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ABSTRACT

Repairing erroneous or conflicting data that violate a set
of constraints is an important problem in data manage-
ment. Many automatic or semi-automatic data-repairing al-
gorithms have been proposed in the last few years, each with
its own strengths and weaknesses. BART is an open-source
error-generation system conceived to support thorough ex-
perimental evaluations of these data-repairing systems. The
demo is centered around three main lessons. To start, we
discuss how generating errors in data is a complex problem,
with several facets. We introduce the important notions of
detectability and repairability of an error, that stand at the
core of BART. Then, we show how, by changing the features
of errors, it is possible to influence quite significantly the
performance of the tools. Finally, we concretely put to work
five data-repairing algorithms on dirty data of various kinds
generated using BART, and discuss their performance.

1. INTRODUCTION

Data quality is a very important concern in data man-
agement. To date, many (disparate) automatic and semi-
automatic data-cleaning algorithms have been proposed in
the database community [10]. These algorithms come from
different inspirations. Most of them are constraint-based:
they assume that the target database comes with a set of
data-quality rules — for example, functional dependencies
(FDs) or conditional functional dependencies (CFDs) — and
data is repaired to remove violations to these constraints.
Others rely on statistical measures of data quality or statis-
tics combined with constraints [13].

Due to the richness of research proposals, it is important
to conduct thorough and fair experimental evaluations to
assess each tool’s potential. In fact, other fields in the data
quality landscape, like entity resolution and record linkage,
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have worked to develop consolidated tools and benchmarks
for empirically evaluating algorithms. Thorough evaluation
of data-cleaning systems requires systematic control over the
amount of errors in a dataset, and over how hard these errors
are to repair. Dirty datasets must be paired with a ground-
truth clean dataset to enable evaluation of the quality of a
repair produced by a cleaning algorithm. To support rigor-
ous empirical evaluations, an error-generation system must
be able to generate multiple dirty versions of a dataset with
low user effort, and scale to large datasets.

Bart. BARTE] [1] is the first error-generation tool explicitly
conceived to support empirical evaluations of data-repairing
algorithms as per the requirements outlined above. It takes
as input a clean database and a set of data-quality rules, and
injects errors into the database. Rules are expressed using
the powerful language of denial constraints |11] and errors
can be of several kinds, such as typos, duplicated values,
nulls, and outliers. We show the major components of the
system in Figure[l] A user interacts with BART by creating
error-generation tasks, using a GUI or CL interface. These
tasks are then interpreted by BART’s error-generation engine
to create dirty versions of a clean database.

The system provides the highest possible level of control
over the error-generation process. Among other parameters,
it allows users to choose the percentage of errors, whether
they want a guarantee that errors are detectable using the
given constraints, and even provides an estimate of how hard
it will be to restore the database to its original clean state.
BART is open-source: its codebase is available on GitHulf]

!'BART: Benchmarking Algorithms for data Repairing and
Translation

2https ://github.com/dbunibas/BART
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Player Name | Season | Team | Stadium | Goals
t1 :  Giovinco | 2013-14 | Juventus | Juv.Stadium | 3
to :  Giovinco | 2014-15 | Toronto BMO Field 23
tg: Pirlo 2014-15 | Juventus | Juv.Stadium | 5
ty : Pirlo 2015-16 | N.Y.City | Yankee St. 0
ts :  Vidal 2014-15 | Juventus | Juv.Stadium | 8
te : Vidal 2015-16 | Bayern Allianz Ar. 3

Figure 2: Example Clean Database

and can be further extended by the community to develop
new features and functionalities.

Demonstration Overview. The demonstration will con-
vey three primary insights about the system.

(7) First, we will discuss how the fine control over the fea-
tures of errors distinguishes BART from previous error-gener-
ating techniques used in evaluating data-repairing systems.

(#¢) Then, we will discuss how the characteristics of errors
may significantly influence the quality of repairs generated
by a system.

(#47) Finally, we will demonstrate five different algorithms
in action on dirty data generated using BART, to reveal new
insights on their (relative) performance as the characteristics
of the errors are varied by BART.

Overall, the attendees will learn how the availability of a
tool like BART may help to level the field and raise the bar
for evaluation standards in data cleaning.

The paper is organized as follows. Section [2] introduces
the main motivation for the system, and the notions of de-
tectability and repairability of errors. Section [3| provides an
overview of the system and of its main use cases. Finally,
Section [4] discusses the organization of the demo, and the
main lessons that can be learned from it.

2. CONCEPT AND MOTIVATION

Assume we are given a database about soccer players,
shown in Figure [2| and we want to assess the performance
of repair algorithms according to a few data-quality rules.

(¢) A first FD stating that Name and Season are a key for the
table: d; : Name, Season — Team, Stadium, Goals.

(#¢) And, a second FD stating that Team implies Stadium:
do : Team — Stadium.

We specify these rules in BART using the language of de-
nial constraints. Denial constraints are a very expressive
language, capable of capturing most data-quality rules used
for data-repairing, including FDs, CFDs, cleaning equality-
generating dependencies, editing rules, fixing rules, and or-
dering constraints [10]. For the sake of simplicity, here we
omit the technical details about the syntax and semantics
of denial constraints, and show example data-quality rules
in the more familiar syntax of FDs.

To evaluate data-repair systems, we proceed as follows.

(i) We start with a clean instance I, like the one in Figure 2}
and the set of constraints X = {di1,d2} discussed above.

(#¢) We inject errors by applying a set of cell changes; each
cell change ch = (t;.A := v) updates the value of attribute
A in tuple ¢; to a new value v, e.g, (t1.Season := 2011-12).
By applying a set of cell changes Ch to I, we obtain a new
instance Iy = Ch([), named the dirty instance.
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(#i7) We run a data-repairing algorithm over I3 to obtain
a repaired instance I..,. We measure the quality of the
algorithm using precision and recall. Intuitively, we count
how many changes in Ch have been restored to their original
values in Irep. Further details are in the full paper [1].

We want now to emphasize how different ways to change
the cells of the clean instance may lead to errors that show
completely different features when considered from the per-
spective of a data-repairing tool.

2.1 Detectability

When evaluating a constraint-based repair algorithm, we
want to make sure the errors we inject are detectable by
the system in question. After all, an error that cannot be
detected, cannot be repaired. To reason about detectability,
we need a notion for determining whether a cell change is
involved in a constraint violation. Consider the following
cell change: chy = (¢1.Season := 2012-13) that updates tuple

t1 as follows:
Player Name | Season | Team | Stadium | Goals
t1:  Giovinco | 2012-13 | Juventus | Juv.Stadium | 3

This change does not introduce a violation to any of the
constraints in X, i.e., after the cell change the modified
database instances does fulfill all the constraints. There-
fore, any data-repairing tool that relies on the constraints
to detect dirtiness in the database will not be able to detect
the change. We call this an undetectable change.

More formally, a cell change ch = (¢;.A := v) in Ch in-
troduces a detectable error in I for constraint dc if: (i) cell
ti.A is involved in a violation with dc in instance I;, and
(i) cell ¢;.A was not involved in a violation with dc in in-
stance I. Here “involved in a violation” is defined based on
the fact that a constraint can be associated with a query
that returns sets of cells that cause a violation. We call
this type of queries wiolation-detection queries. A cell is
involved in a violation with a constraint dc if it is in the re-
sult of the violation-detection query for dc |1]. For example,
the violation-detection query for da is Qa,(i,4’,t,a,a’) =
Player(i,n, s,t,a,g), Player(i',n’, s’ t,a’,g"), a # a’, i # 4.
This query returns the Team and Stadium attributes of pairs
of Player tuples with the same team, but different stadiums
Using the tuple id’s, sets of cells involved in violations can
be determined based on the result of this query.

In addition to generating changes to the clean database
that are detectable using the constraints ¥, BART may also
be configured to generated random changes. Generating
detectable changes requires BART to reason efficiently and
holistically about a set of changes to ensure that they are
detectable using a given set of constraints.

Interestingly, this latter requirement significantly increases
the complexity of the error-generation process. In fact, gen-
erating a given number of errors in a clean database that are
detectable using a set of constraints ¥ is an NP-complete
problem [1]. To deal with this complexity BART implements
several novel optimizations 1] that balance the need for con-
trol over the nature of errors and scalability.

2.2 Repairability

An alternative change that indeed introduces a detectable
error is the following: chy = (t1.Season := 2014-15). After

3We assume every tuple has a unique identifier that per
convention is the first attribute. Queries are expressed in a
notation similar to Datalog.



this update, tuples t; and t2 violate FD di, which states
that Name and Season are a key for the table:

Player Name | Season | Team | Stadium | Goals
t1 :  Giovinco | 2014-15 | Juventus | Juv.Stadium | 3
to 1 Giovinco | 2014-15 Toronto BMO Field 23

This change is easily detected using the constraints. Still,
it is quite difficult for an automatic data-repairing algorithm
to restore the database to its clean state. Notice, in fact,
that after this change, the original value 2013-14 has been
removed from the active domain of the dirty database. A
correct repair cannot be found by any repair algorithm that
uses the values in the database as the candidates for repair.

BART uses the notion of repairability of an error to char-
acterize this aspect. In the case above, it would assign re-
pairability 0 to change chy. Different detectable changes
may have quite different repairability values.

As an example, consider now change chz = (¢1.Stadium :=
Delle Alpi). The change is detectable using FD d2. In addi-
tion, the redundancy in the dirty database may be used to
repair the database:

Player Name | Season | Team | Stadium | Goals
t1:  Gilovinco | 2013-14 | Juventus | Delle Alpi 3
ts3 : Pirlo 2014-15 | Juventus | Juv.Stadium | 5
ts :  Vidal 2014-15 | Juventus | Juv.Stadium | 8

The new, dirty tuple ¢; is involved in two violations to da,
one with ¢3, another with ¢5. In both cases, the change is
in violation with Juv.Stadium. By a straightforward proba-
bilistic argument, BART would calculate a 2/3 repairability
for this error, and rank it as a medium-repairability error.

Errors may have higher repairability, even 1 in some cases.
Consider, for example, an additional rule d3: Team[Juventus],
Season[2013 — 14] — Stadium[Juv.Stadium]. This CFD rule
states unequivocably that Juventus has played its home games
for season 2013-14 in the Juventus Stadium. Since this
knowledge is part of the constraint, the dirty cell can easily
be restored to its original, clean state.

2.3 Other Kinds of Errors

To conclude this discussion about the features of errors,
we notice that the notions of detectability and repairability,
that are centered around detecting violations to constraints,
are not the only ones supported by BART.

Consider, for example, change chy = (t1.Goals := 123).
This change is not detectable using the constraints. How-
ever, it might be detected by a statistics-based data-repairing
algorithm, because it introduces an outlier into the distribu-
tion of values of the Goals attribute. BART can be configured
in order to generate changes of this kind as well.

3. OVERVIEW OF THE SYSTEM

BART provides users with the graphical user interface shown
in Figure [3| to handle error-generation tasks. An error-
generation task, E is composed of four key elements: (i) a
database schema S; (i¢) a set ¥ of denial constraints (DCs)
encoding data quality rules over S; (ii¢) an instance I of S
that is clean with respect to X; (iv) a set of configuration
parameters Conf (shown in Figure 1) to control the error-
generation process. These parameters specify, among other
things, which relations can be changed, how many errors
should be introduced, and how many of these errors should
be detectable. They also let the user control the degree of
repairability of the errors.

Based on this, BART supports several uses cases. The
main one consists of generating a desired degree of detectable
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errors for each constraint. In addition, users may also spec-
ify a range of repairability values for each constraint; BART
will estimate the repairability of changes, and only generate
errors with estimated repairability within that range.

In addition to detectable errors, BART may also generate
random errors of several kinds: typos (e.g., ‘databse’), dupli-
cated values, bogus or null values (e.g., ‘9997, “***’). Random
errors may be freely mixed with constraint-induced ones. Fi-
nally, BART can introduce outliers in numerical attributes.

BART provides sophisticated features to analyze the char-
acteristics of errors that are introduced in the data. It gener-
ates charts to analyze the number of errors detected by each
constraint, and their estimated repairability (shown in Fig-
ure 3). It also offers a versioning system, that allows users
to generate different dirty databases for the given scenario,
and compare the characteristics of their errors.

Finally, BART offers a flexible set of metrics to measure the
quality of the repairs generated by a data-repairing tool. In
fact, different algorithms can repair data in different ways.
For example, some algorithms can produce repairs that mark
dirty cells using a variable, while others always restore the
dirty instance with a constant value. Different metrics have
been proposed and are implemented in BART to uniformly
evaluate these heterogenous changes in the data |2} 9].

4. DEMONSTRATION

The demo will be centered around the empirical evalu-
ation of several data-repairing algorithms over dirty data
generated using BART. We will use two publicly available
tools, Llunatic [9] and Nadeef [6], to run four rule-based
data-repairing algorithms: (¢) Greedy [3, |5]; (¢4) Holistic [4];
(¢42) Llunatic [§]; and (iv) Sampling [2]. In addition, we will
evaluate (v) SCARE [14], a statistics-based tool.

The tools will be tested with several repair tasks, based
on synthetic and real datasets, some of them constraint-
based and some statistics-based. We briefly list them here:
(i) Employees is a synthetic scenario in the full paper [1];
(44) Customers is a synthetic scenario from Geerts et al. [8];
(#41) Tax is a synthetic scenario from Fan et al. |7]; (iv)
Bus is a real-world scenario from Dallachiesa et al. [6]; and
(v) Hospital is a real-world scenario used in several data-
repairing papers (e.g., 6l [8]).

Datasets and constraints have been chosen to exhibit dif-
ferent characteristics. Some have high redundancy in their
data. Others contain numerical attributes, and constraints
containing ordering (<, >) comparisons. Some datasets
have master-data [12] and CFDs, while others have only
FDs. All these differences help to validate our techniques
and the tools under exam.

Notice the purpose of this evaluation is not to assess the
quality of the repair algorithms, rather to show how BART
can be used to uncover new insights into the data-repairing
process. Some important insights are the following.

Lesson 1: Data-repairing is not yet Mature. We ex-
pect that a wide degree of variability in quality among all
algorithms will emerge from our evaluations. This variabil-
ity does not clearly emerge from evaluations reported in the
literature, an observation that suggests there is no definitive
data-repairing algorithm yet.

Lesson 2: Repairability Matters. We will observe dif-
ferent trends with respect to repairability. Typically, repair
algorithms return very good repairs when sufficient infor-
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Figure 3:

mation is available (i.e., high repairability); however, their
quality tends to degrade quickly as repairability decreases.
A key observation is that repairability has a strong corre-

lati

on with the quality of the repairs. In this respect, we be-

lieve it nicely captures the “hardness” of the data-repairing

pro

blem and it helps in getting a concrete intuition of the

power and the limits of existing solutions.
Lesson 3: We Need to Document Our Dirty Data.

We

may conclude that tools exhibit quite different perfor-

mance on data-repairing problems of different nature, and

the

repairability is a natural proxy to characterize how “dif-

ficult” a data-repairing problem is.

In light of this and to level the field, we believe it is cru-
cial to have at our disposal systematic error-generation tools
and to properly document the characteristics of the dirty

dat

a used in empirical evaluations of data-repairing solu-

tions. BART is a concrete step in this direction.

Lesson 4: Generating Errors is Hard. The problem
of systematically generating errors, however, is not an easy
one. We will show how different configurations of the error-
generation task affect the overall scalability of the system,
and discuss the main optimizations that BART relies on in

ord

S.
1]

2]

3]

er to tame the complexity of the process.
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