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ABSTRACT
Efforts to scale spreadsheets either follow a ‘virtual‘ strat-

egy that layers a spreadsheet interface on top of an existing

database engine or a ‘materialized’ strategy based on re-

engineering a spreadsheet engine. Because databases are

not optimized for spreadsheet access patterns, the material-

ized approach has better performance. However, the virtual

approach offers several advantages that can not be easily

replicated in the materialized approach, including the ability

to re-apply user interactions to an updated input dataset. We

propose the overlay update model, a hybrid approach that

overlays user updates on an existing dataset (as in the virtual

approach) and indexes user updates (as in the materialized

approach). A key feature of our approach is storing updates

generated by bulk operations (e.g., copy/paste) as compact

“patterns" that can be leveraged to reduce execution costs.We

implement an overlay spreadsheet over Apache Spark and

demonstrate that, compared to DataSpread (a materialized

spreadsheet), it can significantly reduce execution costs.
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1 INTRODUCTION
Tools likeWrangler [12], Vizier [8, 10], and others [15] adopt
direct manipulation interfaces, similar to spreadsheets, as a

way to streamline the definition of data preparation work-

flows. While convenient for curation, these interfaces lack
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Figure 1: Approaches to scalable spreadsheet design
the free form datamanipulation capabilities thatmake spread-

sheets ideal for data exploration and visualization.

Fundamental to spreadsheet interfaces in workflow sys-

tems is the need to support replay. When the source data or

workflow changes, it should be possible to re-run the (up-

dated) workflow on the updated data. This is enabled in sys-

tems like Wrangler and Vizier, where the fundamental data

model is a workflow of repeatable transformations (‘Work-

flow’ in Figure 1). By contrast, a spreadsheet is a grid of in-

terdependent cells where the original data and user-applied

edits are indistinguishable (‘Spreadsheet‘ in Figure 1).

In this paper, we propose a model of spreadsheets that acts

like a classical spreadsheet, but where the user’s edits and the

source data are decoupled. The result is a spreadsheet that

can be ‘overlaid’ on top of any dataset (‘Overlay’ in Figure 1),

no matter whether the source data is a raw datafile or the

result of a workflow (e.g., in Vizier). Overlay Spreadsheets

provide the flexibility of spreadsheets, while also supporting

the replay capabilities available in workflow systems.

As we discuss in this paper, this new overlay approach to

spreadsheets also enables a new approach to scaling spread-

sheets to larger data. Classical spreadsheets have historically

had challenges managing “big data” — as few as 100k rows

of data create problems for existing spreadsheet engines [16].

DataSpread [5, 6, 16] re-architects the spreadsheet runtime

and specializes database primitives like indexes and incre-

mental maintenance for spreadsheet access patterns. In spite

of these changes, DataSpread still faces a key challenge: like

classical spreadsheets, its unit of computation is the cell. Al-

though the overheads of starting a computation (e.g., locking,

state initialization, etc...) are typically low, they are repeated

for each and every cell that needs to be computed.

Scaling Spreadsheets to Big Data. There has been consider-

able effort by the database community to ‘scale up’ spread-

sheets to big data [5, 6, 16]. Overlays create an opportunity
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for further scalability based on the following two observa-

tions: (i) Most of the ‘big’ data appears in the source dataset.

(ii) The user applies a small number of edits (that may affect

a large number of cells). The latter observation arises be-

cause users typically edit large numbers of cells by ‘pasting’

a formula into a range of cells. The pasted formula acts as a

template, and the pasted cells all follow a common pattern.

Like [6], we avoid storing formulas for each individual cell,

instead storing patterns and ranges of pasted cells.

Leveraging the user’s interest in only a small subset of the

spreadsheet at any one time, overlay spreadsheets avoid com-

putations outside of this subset. Requests for cells originating

in the source data can be handled efficiently by standard rela-

tional storage engines, while only formula cells visible to the

user and their transitive dependencies need to be computed.

Unfortunately, common spreadsheet usage creates cells

with transitive dependencies that scale with data size. We

mitigate the prohibitively high cost of such cells by out-

sourcing their computation to a batch-processing engine like

Apache Spark. Although slower for small datasets, batch

engines scale to larger workloads more gracefully, making

them ideal for expensive computations that span many cells,

where individual cell values are not needed.

Overlay Spreadsheets. We propose Overlay Spreadsheets,
which present an interface analogous to a normal spread-

sheet, but where user edits are “overlaid” on top of a source

dataset that can easily be updated to a new version.

We outline a preliminary implementation of Overlay Spread-

sheets within Vizier [7, 8, 13], a multi-modal notebook-style

workflow system built on Apache Spark. Our implementa-

tion replaces its existing workflow-style spreadsheet. Our

objective is to demonstrate that a spreadsheet-style interface

can provide interactive latencies (i.e., like the materialized

approach), while still supporting replay and provenance
(i.e., like the virtual approach).

2 SPREADSHEET DATA MODEL
2.1 Spreadsheets
Let C and R denote domains of column and row labels.

Except where noted, R ⊂ Z. Let V and E ⊃ V denote

domains of values and expressions, respectively. A spread-
sheet S : (C × R) → E is a partial mapping from cells
(𝑐 [𝑟 ] ∈ (C × R)) to expressions. We use S[𝑐, 𝑟 ] to denote

S(𝑐 [𝑟 ]). Let ⊥ ∈ V indicate “undefined” and define the do-
main Dom(S) to be the set of cells 𝑐 [𝑟 ] where S[𝑐, 𝑟 ] ≠ ⊥.
An expression 𝑒 ∈ E is a formula defined over literals

fromV , the standard arithmetic operators, and references

to other cells in the spreadsheet (𝑐 [𝑟 ]). The expression 𝑒 is

evaluated in the context of a spreadsheet (⟦ · ⟧S : E → V)

as follows: (i) Literals and arithmetic are evaluated in the

Spreadsheet S
A B C

1 15 50 A1 + B1

2 20 60 A2 + B2

3 25 100 A3 + B3

4 50 0 A4 + B4

Evaluated Spreadsheet ⟦ · ⟧S
A B C

1 15 50 65

2 20 60 80

3 25 100 125

4 50 0 50

Update𝑈 = {𝐴[1] = 20,𝐶 [3] = 2 · 𝐴3 + 𝐵3}
Updated Spreadsheet𝑈 (S)

A B C

1 20 50 A1 + B1

2 20 60 A2 + B2

3 25 100 2 · A3 + B3

4 50 0 A4 + B4

Evaluated Update ⟦ · ⟧𝑈 (S)
A B C

1 20 50 70

2 20 60 80

3 25 100 150

4 50 0 50

Figure 2: Example spreadsheet with expressions shown
in dark green, and an update applied to the spreadsheet
with updated expressions and values shown in red.

usual way, and (ii) References to the spreadsheet are eval-

uated recursively (⟦ 𝑐 [𝑟 ] ⟧S ≡ ⟦ S(𝑐, 𝑟 ) ⟧S). By convention,

cyclic references evaluate to ⊥. An expression’s dependen-

cies (deps (𝑒)) are the cells referenced by 𝑒 . Dependencies

induce a graph𝐺S ⟨𝑁, 𝐸⟩ over the spreadsheet, with cells as

nodes (i.e., 𝑁 = C × R), and dependencies as directed edges:

𝐸 =
⋃

𝑐 [𝑟 ]∈C×R
{ 𝑐 [𝑟 ] → 𝑐′ [𝑟 ′] | 𝑐′ [𝑟 ′] ∈ deps (S[𝑐, 𝑟 ]) }

Denote by 𝐺∗
S
the graph ⟨𝑉 , 𝐸∗⟩ where 𝐸∗ is the transitive

closure of 𝐸 (i.e.,𝐺∗
S
captures both direct and indirect depen-

dencies). Note that if all cell expressions are constants (i.e., a

spreadsheet without formulas), then ⟦ 𝑐 [𝑟 ] ⟧S = S[𝑐, 𝑟 ].

Example 2.1. Consider the spreadsheet at the top of Fig-

ure 2. Columns A and B hold constant expressions, while

column C holds reference cells from columns A and B. Eval-
uating this spreadsheet assigns each cell a value, as in the

top right. For example,𝐶 [1] evaluates to ⟦ 𝐴[1] + 𝐵 [1] ⟧S =
⟦ 𝐴[1] ⟧S + ⟦ 𝐵 [1] ⟧S = 15 + 50 = 65.

2.2 Cell Updates
A cell update set𝑈 ⊆ C×R ×E is a set of cell updates of the

form 𝑐 [𝑟 ] = 𝑒 that assign to cell 𝑐 [𝑟 ] the expression 𝑒 . Denote
by Dom(𝑈 ) the domain of update𝑈 , containing all cells 𝑐 [𝑟 ]
defined in𝑈 (i.e., ∃𝑒 : ( [𝑐 [𝑟 ] = 𝑒] ∈ 𝑈 )). Applying an update

𝑈 to a spreadsheet S returns an updated spreadsheet:

𝑈 (S) [𝑐, 𝑟 ] =
{
𝑈 (𝑐 [𝑟 ]) if 𝑐 [𝑟 ] ∈ Dom(𝑈 )
S[𝑐, 𝑟 ] otherwise

An updatemay affect cells beyond its domain. For example,

the update shown in Figure 2 changes two cells 𝐴[1] and
𝐶 [3], but evaluating the updated spreadsheet 𝑈 (S) results
in three cell changes (in red).
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2.3 Spreadsheet Access to Datasets
To uniformly model source datasets, whether originating

from relational databases or other spreadsheets, we assume

an input dataset𝐷 with designated row and column labels C𝐷
andR𝐷 as appropriate to the source data. In a relational table,

these are the table’s columns and the values of a key or rowid

attribute, respectively. For csv data, R𝐷 ⊂ Z is the position
of the row in the file. We write 𝐷 [𝑟, 𝑐] to denote the value at
column 𝑐 ∈ C𝐷 of row 𝑟 ∈ R𝐷 in 𝐷 . Denote by F : R𝐷 → Z
a reference frame, an injective map from rows in 𝐷 to rows

of the spreadsheet. A spreadsheet overlay for a dataset 𝐷 is

a pair (𝐷, F ) that defines a spreadsheet S𝐷,F with domains

C = C𝐷 , R = Dom(F ) as S𝐷,F [𝑐, 𝑟 ] = 𝐷 [𝑐, F −1 (𝑟 )]

2.4 Overlay Updates
An Overlay Update describes a set of changes to a spread-

sheet (or dataset). As we will discuss in Section 3.1, column

operations are trivially supported in our model, and we focus

on cell and row updates exclusively. Concretely, a spread-

sheet overlay O = ⟨T ,U⟩ is a reference frame transforma-

tion T and a set of pattern updatesU, terms we now define.

Reference Frame Transformations. Recall that a refer-
ence frame maps the spreadsheet’s positional row references

to native record identifiers. Thus, to insert, delete, or move

rows in the spreadsheet, it is sufficient to modify the refer-

ence frame. Formally, a reference frame transformation T is

an injective mapping Z→ Z ∪ ⊥ from initial row positions

to new row positions, or the value ⊥ for a deleted row (T
is allowed to map multiple inputs to ⊥). The new reference

frame, after applying O is F ′ = T ◦ F , where ◦ denotes
function composition. As an example, consider deleting the

2nd row from Figure 2. The positions of rows 3 and 4 are

decreased by one, while row 1 retains its position

T (𝑥) =


𝑥 if 𝑥 < 2

⊥ if 𝑥 = 2

𝑥 − 1 otherwise

Row insertions and movement are handled analogously.

Note that row insertions, deletions, and movement are ex-

pressible in constant size, independent of the size of the data.

Pattern Updates. Spreadsheets allow a formula from one

cell to be pasted across a range of cells. In a classical spread-

sheet, bulk interactions like thismodify each cell’s expression

individually. Overlay spreadsheets avoid the high cost that

individual modifications can entail by grouping together the

set of pasted cells into a single pattern.
A range 𝐶 [𝑅] is the Cartesian product 𝐶 × [𝑙, ℎ] of a set

of columns (𝐶 ⊆ C) and row positions (𝑅 = [𝑙, ℎ] ⊂ Z). A
pattern updateU is a set of pairs {(𝐶𝑖 [𝑅𝑖 ], 𝑃𝑖 )} where𝐶𝑖 [𝑅𝑖 ]
is a range and 𝑃𝑖 is a pattern expression, i.e., an expression

Spreadsheet S
A B C D

1 15 50 A1 + B1 C1

2 20 60 A2 + B2 C2 + D1

3 25 100 A3 + B3 C3 + D2

4 50 0 A4 + B4 C4 + D3

Evaluated Spreadsheet ⟦ · ⟧S
A B C D

1 15 50 65 65

2 20 60 80 145

3 25 100 125 270

4 50 0 50 320

Figure 3: Example overlay update and result (updated
expressions and values are shown in red).

that may also contain cell references where rows are relative

offsets (written as +𝑖 or −𝑖). Ranges in an update𝐶𝑖 [𝑅𝑖 ] must

be pairwise disjoint. A pattern update (𝐶𝑖 [𝑅𝑖 ], 𝑃𝑖 ) assigns
an expression to every cell 𝑐 [𝑟 ] in 𝐶𝑖 [𝑅𝑖 ] by replacing any

relative references of the form 𝑐 [+𝛿] in 𝑃𝑖 with 𝑐 [𝑟 + 𝛿]. We

use 𝑃𝑖 (𝑐 [𝑟 ]) to denote instantiation of pattern 𝑃𝑖 for cell 𝑐 [𝑟 ].
For instance, to store a running sum of the values in col-

umn C into column D (for the spreadsheet from Figure 2):

U𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = (𝐷 [1], (𝐶, +0)), (𝐷 [2 − 4], (𝐶, +0) + (𝐷,−1))

Semantics for Overlay Updates. An overlay update O
applied to a spreadsheet S defines the spreadsheet O(S)
computed by applying the reference frame update and then

applying all pattern updates (with O = ⟨T , {(𝐶𝑖 , 𝑅𝑖 , 𝑃𝑖 )}⟩):

O(S) [𝑐, 𝑟 ] =


𝑃𝑖 (𝑐 [𝑟 ]) if ∃𝑖 : 𝑐 [𝑟 ] ∈ 𝐶𝑖 [𝑅𝑖 ]
S[𝑐,T −1 (𝑟 )] if ∃𝑟 ′ : T (𝑟 ′) = 𝑟

⊥ otherwise

Example 2.2. Consider our example update (O𝑟𝑢𝑛𝑛𝑖𝑛𝑔 =

(T𝑖𝑑 ,U𝑟𝑢𝑛𝑛𝑖𝑛𝑔) where T𝑖𝑑 (𝑥) = 𝑥 ). Figure 3 shows the result

of applying O𝑟𝑢𝑛𝑛𝑖𝑛𝑔 to our running example spreadsheet.

Several remarks are in order. First, overlays can be used to

encode common spreadsheet update operations in constant

space (per update), including bulk updates via copy/paste.

Second, [17] uses similar ideas to compress the dependencies

in a spreadsheet using ranges and patterns, but focuses ex-

clusively on the dependency graph rather than expressions.

2.5 Replacing Source Data
An overlay designed for source data (𝐷, F ) may be applied

to a dataset (𝐷 ′, F ′) as long as each 𝑟 ∈ R𝐷 there is a corre-

sponding row 𝑟 ′ ∈ R𝐷 ′ such that F ′ (F −1 (𝑟 )) = 𝑟 ′. This is
possible if, e.g., R𝐷 = R𝐷 ′ is a semantic key for the dataset.



HILDA ’23, June 18, 2023, Seattle, WA, USA Kennedy et al.

3 SYSTEM DESIGN
Our prototype overlay spreadsheet is implemented within

the Vizier reproducible notebook platform [7, 8, 13]. Vizier

leverages Apache Spark [1] for data provenance, processing,

and data import/export. Our prototype is designed to accept

any Spark dataframe as a data source.

Client applications connect through a thin Presentation
layer that mediates concurrent access to the spreadsheet

and translates our internal model of a spreadsheet to a more

natural interface. TheExecution layer evaluates spreadsheet

cells and materializes cells currently visible to the user. The

Indexing layer provides efficient access to formulas, and a

LRU cache provides efficient access to source dataframes.

3.1 Presentation Layer
User-facing client applications connect to the overlay spread-

sheet through a presentation layer that serializes concurrent

updates, and provides clients with the illusion of a fixed grid

of cells. Column operations (insertion, deletion, reordering)

are handled at this layer, so lower levels can reference the

small set of columns solely by column identity. Other updates

are serialized and forwarded to lower levels.

The presentation layer expects the Executor to provide

efficient random access to cell values and supports updating

ranges of cells with pattern expressions.

3.2 Executor
The executor provides efficient access to cell values and gen-

erates notifications about cell state changes. Cell values are

derived from two sources: (i) A data source (𝐷, F ) defines
a base spreadsheet S𝐷 [𝑐, 𝑟 ] = 𝐷 [𝑐, F −1 (𝑟 )], and (ii) A se-

quence of overlay updates (O1 . . .O𝑘 ; where O𝑖 = ⟨T𝑖 ,U𝑖⟩)
that extend the spreadsheet S = (O𝑘 ◦ . . . ◦ O1) (S𝐷 ). These
sources are implemented by a cache around S𝐷 and the up-

date index, as discussed below.

The naive approach to materializing S (e.g., as in [6]) topo-

logically sorts cells based on dependencies and evaluates

cells in this order. The Executor side-steps the linear (in the

data size) cost of the naive approach through two insights:

(i) Updates applied over multiple cells are already available

as patterns, and (ii) Only a small fraction of cells will be

visible at any one time. Assuming the dependencies of a

range of cells can be computed efficiently (we return to this

assumption in Section 3.3), only the visible cells and their

dependencies need to be evaluated. The Executor only eval-

uates expressions for rows that are (close to being) visible to

the user, and the transitive closure of their dependencies.

Some dependency chains (e.g., running sums) still require

computation for each row of data. Although we leave a de-

tailed exploration of this challenge to future work, we ob-

serve that the fixed point of such pattern expressions can

V1 V2 V3 V4

Figure 4: A range map maps disjoint ranges to values.
often be rewritten into a closed form. For example, any cell in

a running sum column is equivalent to a sum over the preced-

ing cells. Our preliminary experiments (Section 4) suggest

promise in a hybrid evaluation strategy that evaluates visi-

ble cells individually and computes cells defined by patterns

through closed form windowed aggregation queries.

Updates.When the executor receives a cell update, it uses

the index to identify invalidated cells and begins re-evaluating

them in topological order. An update to the reference frame

is applied to both the index and the data source. Following

typical spreadsheet semantics, an insertion or row move up-

dates references in dependent formulas, so no re-evaluation

is typically required. If a row with dependent cells is deleted,

the dependent cells need to be updated to indicate the error.

3.3 Update Index
The update index stores a sequence of updates (O = O𝑘 ◦
. . . ◦ O1) and provides efficient access to the cells of an over-

lay spreadsheet (denoted SO) where undefined cells have

the value ⊥. This entails: (i) cell expressions SO [𝑐, 𝑟 ] (for
cell evaluation); (ii) upstream dependencies of a range (for

topological sort and computing the active set), and (iii) down-

stream dependents of a range (for cell invalidation after an

update). The key insight behind the index is that updates are

stored as pattern-range tuples instead of as individual cells.

Range Maps. The update index is built over a one-dimen-

sional range map, an ordered map with integer keys. In ad-

dition to the usual operations of an ordered map (e.g., put,
get, successorOf), we define the operation bulkPut(low,
high, value)which is equivalent to a put on every element

in the range from low to high. Implemented naively (e.g. a

size𝑁 binary tree), this operation is𝑂 ((high−low) ·log(𝑁 )).
A range map avoids the (high − low) factor by storing

an ordered sequence of disjoint ranges, each mapping one

specific value as illustrated in Figure 4. A binary tree provides

efficient membership lookups over the ranges. With a range

map, the set of distinct values appearing in a range can be

accessed in 𝑂 (log(𝑁 ) +𝑀) time (where𝑀 is the number of

distinct values), and has similar deletion and insertion costs.

Cell Access. The index layer maintains a “forward” index:

An unordered map I that stores a range map I[𝑐] for each
column. The expression for a cell 𝑐 [𝑟 ] is stored at I[𝑐] [𝑟 ].
Upstream Reachability. The execution layer needs to be

able to derive the set of cells on which a specific target cell (or
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Algorithm 1 upstream(𝐶 , 𝑅)

Require: 𝐶, 𝑅 []: A range to compute the upstream of.

Ensure: upstream: Cells on which 𝑐 [𝑅] is a dependency.
1: upstream← {}
2: work← { (𝑐, 𝑅, {}) | 𝑐 ∈ 𝐶 }
3: while (𝑐′, 𝑅′, lineage) ← work.dequeue do
4: for (𝑅′′, pattern) ← forwardIndex(𝑐′, 𝑅′) do
5: for (𝑐𝑑 , 𝑅𝑑 , offset)←deps(pattern, 𝑐′, 𝑅′′) do
6: (𝑐𝑑 , 𝑅𝑑 ) ← (𝑐𝑑 , 𝑅𝑑 ) − upstream
7: if (𝑐𝑑 , 𝑅𝑑 ) is non-empty then
8: upstream← upstream + (𝑐𝑑 , 𝑅𝑑 )
9: queue.enqueue(𝑐𝑑 , 𝑅𝑑 ,
10: { p′ → (o′ + offset) | (p′ → o′ ) ∈ lineage}
11: ∪{pattern→ offset})

range) depends. We refer to this set as the target’s upstream.

Algorithm 1 illustrates how to use breadth-first search to

obtain the full upstream set for a given target range. Each

item in the BFS’s work queue consists of a column, a row set,

and a lineage; We will return to the lineage shortly. For each

work item enqueued, we query the forward index to obtain

patterns in the range (line 4), and iterate over the set of their

dependencies (line 5). If we discover a new dependency (lines

6-7), the newly discovered range is added to the return set

and the work queue. We will explain lines 10-12 shortly.

The deps operation (Line 5; Algorithm 2) computes the

immediate dependencies of a range of cells 𝑐 [𝑅] that share
a pattern. Concretely, it returns a set of cells deps such

that for each cell 𝑐 [𝑟 ] ∈ deps, there exists at least one cell
𝑐 [𝑟 ]′ ∈ 𝑐 [𝑅] such that 𝑐 [𝑟 ] is in the transitive closure of

deps (𝑐 [𝑟 ]′). The algorithm uses a recursive traversal (lines

6-7) to visit every cell reference (offset or explicit): For offset

references (lines 2-3), the provided range of rows is offset

by the appropriate amount. For explicit cell references (lines

4-5), the explicit reference is used.

Algorithm 2 deps(pattern, 𝑐, 𝑅)
Require: pattern: An expression pattern

Require: 𝑐 [𝑅]: A range of cells

Ensure: deps: Dependencies of 𝑐 [𝑅]’s pattern
1: deps← {}
2: if pattern is an offset reference 𝑐′ [𝛿 ′] then
3: deps← deps ∪ {(𝑐′, 𝑅 + 𝛿 ′, 𝛿 ′)}
4: else if pattern is a direct reference 𝑐′ [𝑟 ′] then
5: deps← deps ∪ {(𝑐′, 𝑟 ′, ∅)}
6: else
7: deps← deps

⋃
child∈pattern

deps(child, 𝑐, 𝑅)

Optimizing Recursive Reachability. Consider a running
sum, such as the one in Example 2.2. The 𝑘th element will
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Figure 5: Time to initialize the spreadsheet (a-b) and
cost to update one cell (c-d)

have 𝑂 (𝑘) upstream dependencies, and so naively following

Algorithm 1 is in 𝑂 (𝑘). However, observe that a single pat-
tern is responsible for all of these dependencies, suggesting

that a more efficient option may be available.

This dependency chain arises from recursion over a single

pattern; most cells depend on other cells defined by the same

pattern. We refer to such a pattern as recursive, even if it

does not create dependency cycle over individual cells.

As with cell execution, the transitive closure of the de-

pendencies of a recursive pattern may permit a closed-form

representation. In our running example, the upstream of any

𝐷 [𝑘] is exactly 𝐷 [1 − (𝑘 − 1)] and 𝐶 [1 − 𝑘]. The lineage
field of Algorithm 1 is used to track the set of patterns visited,

and the offset(s) at which they were visited. If the pattern

being visited already appears in the lineage, then we know it

is recursive and that we can extend out the sequence of up-

stream cells across the remaining cells of the pattern. When

the offset is ±1, the elements of this sequence are efficiently

representable as a range of cells, computable in 𝑂 (1) time.

Downstream Reachability. When a cell’s expression is

updated, cells that depend on it (even transitively) must be

recomputed, so the index must support downstream reacha-

bility queries. For efficient downstream lookups, the index

maintains a “backward” index relating ranges to the set of

patterns that depend on all cells in the range. The resulting

algorithm over the backward index is analogous to deps.

4 EXPERIMENTS
In this section we explore the performance of the overlay

approach. Concretely, we are interested in two questions: (i)

How does data size affect the performance of each system? (ii)

How does dependency chain length affect the performance

of each system? Experiments were run on an 8-core 2.3 GHz

Intel i7-11800H running Linux (Kernel 5.19), with 32G of

DDR4-3200 RAM, and a 2TB 970 EVONVME solid state drive.
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We compare three systems: (i) DataSpread: Dataspread ver-

sion 0.5 [4]; (ii) Vizier: Our prototype implementation of

overlay spreadsheets; and (iii) Vizier (Simulated Batch-
ing): Simulated hybrid batch processing (see Setup, below).

All experiments were performed with a warm cache.

Setup.We address our questions through a microbenchmark

modeled after TPC-H query 1 [9]: The spreadsheet is defined

by the TPC-H lineitem dataset with N rows and four addi-

tional columns defined by the patterns:

base_price[1-N] = ext_price[+0]
disc_price[1-N] = base_price[+0] * (1 - discount[+0])
charge[1-N] = disc_price[+0] * (1 + tax[+0])
sum_charge[1] = charge[1]
sum_charge[2-N] = charge[+0] + sum_charge[-1]

The sum_charge column is a running total, creating a depen-

dency chain that grows linearly with row index. As the user

scrolls down the page (under normal usage), the runtime to

compute visible cells grows linearly. Each system loads the

spreadsheet with a viewable area of 50 rows and updates a

single cell. Wemeasure (i) the cost of initialization and (ii) the

cost of a single update. Time is measured until quiescence.

To emulate batch processing, we replace the formula for the

sum_change[𝑖 − 1] (where 𝑖 is the first visible row) with a

formula that computes the analogous aggregate query.

Moving View. Figure 5(a,c) shows costs for a fixed dataset

size of approximately 600,000 rows, varying the viewable

rows. Due to the running sum, later rows require more com-

putation. Costs for Vizier and Dataspread grow significantly

with the length of the dependency chain, while batch pro-

cessing can compute the updated sum significantly faster.

Scaling Data. Figure 5(b,d) shows costs when varying data

size, with the view fixed on the first cell. Because dependen-

cies in the visible area are of constant size, Vizier is faster.

5 RELATEDWORK
Although spreadsheets present a convenient interface to data,

they lack the scalability to manage large data. A common

approach to scaling spreadsheets (the “virtual” approach)

adds an interface to an existing database or workflow sys-

tem providing spreadsheet-style direct manipulation oper-

ations [2, 10–12, 15]. The resulting systems bear varying

levels of resemblance to existing spreadsheets, usually intro-

ducing concepts from relational databases like explicit tables,

attributes, and records. Wrangler [12] is an ETL workflow

development tool with an interface inspired by spreadsheets.

Users open a small sample of a dataset in Wrangler and

use spreadsheet-style operations to indicate desired changes

to the dataset. Vizier [7, 8, 13, 14] is a computational note-

book system that allows users to define workflow stages

through a spreadsheet-style interface. Other approaches

more directly mimic relational databases: The Spreadsheet

Algebra [11, 15] allows users to specify any SPJGA-query

purely through spreadsheet-style user interactions. Related

Worksheets [2, 3] re-imagines the spreadsheet interface with

record structure and inline display of foreign-key references.

A second approach (the “materialized” approach) instead

redesigns the spreadsheet engine using database concepts;

An example is DataSpread [5, 6, 16]. A key challenge is that

classical database techniques, which exploit common struc-

tures in a dataset, are not directly applicable. [5] explores

data structures that can leverage partial structure; for ex-

ample, when a range of cells are structured as a relational

table. [6] explores strategies for quickly invalidating cells

and computing dependencies, by leveraging a (lossy) com-

pressed dependency graph that can efficiently bound a cell’s

downstream. [17] introduces a different type of compressed

dependency graph which is lossless, instead exploiting re-

peating patterns in formulas. This is analogous to our own

approach, but focuses on the dependency graph rather than

expressions, limiting opportunities for optimization.

In summary, DataSpread introduced multiple efficient al-

gorithms for storing, accessing, and updating spreadsheets.

The virtual approach is often less efficient, but has the advan-

tage of supporting light-weight versioning and provenance.

Crucially, it also enables replaying a user’s updates, originally

applied to one dataset, on a new dataset (e.g., to re-apply

curation work on an updated version of the data). Our over-

lay approach has the potential to retain these benefits while

enabling performance competitive with DataSpread.

6 CONCLUSIONS AND FUTUREWORK
In this work, we introduced overlay spreadsheets as a po-

tential direction for reproducible spreadsheets in workflow

and provenance analysis systems like Vizier. Overlay spread-

sheets decouple the user’s edits from the source data they

are applied to, enabling replayability. We demonstrated how

a compact, declarative encoding of formulas, in turn enables

optimized evaluation of recursive patterns.

Recursive patterns remain the source of several open chal-

lenges for us. Most notably, in the absence of recursive pat-

terns, the depth of a dependency chains is bounded by the

number of user interactions. We suggested two strategies for

improving performance in the presence of recursive patterns:

(i) Closed-form computation of dependencies, and (ii) using

bulk processing to avoid individual cell evaluation.

We also observe two additional challenges of adapting a

dataset to new source data. Row identity is a critical challenge

for updating source data, as each row in the updated dataset

needs to be mapped to its corresponding row in the original.

Additionally, the spreadsheet itself may need to change, for

example extending patterns to incorporate newly introduced

rows in the dataset.
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