core.aspx
http://multicore.amd.com/us-en/AMD-Multi-Core.aspx
http://multicore.amd.com/us-en/AMD-Multi-Core.aspx
http://multicore.amd.com/us-en/AMD-Multi-Core.aspx
http://multicore.amd.com/us-en/AMD-Multi-Core.aspx
http://en.wikipedia.org/wiki/Cray_Y-MP
http://en.wikipedia.org/wiki/Cray_Y-MP
http://en.wikipedia.org/wiki/Cray_Y-MP
http://en.wikipedia.org/wiki/Cray_Y-MP
http://en.wikipedia.org/wiki/Cray_Y-MP
http://en.wikipedia.org/wiki/Cray_Y-MP
http://en.wikipedia.org/wiki/Cray_Y-MP
http://www.intel.com/pressroom/archive/releases/20080317fact.htm
http://www.intel.com/pressroom/archive/releases/20080317fact.htm
http://www.intel.com/pressroom/archive/releases/20080317fact.htm
http://www.intel.com/pressroom/archive/releases/20080317fact.htm
http://www.intel.com/pressroom/archive/releases/20080317fact.htm
http://www.intel.com/pressroom/archive/releases/20080317fact.htm
http://www.intel.com/pressroom/archive/releases/20080317fact.htm
http://www.intel.com/pressroom/archive/releases/20080317fact.htm
http://www.intel.com/pressroom/archive/releases/20080317fact.htm
http://news.cnet.com/2100-1006_3-6119618.html
http://news.cnet.com/2100-1006_3-6119618.html
http://news.cnet.com/2100-1006_3-6119618.html
http://news.cnet.com/2100-1006_3-6119618.html
http://news.cnet.com/2100-1006_3-6119618.html
http://news.cnet.com/2100-1006_3-6119618.html
http://news.cnet.com/2100-1006_3-6119618.html
http://www.rapportincorporated.com/kilocore/kilocore_overview.html
http://www.rapportincorporated.com/kilocore/kilocore_overview.html
http://www.rapportincorporated.com/kilocore/kilocore_overview.html
http://www.rapportincorporated.com/kilocore/kilocore_overview.html
http://www.rapportincorporated.com/kilocore/kilocore_overview.html
http://www.rapportincorporated.com/kilocore/kilocore_overview.html
http://www.rapportincorporated.com/kilocore/kilocore_overview.html
http://www.rapportincorporated.com/kilocore/kilocore_overview.html
http://www.nvidia.com/object/tesla_c870.html
http://www.nvidia.com/object/tesla_c870.html
http://www.nvidia.com/object/tesla_c870.html
http://www.nvidia.com/object/tesla_c870.html
http://www.nvidia.com/object/tesla_c870.html
http://www.nvidia.com/object/tesla_c870.html
http://www.nvidia.com/object/tesla_c870.html
http://www.nvidia.com/object/tesla_c870.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.nvidia.com/object/product_quadro_fx_3700_m_us.html
http://www.sun.com/processors/UltraSPARC-T2/
http://www.sun.com/processors/UltraSPARC-T2/
http://www.sun.com/processors/UltraSPARC-T2/
http://www.sun.com/processors/UltraSPARC-T2/
http://www.sun.com/processors/UltraSPARC-T2/
http://www.sun.com/processors/UltraSPARC-T2/
http://www.top500.org
http://www.top500.org
http://www.top500.org
http://www.top500.org
http://www.cs.iit.edu/~sun/
http://www.cs.iit.edu/~sun/
http://www.cs.iit.edu/~sun/
http://www.cs.iit.edu/~sun/
http://www.cs.iit.edu/~sun/
http://www.cs.iit.edu/~sun/
http://www.iit.edu/~chenyon1
http://www.iit.edu/~chenyon1
http://www.iit.edu/~chenyon1
http://www.iit.edu/~chenyon1
http://www.iit.edu/~chenyon1

	Reevaluating Amdahl's law in the multicore era
	Introduction
	Fixed-size and scalable computing
	A simple cost model for multicore chips
	Fixed-size speedup model of multicore

	Scalable computing for multicore architectures
	Fixed-time speedup model
	Memory-bounded speedup model
	Putting it all together
	Results and implications

	Memory wall and multicore architecture scalability
	Conclusion
	Acknowledgments
	References

