
HybridQuery and Instance Explanations and Repairs
Seokki Lee

University of Cincinnati
lee5sk@uc.edu

Boris Glavic
Illinois Institute of Technology

bglavic@iit.edu

Adriane Chapman
University of Southampton

Adriane.Chapman@soton.ac.uk

Bertram Ludäscher
University of Illinois, Urbana-Champaign

ludaesch@illinois.edu

ABSTRACT
Prior work on explaining missing (unexpected) query results iden-
tifies which parts of the query or data are responsible for the er-
roneous result or repairs the query or data to fix such errors. The
problem of generating repairs is typically expressed as an optimiza-
tion problem, i.e., a single repair is returned that is optimal wrt. to
some criterion such as minimizing the repair’s side effects. How-
ever, such an optimization objective may not concretely model a
user’s (often hard to formalize) notion of which repair is “correct”.
In this paper, we motivate hybrid explanations and repairs, i.e., that
fix both the query and the data. Instead of returning one “optimal”
repair, we argue for an approach that empowers the user to explore
the space of possible repairs effectively. We also present a proof-of-
concept implementation and outline open research problems.
ACM Reference Format:
Seokki Lee, Boris Glavic, Adriane Chapman, and Bertram Ludäscher. 2023.
Hybrid Query and Instance Explanations and Repairs. In Companion Pro-
ceedings of the ACM Web Conference 2023 (WWW ’23 Companion), April
30-May 4, 2023, Austin, TX, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3543873.3587565

1 INTRODUCTION
Both why and why-not provenance (see [11] for a survey) have
been widely used for explaining unexpected and missing query
results. Explanations for missing answers typically fall into two cat-
egories: (i) instance-based explanations [12, 16] (the input database
is considered the only source of error) and (ii) query-based expla-
nations [4, 6] (explaining which parts of a query are problematic).
Explanations aid users in understanding how errors in the data and
query cause their queries to return an incorrect result. However,
a user may also be interested in possible solutions for fixing such
problems. How-to queries [18] compute an update to the input
data that achieves the desired changes to the result of a query that
maximizes a user-provided objective. Other work has studied the
orthogonal problem of repairing the query instead, e.g., to return
less spurious answers [19], to fix an empty query answer [15], or
to construct a query from scratch that returns a desired result [13].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9419-2/23/04. . . $15.00
https://doi.org/10.1145/3543873.3587565

However, both the query and input data may be erroneous and,
thus, there is a need for hybrid explanations and repairs which
consider both the input data as well as the query as potential causes
for erroneous query results. Such hybrid repairs have been largely
ignored in past work. Furthermore, most approaches model the
problem of generating repairs as an optimization problem and re-
turn a single optimal (or approximately optimal) repair. Examples
of optimization objectives that have been used are minimizing the
side-effects on the query result (the updated query result minimally
differs from the original query result), minimizing the changes to
the query that are required to fix the user’s complaints, or opti-
mizing for a user-provided objective [18]. The advantage of such
an approach is that the process of generating repairs can be fully
automated. However, this only works if the objective of the op-
timization problem precisely models what constitutes a correct
explanation / repair. Even though some systems allow the user to
specify the objective, the user may not know enough about the
unknown ground truth repair to specify an effective objective.

Example 1. Consider the income database and Datalog query
shown in Fig. 1. This query determines low-income residents that
are underpaid for the type of work they are doing (earn less pre-tax
income than a job-specific threshold). The user issuing this query
wants to understand why no CA carpenters in TX teachers are in
the result (highlighted tuples in Q’s result). In this example, both
errors in the data as well as the query are responsible for the missing
answers:1 (i) the query uses pre-tax income, omitting several low-
income individuals and (ii) the tax for TX residents only includes state
income tax (which is 0% in TX) instead of federal plus state tax.

Data-based explanations for missing answers [17] justify why
the query did fail to return TX teachers and CA carpenters based on
missing input data. How-to queries [18] can be used to determine a
possible repair of the input database such that the expected result
is returned by the query. However, data-based explanations and
repairs are oblivious to errors with the query itself. Query-based
explanations [6, 8] and query repairs [20] can identify issues with
the query and propose repairs such as subtracting both federal and
state taxes from the income (𝐼 −𝑇 < 90, 000) or changing the thresh-
old in the predicate 𝐼 < 90, 000. However, query-based explanations
and repairs fail to recognize errors in the data as causes for the
incorrect result. In summary, a hybrid of data- and query-based
explanations (and repairs) is needed to address the missing answers
in this example. Unfortunately, existing techniques cannot easily be
combined as query and instance repairs can interfere. Furthermore,

1Here we focus on expected, but missing answers, but the same arguments apply to
unexpected answers which should be removed.

https://doi.org/10.1145/3543873.3587565
https://doi.org/10.1145/3543873.3587565
https://doi.org/10.1145/3543873.3587565

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA Seokki Lee, Boris Glavic, Adriane Chapman, and Bertram Ludäscher

residents
Name State Income Jobtitle Tax
Peter IL 45,000 teacher 8,400
Alice IL 253,000 engineer 69,300
Bob CA 183,000 carpenter 73,000
Fred TX 90,000 teacher 0
Fred TX 120,000 carpenter 0

minincome
Job Threshold

teacher 55,000
engineer 100,000
carpenter 90,000

𝑟1 : Q(𝑆, 𝐽) :− Qlowin (𝑆, 𝐽 , 𝐼), minincome(𝐽 ,𝑇), 𝐼 < 𝑇

𝑟2 : Qlowin (𝑆, 𝐽 , 𝐼) :− residents(𝑁,𝑆, 𝐼 , 𝐽 ,𝑇), I < 90,000

Q
State Jobtitle
IL teacher
CA carpenter
TX teacher

Figure 1: Query that determines which jobs are underpaid in
a particular state (low income residents with this job earn
less pre-tax income than a job-specific threshold).

even if we ignore the lack of support for hybrid explanations, identi-
fying the correct ground truth repair requires a solid understanding
of the application domain as well as the semantics of the intended
query. This type of information is often hard to formalize for a user
as it requires extensive knowledge about the ground truth repair.
At the other end of the spectrum, simply enumerating all possible
repairs is also not an option as the number of candidate solution is
already too large for data-based repairs [17].

In this paper, we argue that these are fundamental problems of
approaches that treat explanations and repairs as an optimization
problem or enumerate all candidates. We envision an approach
that combines user-directed exploration of the search space and
techniques for summarizing large sets of repairs and explanations
to provide guidance to the user. Furthermore, we argue that for a
middle ground between enumerating all solutions and optimizing
for a single solution by filtering solutions that are obviously inferior.
To provide an example, we may group input data changes based
on which attributes that are updated or what are common charac-
teristics of rows that are effected, e.g., “this class of repairs updates
the tax column of rows where state is TX”. As a proof of concept, we
demonstrate how an extension of an existing approach for explain-
ing missing and existing answers for non-recursive Datalog [16, 17]
can generate hybrid explanations and how hybrid repairs can be
extracted from explanations. However, as this is just a first step to-
wards realizing our vision, we also discuss open research problems
and how they relate to existing work in the field.

2 HYBRID QUERY-INSTANCE REPAIRS
We now formalize the problem of hybrid query-instance repairs. We
assume as input a set Δ+ of tuples that should occur in the result of
the query, but are currentlymissing, as well as a setΔ− of tuples that
are currently in the query result, but should be removed. Updates
can be modeled using deletion and insertion. We use set semantics
here, but an extension to bag semantics should be feasible. Instead
of specifying a single objective, we define thresholds on side effects
for the input database, query results, and query to exclude repairs
that are trivial (e.g., rewriting 𝑄 as 𝑄 − Δ− ∪ Δ+). Furthermore,
we assume a distance function 𝑑𝑄 for queries and 𝑑𝐷 for instances
(e.g., the size of the symmetric difference).

Definition 2.1 (Hybrid Repair). We are given as input a query
𝑄 , database 𝐷 , and side effect thresholds. Given a hypothetical
update toA = 𝑄 (𝐷) expressed as C = (Δ+,Δ−) such that Δ− ⊆ A
and Δ+ ∩ A = ∅, a solution to the hybrid repair problem is a pair

(𝑄 ′, 𝐷′) such that:

𝑑𝑄 (𝑄,𝑄 ′) ≤ 𝜆𝑄 𝑑𝐷 (𝐷 ∪ Δ+ − Δ−, 𝐷′) ≤ 𝜆𝑜𝑢𝑡𝑝𝑢𝑡

𝑑𝐷 (𝐷, 𝐷′) ≤ 𝜆𝑖𝑛𝑝𝑢𝑡
| Δ− −𝑄 ′ (𝐷′) | + | Δ+ ∩𝑄 ′ (𝐷′) |

| Δ+ | + | Δ− | ≥ 𝜆Δ

where 𝑄 ′ is the modified query and 𝐷′ is the updated database.

Intuitively, the above definition allows for any repair where the
side effects on the input database and query are within the thresh-
olds (𝜆𝑖𝑛𝑝𝑢𝑡 and 𝜆𝑄). Furthermore, we also limit the side effect on
the query result (changes other than the ones requested by the user)
by threshold 𝜆𝑜𝑢𝑡𝑝𝑢𝑡 and require that the repair implements at least
a certain fraction 𝜆Δ of the changes Δ− and Δ+. By defining repairs
using thresholds we can exclude trivial repairs without the pitfalls
of optimizing for a single “optimal” repair: maximizing an objective
function that may be a poor substitute for repair correctness.

Example 2 (Running Example Repair). The user’s complaint
from Ex. 1 is Δ+ = {(𝐶𝐴, 𝑐𝑎𝑟𝑝𝑒𝑛𝑡𝑒𝑟), (𝑇𝑋, 𝑡𝑒𝑎𝑐ℎ𝑒𝑟)} and Δ− = ∅.
For example, a possible data-based repair (assuming appropriate
thresholds) is to reduce the income of teacher Fred (TX) and of car-
penter Bob (CA) such that both 𝐼 < 90, 000 and 𝐼 < 𝑇 evaluate to
true for these two rows (e.g., by setting them to 42,999 and 89,999,
respectively). One query-based repair is to increase the constant in the
condition 𝐼 < 90, 000 and relax the condition 𝐼 < 𝑇 , e.g., by replacing
it with 𝐼 < 𝑇 + 𝑐 for a sufficiently large constant 𝑐 .

Both repairs from the example above are minimal in terms of
their result and input data (or query2) side-effects. The issue is
not just that the correct repair for this example is a hybrid repair,
but also that it does not have minimal side-effects! Furthermore,
even if we optimize for a user-provided metric, it is questionable
whether the user would be able to formalize a metric that would
cause an optimization-based algorithm to select the correct repair as
this fundamentally requires already a solid understanding of what
caused the error (tax values are incorrectly recorded for TX, and
the predicate in 𝑟2 should use 𝐼 −𝑇 < 90, 000 instead of 𝐼 < 90, 000).
A user that has understood the nature of the problem to that extend
would likely be able to determine the correct repair without further
guidance. Thus, this example motivates the need for user-guided
repair search. We will expand on that in Sec. 5.

3 RELATEDWORK
Data- and Instance-based Explanations for Existing andMiss-
ing Answers. Provenance has been the basis of most approaches
for instanced-based [16, 21] (tracing errors to the input data) and
query-based explanations [8, 12] of existing and missing answers.
Hybrid Explanation for Missing Answers. [10] presents the
Conseil system which computes hybrid explanations for missing
answers over non-monotonic queries. The instance-part of an expla-
nation produced by Conseil encodes multiple possible repairs com-
pactly using c-tables and supports user-provided side-constraints.
However, generating repairs with Conseil is still a one-shot pro-
cess instead of an interactive exploration of the search space. This
requires the development of new techniques that can dynamically
2If we assume query side-effects are measured as the total number of modified goals
and restrict repairs to modifying predicate goals which of course is only one possible
meaningful choice.

HybridQuery and Instance Explanations and Repairs WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

react to changing constraints on allowable repairs during the user’s
exploration of the search space.
Query Repairs. Techniques that repair a query typically change
selected operators such that the missing result is returned: query
refinement targets the use case where a query returns too many
(unexpected) answers [20] and query relaxation addresses the issue
of an empty query result [19]. Query reverse engineering (QRE) [13]
reconstructs a query based on data examples. Given a database 𝐷
and the result𝑄 (𝐷) of an unknown query𝑄 , QRE generates a query
𝑄 ′ such that 𝑄 ′ (𝐷) = 𝑄 (𝐷).
Instance Repairs. Repairing the input data to achieve a desired
query result is an instance of the view update problem [5]. How-
to queries [18] phrase this problem as an optimization problem,
enabling the user to specify the objective function.
Data + Constraint Repair. The problem of hybrid repairs is also
related to the problem of simultaneously repairing a set of integrity
constraints and a dataset violating the constraints (e.g., see [3]).
Summarizing, Querying, and Exploring Provenance. We envi-
sion interactive exploration and querying to play an important role
in exploring hybrid repairs. We expect work on filtering [7] and
querying provenance [2, 14], on an interactive exploration of prove-
nance, and on (approximate) provenance summarization [1, 17] to
play an important role. However, more work is needed to support
efficient interactive exploration of the search space.

4 HYBRID EXPLANATIONS AND REPAIRS
As a proof of concept, we extend our past work [16] which generates
instance-based explanations for missing and existing answers of
Datalog queries to support hybrid explanations and discuss how to
“read-out” repairs from these explanations.

Given an input query 𝑄 and database 𝐷 , a hybrid explanation
HyExpl justifies the existence/absence of a result tuple 𝑡 of𝑄 based
on the success/failure to derive 𝑡 using the rules of𝑄 . Such explana-
tions are generated in the form of graphs whose nodes correspond
to existing and missing tuples as well as successful/failed goals in
the body of grounded Datalog rules (rules instantiated with values
from the database). These graphs contain four types of nodes: tu-
ple nodes (oval) represent EDB and IDB facts (tuples of the input
database and tuples produced by rules, respectively); rule nodes (rec-
tangle) represent a grounded rule and are labeled with an identifier
for the rule (e.g., 𝑟1) and the arguments it was instantiated with;
instance goal nodes (superscript 𝐼) represent goals of an instantiated
rule and are labeled with their arguments and an identifier for the
rule and their position in the rule’s body; predicate goal nodes (su-
perscript 𝑃) represent comparison predicates. The color of a tuple
node indicates whether the tuple exists (green) or not (dark red).
The same color scheme is used to indicate success / failure of rule
and goal nodes.

Similar to the explanations in PUG [16], existing IDB tuples
(query result tuples) are connected to the successful grounded rules
that derive the tuple while missing tuples are connected to all
grounded rules that could have derived the tuple (but failed). A
grounded rule succeeds if all of its goals succeeds and, thus, the suc-
cess of the goals justifies the success of the rule. That is, successful
rule nodes are connected to successful goal nodes for each goal of
the rule. A grounded rule evaluates to false if at least one of its goal

𝑸 (𝑻𝑿, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓)

𝒓1(𝑻𝑿, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 45𝒌, 55𝒌)

𝒈11 (𝑻𝑿, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 45𝒌)𝑰

𝑸𝒍𝒐𝒘𝒊𝒏 (𝑻𝑿, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 45𝒌)

𝒓2(𝑻𝑿, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 45𝒌, 𝑭 𝒓𝒆𝒅, 0)

𝒈12 (𝑭 𝒓𝒆𝒅, 𝑻𝑿, 45𝒌, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 0)𝑰

𝒓𝒆𝒔 𝒊𝒅𝒆𝒏𝒕𝒔(𝑭 𝒓𝒆𝒅, 𝑻𝑿, 45𝒌, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 0)

𝒓1(𝑻𝑿, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 90𝒌, 55𝒌)

𝒈11 (𝑻𝑿, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 90𝒌)𝑰 𝒈31 (90𝒌 < 55𝒌)𝑷

𝑸𝒍𝒐𝒘𝒊𝒏 (𝑻𝑿, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 90𝒌)

𝒓2(𝑻𝑿, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 90𝒌, 𝑭 𝒓𝒆𝒅, 0)

𝒈22 (90𝒌 < 90𝒌)𝑷

𝒓2(𝑻𝑿, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 90𝒌, 𝑭 𝒓𝒆𝒅, 8400)

𝒈12 (𝑭 𝒓𝒆𝒅, 𝑻𝑿, 90𝒌, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 8400)𝑰

𝒓𝒆𝒔 𝒊𝒅𝒆𝒏𝒕𝒔(𝑭 𝒓𝒆𝒅, 𝑻𝑿, 90𝒌, 𝒕𝒆𝒂𝒄𝒉𝒆𝒓, 8400)

Figure 2: Partial hybrid explanations for (TX,teacher) ∈ Δ−

evaluates to false. Thus, the failed goals of a grounded rule justify
the failure of the rule. As shown in [16], ignoring the predicate
goals, this type of graphs are expressive enough to encode prove-
nance polynomials and their extension for negation [9], but also
encode information about the query structure. By adding predicate
goal nodes, hybrid explanations also model how the success and
failure of comparison predicates affect the success/failure of the
grounded rules of a query.

Example 3. Fig. 2 shows a partial hybrid explanation for the miss-
ing result Q(TX, teacher), i.e., why no teachers in TX are underpaid.
We show three example possible causes: (i) Data-based (left-most)
- the tuple node Q(TX, teacher) connects to the failed rule ground-
ing which derives the instance goal through 𝑟1. This derivation fails
based on the absence of the tuple (𝐹𝑟𝑒𝑑,𝑇𝑋, 45𝑘, 𝑡𝑒𝑎𝑐ℎ𝑒𝑟, 0) in the
relation residents; (ii) Query-based (middle) - connects the tuple
node to the failed predicate goals 𝑔31 (90𝑘 < 55𝑘)𝑃 and 𝑔22 (90𝑘 <

90𝑘)𝑃 through the failed grounded rule 𝑟1 (𝑇𝑋, 𝑡𝑒𝑎𝑐ℎ𝑒𝑟, 90𝑘, 55𝑘) and
𝑟2 (𝑇𝑋, 𝑡𝑒𝑎𝑐ℎ𝑒𝑟, 90𝑘, 𝐹𝑟𝑒𝑑, 0), respectively; (iii) Hybrid (right-most) -
shows an example combination of a data-based and query-based expla-
nation: tax should include, e.g., the federal tax for Fred that is 8400 (en-
coded in the failed tuple node 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠 (𝐹𝑟𝑒𝑑,𝑇𝑋, 90𝑘, 𝑡𝑒𝑎𝑐ℎ𝑒𝑟, 8400)
and the failed instance goal node 𝑔12 (𝐹𝑟𝑒𝑑,𝑇𝑋, 90𝑘, 𝑡𝑒𝑎𝑐ℎ𝑒𝑟, 8400)

𝐼).
Also the comparison predicates of 𝑟1 and 𝑟2 are too strict as shown by
the failed predicate goals in the graph.

Hybrid Repairs.We now show how to compute repairs based on a
hybrid explanation. In [16], we proved that the PUG’s explanations
generalize the dual provenance polynomials of the semiring frame-
work extension for first-order logic [10] by assigning a provenance
token for each tuple node in the leaves and considering rule nodes
as conjunctions (·) and goal nodes and rooted tuple nodes as alterna-
tives (+) and dealing with negation as in [9] by separate tokens for
positive (existing) and negated (missing) tuples. Then, the hybrid
repair problem can be recast as a constraint optimization problem
by translating HyExpl to a set of linear constraints based on the
expected query result. The problem is solvable using off-the-shelf
solvers. However, the cost of running a constraint solver over a
problem whose size is polynomial in data is in general not an option
because of the high computational complexity of constraint solving.
Furthermore, constraint solvers typically return only a single result
and, thus, do not directly allow us to involve the user in the search
for the correct repair. We will discuss possible solutions in Sec. 5.

Example 4. Using the hybrid explanation in Ex. 3, a user can
obtain valid repairs that cause Q(TX, teacher) to appear in the result
of 𝑟1. However, not all of these repairs are correct and meaningful. For
example, the data-based explanation (left-most in Fig. 2) leads to a

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA Seokki Lee, Boris Glavic, Adriane Chapman, and Bertram Ludäscher

repair that inserts tuple (𝐹𝑟𝑒𝑑,𝑇𝑋, 45𝑘, 𝑡𝑒𝑎𝑐ℎ𝑒𝑟, 0) which causes 𝑟2
to succeed which in turns causes 𝑟1 to derive the expected result. This
explanation yields a valid repair and is side-effect free. However, 45𝑘 is
not the correct income for Fred. Based on the query-based explanation
(middle derivation in the figure), changing the comparisons in 𝑟1 and
𝑟2 is a valid repair and is minimal in terms of query modifications.
However, it may introduce a large number of side-effects on the query
result. Importantly, both repairs do not fix the error with the missing
federal tax for TX residents. The hybrid derivation (right-most) guides
the user to obtain the correct repair: the instance goal that describes
the tax amount should be changed as well as the comparisons of the
query need to be changed. However, there are still many possible
options for how to repair this part of the data and query.

Preliminary Evaluation. We conducted a preliminary evaluation
to measure the runtime in seconds for computing HyExpl using a
real-world dataset3 (varying size from 270 to 270K rows). We use a
simple conjunctive query with a comparison and compute HyExpl
for a particular missing result. The experiments are conducted on
a machine with 2 × 3.30 Ghz 8 cores Intel Xeon CPU and 128GB
memory. Computing HyExpl for the missing result takes about 10s
of seconds. Even for this simple case for a selective comparison, the
number of failed derivations is already between 3 · 105 and 2.2 · 106,
demonstrating the infeasibility of enumerating all possible repairs.

5 CONCLUSIONS AND DISCUSSION
In this paper, we introduced our vision for hybrid repairs and moti-
vated why modeling the problem as an unsupervised optimization
problem is often insufficient. Moving from providing a single expla-
nation/candidate repair to a larger selection of options, there can be
a set of conflicting requirements for which an optimal solution does
not exist or where it is virtually impossible to specify a metric that
captures the characteristics of the ground truth repair. In this case,
it is essential to provide users with the necessary tools to control
the search for the correct repair by providing information about
the search space and about specific repairs as well as allow users to
state and update requirements such a repair should fulfill. Thus, to
realize our vision, we outline several open research questions that
have to be addressed in the following.
Restricting the Space of Viable Repairs. In Definition 2.1, we
did only slightly restrict the space of possible repairs. However, this
is obviously too general for many use cases and may still result in
a very large space of repairs. Hence, one of the first challenges that
needs to be addressed is to study restrictions of the search space to
exclude further meaningless repairs without being too restrictive
(e.g., only allowing repairs with minimal side-effects). For example,
such restrictions may come in the form of requiring specific parts
of the query or input database to not be modified by the repair,
limiting the percentage of changed tuples for subsets of the input
data, or restrict repairs to changes of predicate goals [8].
User-guided Exploration. Even when significantly restricting
the search space, full exploration of the search space will not be
an option. To empower the user to efficiently navigate the search
space, we need effective visualizations of repairs at flexible levels
of abstraction (e.g., the user may want to first see a summary of
the changes that constitute a repair such as a compact description
3https://www.kaggle.com/leomauro/argodatathon2019

of the rows that would be modified), the ability to sort a set of
repairs and the ability to change the sort order dynamically, e.g.,
sorting the repairs based on their side-effect size or based on a
user-defined query (the data of how many high-value customers
will be affected by the repair?). Furthermore, the user should be able
to pose and update restrictions on the search space based on new
knowledge uncovered during the search process. Such restrictions
should include positive feedback (e.g., the user may identify a subset
of updates made by a repair as correct and may only want to explore
repairs that apply these updates) as well as negative feedback (e.g.,
exclude all repairs that change the income of persons).
Summarizing Repairs to Guide Exploration. In addition to
presenting information about a single repair at flexible levels of
details, we should also aid the user to understand sets of repairs
that share common characteristics. This requires summarizing sets
of repairs compactly and to compute statistics about such sets (e.g.,
all repairs that update the tax rate in TX will at least have 𝑥 side
effects). As enumerating large sets of repairs is likely not an option,
this necessitates the development of approximation techniques to
ensure that such statistics can be computed efficiently.

REFERENCES
[1] E. Ainy, P. Bourhis, SB. Davidson, D. Deutch, and Tova Milo. 2015. Approximated

Summarization of Data Provenance. In CIKM. 483–492.
[2] Bahareh Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian Zeng.

2018. GProM - A Swiss Army Knife for Your Provenance Needs. IEEE Data Eng.
Bull. 41, 1 (2018), 51–62.

[3] George Beskales, Ihab F. Ilyas, Lukasz Golab, and Artur Galiullin. 2013. On
the relative trust between inconsistent data and inaccurate constraints. In ICDE.
541–552.

[4] Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki, et al. 2014. Query-Based
Why-Not Provenance with NedExplain. In EDBT. 145–156.

[5] Aaron Bohannon, Benjamin C Pierce, and Jeffrey A Vaughan. 2006. Relational
lenses: a language for updatable views. In PODS. 338–347.

[6] Adriane Chapman and H. V. Jagadish. 2009. Why Not?. In SIGMOD. 523–534.
[7] Daniel Deutch, Amir Gilad, and Yuval Moskovitch. 2015. Selective Provenance

for Datalog Programs Using Top-K Queries. PVLDB 8, 12 (2015), 1394–1405.
[8] Ralf Diestelkämper, Seokki Lee, Melanie Herschel, and Boris Glavic. 2021. To

Not Miss the Forest for the Trees - A Holistic Approach for Explaining Missing
Answers over Nested Data. In SIGMOD. 405–417.

[9] Erich Grädel and Val Tannen. 2017. Semiring Provenance for First-Order Model
Checking. arXiv preprint arXiv:1712.01980 (2017).

[10] M. Herschel. 2015. A Hybrid Approach to Answering Why-Not Questions on
Relational Query Results. JDIQ 5, 3 (2015), 10.

[11] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar. 2017. A survey
on provenance: What for? What form? What from? VLDBJ (2017), 1–26.

[12] M. Herschel and M. Hernandez. 2010. Explaining Missing Answers to SPJUA
Queries. PVLDB 3, 1 (2010), 185–196.

[13] Dmitri V Kalashnikov, Laks VS Lakshmanan, and Divesh Srivastava. 2018. Fastqre:
Fast query reverse engineering. In SIGMOD. 337–350.

[14] G. Karvounarakis, Z.G. Ives, and V. Tannen. 2010. Querying data provenance. In
SIGMOD. 951–962.

[15] Nick Koudas, Chen Li, Anthony K. H. Tung, and Rares Vernica. 2006. Relaxing
Join and Selection Queries. In VLDB. 199–210.

[16] Seokki Lee, Bertram Ludäscher, and Boris Glavic. 2018. PUG: a framework and
practical implementation for why and why-not provenance. VLDBJ (2018), 1–25.

[17] Seokki Lee, Bertram Ludäscher, and Boris Glavic. 2020. Approximate Summaries
for Why and Why-not Provenance. PVLDB 13, 6 (2020), 912–924.

[18] A. Meliou and D. Suciu. 2012. Tiresias: The database oracle for how-to queries.
In SIGMOD. 337–348.

[19] Chaitanya Mishra and Nick Koudas. 2009. Interactive Query Refinement. In
EDBT. 862–873.

[20] Quoc Trung Tran and Chee-Yong Chan. 2010. How to ConQueR why-not ques-
tions. In SIGMOD. 15–26.

[21] Jane Xu, Waley Zhang, Abdussalam Alawini, and Val Tannen. 2018. Provenance
Analysis for Missing Answers and Integrity Repairs. IEEE Data Eng. Bull. 41, 1
(2018), 39–50.

https://www.kaggle.com/leomauro/argodatathon2019

	Abstract
	1 Introduction
	2 Hybrid Query-Instance Repairs
	3 Related Work
	4 Hybrid Explanations and Repairs
	5 Conclusions and Discussion
	References

