Overlay Spreadsheets

Oliver Kennedy
okennedy@buffalo.edu
University at Buffalo
Buffalo, USA

Boris Glavic
bglavic@iit.edu
Illinois Institute of Technology
Illinois, USA

Michael Brachmann
mbrachmann@breadcrumb-analytics.com
Breadcrumb Analytics
Buffalo, USA

ABSTRACT

Efforts to scale spreadsheets either follow a ‘virtual’ strategy that layers a spreadsheet interface on top of an existing database engine or a ‘materialized’ strategy based on re-engineering a spreadsheet engine. Because databases are not optimized for spreadsheet access patterns, the materialized approach has better performance. However, the virtual approach offers several advantages that can not be easily replicated in the materialized approach, including the ability to re-apply user interactions to an updated input dataset. We propose the overlay update model, a hybrid approach that overlays user updates on an existing dataset (as in the virtual approach) and indexes user updates (as in the materialized approach). A key feature of our approach is storing updates generated by bulk operations (e.g., copy/paste) as compact “patterns” that can be leveraged to reduce execution costs. We implement an overlay spreadsheet over Apache Spark and demonstrate that, compared to DataSpread (a materialized spreadsheet), it can significantly reduce execution costs.

ACM Reference Format:

1 INTRODUCTION

Tools like Wrangler [12], Vizier [8, 10], and others [15] adopt direct manipulation interfaces, similar to spreadsheets, as a way to streamline the definition of data preparation workflows. While convenient for curation, these interfaces lack

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

HILDA ’23, June 18, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0216-7/23/06...$15.00
https://doi.org/10.1145/3597465.3605220

Figure 1: Approaches to scalable spreadsheet design
the free form data manipulation capabilities that make spreadsheets ideal for data exploration and visualization.

Fundamental to spreadsheet interfaces in workflow systems is the need to support replay. When the source data or workflow changes, it should be possible to re-run the (updated) workflow on the updated data. This is enabled in systems like Wrangler and Vizier, where the fundamental data model is a workflow of repeatable transformations (‘Workflow’ in Figure 1). By contrast, a spreadsheet is a grid of interdependent cells where the original data and user-applied edits are indistinguishable (‘Spreadsheet’ in Figure 1).

In this paper, we propose a model of spreadsheets that acts like a classical spreadsheet, but where the user’s edits and the source data are decoupled. The result is a spreadsheet that can be ‘overlaid’ on top of any dataset (‘Overlay’ in Figure 1), no matter whether the source data is a raw datafile or the result of a workflow (e.g., in Vizier). Overlay Spreadsheets provide the flexibility of spreadsheets, while also supporting the replay capabilities available in workflow systems.

As we discuss in this paper, this new overlay approach to spreadsheets also enables a new approach to scaling spreadsheets to larger data. Classical spreadsheets have historically had challenges managing “big data” — as few as 100k rows of data create problems for existing spreadsheet engines [16]. DataSpread [5, 6, 16] re-architects the spreadsheet runtime and specializes database primitives like indexes and incremental maintenance for spreadsheet access patterns. In spite of these changes, DataSpread still faces a key challenge: like classical spreadsheets, its unit of computation is the cell. Although the overheads of starting a computation (e.g., locking, state initialization, etc...) are typically low, they are repeated for each and every cell that needs to be computed.

Scaling Spreadsheets to Big Data. There has been considerable effort by the database community to ‘scale up’ spreadsheets to big data [5, 6, 16]. Overlays create an opportunity
for further scalability based on the following two observations: (i) Most of the ‘big’ data appears in the source dataset. (ii) The user applies a small number of edits (that may affect a large number of cells). The latter observation arises because users typically edit large numbers of cells by ‘pasting’ a formula into a range of cells. The pasted formula acts as a template, and the pasted cells all follow a common pattern. Like [6], we avoid storing formulas for each individual cell, instead storing patterns and ranges of pasted cells.

Leveraging the user’s interest in only a small subset of the spreadsheet at any one time, overlay spreadsheets avoid computations outside of this subset. Requests for cells originating in the source data can be handled efficiently by standard relational storage engines, while only formula cells visible to the user and their transitive dependencies need to be computed.

Unfortunately, common spreadsheet usage creates cells with transitive dependencies that scale with data size. We mitigate the prohibitively high cost of such cells by outsourcing their computation to a batch-processing engine like Apache Spark. Although slower for small datasets, batch engines scale to larger workloads more gracefully, making them ideal for expensive computations that span many cells, where individual cell values are not needed.

Overlay Spreadsheets. We propose Overlay Spreadsheets, which present an interface analogous to a normal spreadsheet, but where user edits are “overlaid” on top of a source dataset that can easily be updated to a new version.

We outline a preliminary implementation of Overlay Spreadsheets within Vizier [7, 8, 13], a multi-modal notebook-style workflow system built on Apache Spark. Our implementation replaces its existing workflow-style spreadsheet. Our objective is to demonstrate that a spreadsheet-style interface can provide interactive latencies (i.e., like the materialized approach), while still supporting replay and provenance (i.e., like the virtual approach).

2 SPREADSHEET DATA MODEL

2.1 Spreadsheets

Let C and R denote domains of column and row labels. Except where noted, $R \subset \mathbb{Z}$. Let \mathcal{V} and $E \supset \mathcal{V}$ denote domains of values and expressions, respectively. A spreadsheet $\mathcal{S} : (C \times R) \rightarrow E$ is a partial mapping from cells $(c,r) \in (C \times R)$ to expressions. We use $\mathcal{S}[c,r]$ to denote $\mathcal{S}(c,r)$. Let $\bot \in \mathcal{V}$ indicate “undefined” and define the domain $\text{Dom}(\mathcal{S})$ to be the set of cells c,r where $\mathcal{S}[c,r] \neq \bot$.

An expression $e \in E$ is a formula defined over literals from \mathcal{V}, the standard arithmetic operators, and references to other cells in the spreadsheet (c,r). The expression e is evaluated in the context of a spreadsheet $(\mathcal{S} : E \rightarrow \mathcal{V})$ as follows: (i) Literals and arithmetic are evaluated in the usual way, and (ii) References to the spreadsheet are evaluated recursively $(\mathcal{S}[c,r]) = \mathcal{S}(c,r) \mathcal{S}[c,r]$. By convention, cyclic references evaluate to \bot. An expression’s dependencies (deps $(\mathcal{S}[c,r])$) are the cells referenced by e. Dependencies induce a graph $G_S(N,E)$ over the spreadsheet, with cells as nodes (i.e., $N = C \times R$), and dependencies as directed edges:

$$E = \bigcup_{c,r \in C \times R} \{ c[r] \rightarrow c'[r'] \mid c'[r'] \in \text{deps}(\mathcal{S}[c,r]) \}$$

Denote by G_S^\ast the graph (V,E^\ast) where E^\ast is the transitive closure of E (i.e., G_S^\ast captures both direct and indirect dependencies). Note that if all cell expressions are constants (i.e., a spreadsheet without formulas), then $\mathcal{S}[c,r] = \mathcal{S}[c,r]$.

Example 2.1. Consider the spreadsheet at the top of Fig. 2. Columns A and B hold constant expressions, while column C holds reference cells from columns A and B. Evaluating this spreadsheet assigns each cell a value, as in the top right. For example, $C[1]$ evaluates to $A[1] + B[1]$ $\mathcal{S}[1,1] = 20 + 50 = 70$. Similarly, $C[2] = 2 \cdot 3 + B[2] = 30 + 60 = 90$.

2.2 Cell Updates

A cell update set $U \subseteq C \times R \times \mathcal{E}$ is a set of cell updates of the form $c[r] = e$ that assign to cell c,r the expression e. Denote by $\text{Dom}(U)$ the domain of update U, containing all cells c,r defined in U (i.e., $\exists e : (\{c,r\} = e) \in U$). Applying an update U to a spreadsheet \mathcal{S} returns an updated spreadsheet:

$$U(\mathcal{S})[c,r] = \begin{cases} U(c[r]) & \text{if } c[r] \in \text{Dom}(U) \\ \mathcal{S}[c,r] & \text{otherwise} \end{cases}$$

An update may affect cells beyond its domain. For example, the update shown in Figure 2 changes two cells $A[1]$ and $C[3]$, but evaluating the updated spreadsheet $U(\mathcal{S})$ results in three cell changes (in red).

- **Spreadsheet \mathcal{S}**
 - A | B | C
 - 1 | 15 | 50 | $A_1 + B_1$
 - 2 | 20 | 60 | $A_2 + B_2$
 - 3 | 25 | 100 | $A_3 + B_3$
 - 4 | 50 | 0 | $A_4 + B_4$

- **Evaluated Spreadsheet $[\cdot]_\mathcal{S}$**
 - A | B | C
 - 1 | 15 | 50 | 65
 - 2 | 20 | 60 | 80
 - 3 | 25 | 100 | 125
 - 4 | 50 | 0 | 50

Figure 2: Example spreadsheet with expressions shown in dark green, and an update applied to the spreadsheet with updated expressions and values shown in red.
2.3 Spreadsheet Access to Datasets

To uniformly model source datasets, whether originating from relational databases or other spreadsheets, we assume an input dataset \(D \) with designated row and column labels \(\mathcal{C}_D \) and \(\mathcal{R}_D \) as appropriate to the source data. In a relational table, these are the table’s columns and the values of a key or rowid attribute, respectively. For csv data, \(\mathcal{R}_D \subset \mathbb{Z} \) is the position of the row in the file. We write \(D[r, c] \) to denote the value at column \(c \in \mathcal{C}_D \) of row \(r \in \mathcal{R}_D \) in \(D \). Denote by \(\mathcal{F} : \mathcal{R}_D \rightarrow \mathbb{Z} \) a reference frame, an injective map from rows in \(D \) to rows of the spreadsheet. A spreadsheet overlay for a dataset \(D \) is a pair \((D, \mathcal{F})\) that defines a spreadsheet \(\mathcal{S}_{D, \mathcal{F}} \) with domains \(\mathcal{C} = \mathcal{C}_D, \mathcal{R} = \text{Dom}(\mathcal{F}) \) as \(\mathcal{S}_{D, \mathcal{F}}[c, r] = D[c, \mathcal{F}^{-1}(r)] \)

2.4 Overlay Updates

An Overlay Update describes a set of changes to a spreadsheet (or dataset). As we will discuss in Section 3.1, column operations are trivially supported in our model, and we focus on cell and row updates exclusively. Concretely, a spreadsheet overlay \(O = \langle \mathcal{T}, \mathcal{U} \rangle \) is a reference frame transformation \(\mathcal{T} \) and a set of pattern updates \(\mathcal{U} \), terms we now define.

Reference Frame Transformations. Recall that a reference frame maps the spreadsheet’s positional row references to native record identifiers. Thus, to insert, delete, or move rows in the spreadsheet, it is sufficient to modify the reference frame. Formally, a reference frame transformation \(\mathcal{T} \) is an injective mapping \(\mathbb{Z} \rightarrow \mathbb{Z} \sqcup \bot \) from initial row positions to new row positions, or the value \(\bot \) for a deleted row (\(\mathcal{T} \) is allowed to map multiple inputs to \(\bot \)). The new reference frame, after applying \(O \) is \(\mathcal{F}' = \mathcal{T} \circ \mathcal{F} \), where \(\circ \) denotes function composition. As an example, consider deleting the 2nd row from Figure 2. The positions of rows 3 and 4 are decreased by one, while row 1 retains its position

\[
\mathcal{T}(x) = \begin{cases}
 x & \text{if } x < 2 \\
 \bot & \text{if } x = 2 \\
 x - 1 & \text{otherwise}
\end{cases}
\]

Row insertions and movement are handled analogously. Note that row insertions, deletions, and movement are expressible in constant size, independent of the size of the data.

Pattern Updates. Spreadsheets allow a formula from one cell to be pasted across a range of cells. In a classical spreadsheet, bulk interactions like this modify each cell’s expression individually. Overlay spreadsheets avoid the high cost that individual modifications can entail by grouping together the set of pasted cells into a single pattern.

A range \(C[R] \) is the Cartesian product \(C \times [l, h] \) of a set of columns \(C \subseteq C \) and row positions \(R = [l, h] \subset \mathbb{Z} \). A pattern update \(\mathcal{U} \) is a set of pairs \((C_l[R_l], P_l)\) where \(C_l[R_l] \) is a range and \(P_l \) is a pattern expression, i.e., an expression that may also contain cell references where rows are relative offsets (written as \(+i \) or \(-i \)). Ranges in an update \(C_l[R_l] \) must be pairwise disjoint. A pattern update \((C_l[R_l], P_l)\) assigns an expression to every cell \(c[r] \) in \(C_l[R_l] \) by replacing any relative references of the form \(c[+i] \) in \(P_l \) with \(c[r + i] \). We use \(P_l(c[r]) \) to denote instantiation of pattern \(P_l \) for cell \(c[r] \).

For instance, to store a running sum of the values in column \(C \) into column \(D \) (for the spreadsheet from Figure 2):

\[
\mathcal{U}_{\text{running}} = (D[1], (C, +0)), (D[2 \rightarrow 4], (C, +0) + (D, -1))
\]

Semantics for Overlay Updates. An overlay update \(O \) applied to a spreadsheet \(\mathcal{S} \) defines the spreadsheet \(\mathcal{O}(\mathcal{S}) \) computed by applying the reference frame update and then applying all pattern updates (with \(O = \langle \mathcal{T}, \{(C_l[R_l], P_l)\} \rangle \)):

\[
\mathcal{O}(\mathcal{S})[c, r] = \begin{cases}
 P_l(c[r]) & \text{if } \exists i : c[r] \in C_l[R_l] \\
 \mathcal{S}[c, \mathcal{T}^{-1}(r)] & \text{if } \exists \mathcal{F}' : \mathcal{F}'(r') = r' \\
 \bot & \text{otherwise}
\end{cases}
\]

Example 2.2. Consider our example update \((O_{\text{running}}, \mathcal{U}_{\text{running}})\) where \(\mathcal{T}_{\text{id}}(x) = x \). Figure 3 shows the result of applying \(O_{\text{running}} \) to our running example spreadsheet.

Several remarks are in order. First, overlays can be used to encode common spreadsheet update operations in constant space (per update), including bulk updates via copy/paste. Second, [17] uses similar ideas to compress the dependencies in a spreadsheet using ranges and patterns, but focuses exclusively on the dependency graph rather than expressions.

2.5 Replacing Source Data

An overlay designed for source data \((D, \mathcal{F})\) may be applied to a dataset \((D', \mathcal{F}')\) as long as each \(r \in \mathcal{R}_D \) there is a corresponding row \(r' \in \mathcal{R}_{D'} \) such that \(\mathcal{F}'(\mathcal{F}^{-1}(r)) = r' \). This is possible if, e.g., \(\mathcal{R}_D = \mathcal{R}_{D'} \) is a semantic key for the dataset.

Figure 3: Example overlay update and result (updated expressions and values are shown in red).
3 SYSTEM DESIGN

Our prototype overlay spreadsheet is implemented within the Vizier reproducible notebook platform [7, 8, 13]. Vizier leverages Apache Spark [1] for data provenance, processing, and data import/export. Our prototype is designed to accept any Spark dataframe as a data source.

Client applications connect through a thin Presentation layer that mediates concurrent access to the spreadsheet and translates our internal model of a spreadsheet to a more natural interface. The Execution layer evaluates spreadsheet cells and materializes cells currently visible to the user. The Indexing layer provides efficient access to formulas, and a LRU cache provides efficient access to source dataframes.

3.1 Presentation Layer

User-facing client applications connect to the overlay spreadsheet through a presentation layer that serializes concurrent updates, and provides clients with the illusion of a fixed grid of cells. Column operations (insertion, deletion, reordering) are handled at this layer, so lower levels can reference the small set of columns solely by column identity. Other updates are serialized and forwarded to lower levels.

The presentation layer expects the Executor to provide efficient random access to cell values and supports updating ranges of cells with pattern expressions.

3.2 Executor

The executor provides efficient access to cell values and generates notifications about cell state changes. Cell values are derived from two sources: (i) A data source \((D, \mathcal{F})\) defines a base spreadsheet \(S_D[c, r] = D[c, \mathcal{F}^{-1}(r)]\), and (ii) A sequence of overlay updates \((O_1 \ldots O_k)\); where \(O_i = (\mathcal{T}_i, \mathcal{U}_i)\) that extend the spreadsheet \(S = (O_k \circ \ldots \circ O_1)(S_D)\). These sources are implemented by a cache around \(S_D\) and the update index, as discussed below.

The naive approach to materializing \(S\) (e.g., as in [6]) topologically sorts cells based on dependencies and evaluates cells in this order. The Executor side-steps the linear (in the data size) cost of the naive approach through two insights: (i) Updates applied over multiple cells are already available as patterns, and (ii) Only a small fraction of cells will be visible at any one time. Assuming the dependencies of a range of cells can be computed efficiently (we return to this assumption in Section 3.3), only the visible cells and their dependencies need to be evaluated. The Executor only evaluates expressions for rows that are (close to being) visible to the user, and the transitive closure of their dependencies.

Some dependency chains (e.g., running sums) still require computation for each row of data. Although we leave a detailed exploration of this challenge to future work, we observe that the fixed point of such pattern expressions can

\[
\begin{align*}
\text{Figure 4: A range map maps disjoint ranges to values.} \\
\text{often be rewritten into a closed form. For example, any cell in a running sum column is equivalent to a sum over the preceding cells. Our preliminary experiments (Section 4) suggest promise in a hybrid evaluation strategy that evaluates visible cells individually and computes cells defined by patterns through closed form windowed aggregation queries.}
\end{align*}
\]

Updates. When the executor receives a cell update, it uses the index to identify invalidated cells and begins re-evaluating them in topological order. An update to the reference frame is applied to both the index and the data source. Following typical spreadsheet semantics, an insertion or row move updates references in dependent formulas, so no re-evaluation is typically required. If a row with dependent cells is deleted, the dependent cells need to be updated to indicate the error.

3.3 Update Index

The update index stores a sequence of updates \((O = O_k \circ \ldots \circ O_1)\) and provides efficient access to the cells of an overlay spreadsheet (denoted \(S_O\)) where undefined cells have the value \(\perp\). This entails: (i) cell expressions \(S_O[c, r]\) for cell evaluation; (ii) upstream dependencies of a range (for topological sort and computing the active set), and (iii) downstream dependents of a range (for cell invalidation after an update). The key insight behind the index is that updates are stored as pattern-range tuples instead of as individual cells.

Range Maps. The update index is built over a one-dimensional range map, an ordered map with integer keys. In addition to the usual operations of an ordered map (e.g., put, get, successorOf), we define the operation bulkPut\((\perp, \text{high}, \text{value})\) which is equivalent to a put on every element in the range from \(\perp\) to \(\text{high}\). Implemented naïvely (e.g., a size \(N\) binary tree), this operation is \(O((\text{high}−\perp)\cdot\log(N))\).

A range map avoids the (\((\text{high}−\perp)\) factor by storing an ordered sequence of disjoint ranges, each mapping one specific value as illustrated in Figure 4. A binary tree provides efficient membership lookups over the ranges. With a range map, the set of distinct values appearing in a range can be accessed in \(O(\log(N) + M)\) time (where \(M\) is the number of distinct values), and has similar deletion and insertion costs.

Cell Access. The index layer maintains a "forward" index: An unordered map \(I\) that stores a range map \(I[c]\) for each column. The expression for a cell \(c[r]\) is stored at \(I[c][r]\).

Upstream Reachability. The execution layer needs to be able to derive the set of cells on which a specific target cell (or
Algorithm 1 upstream(C, R)

Require: C,R[]: A range to compute the upstream of.
Ensure: upstream: Cells on which C[R] is a dependency.
1: upstream ← { }
2: work ← { (c, R, {}) | c ∈ C }
3: while (c′, R′, lineage) ← work.dequeue do
4: for (R″, pattern) ← forwardIndex(c′, R′) do
5: for (c_d, R_d, offset) ← deps(pattern, c′, R″) do
6: (c_d, R_d) ← (c_d, R_d) − upstream
7: if (c_d, R_d) is non-empty then
8: upstream ← upstream + (c_d, R_d)
9: queue.enqueue(c_d, R_d,
10: { (p′ → (o′ + offset)) | (p′ → o′) ∈ lineage })
11: U(pattern → offset)

Algorithm 2 deps(pattern, c, R)

Require: pattern: An expression pattern
Require: c[R]: A range of cells
Ensure: deps: Dependencies of c[R]’s pattern
1: deps ← { }
2: if pattern is an offset reference c′[8′] then
3: deps ← deps ∪ { (c′, R + 8′, 8′) }
4: else if pattern is a direct reference c′[r′] then
5: deps ← deps ∪ { (c′, r′, 0) }
6: else
7: deps ← deps ⊇ ∪
 child∈pattern deps(child, c, R)

Optimizing Recursive Reachability. Consider a running sum, such as the one in Example 2.2. The kth element will have O(k) upstream dependencies, and so naively following Algorithm 1 is in O(k). However, observe that a single pattern is responsible for all of these dependencies, suggesting that a more efficient option may be available.

This dependency chain arises from recursion over a single pattern; most cells depend on other cells defined by the same pattern. We refer to such a pattern as recursive, even if it does not create dependency cycle over individual cells.

As with cell execution, the transitive closure of the dependencies of a recursive pattern may permit a closed-form representation. In our running example, the upstream of any D[k] is exactly D[1 − (k − 1)] and C[1 − k]. The lineage field of Algorithm 1 is used to track the set of patterns visited, and the offset(s) at which they were visited. If the pattern being visited already appears in the lineage, then we know it is recursive and that we can extend out the sequence of upstream cells across the remaining cells of the pattern. When the offset is ±1, the elements of this sequence are efficiently representable as a range of cells, computable in O(1) time.

Downstream Reachability. When a cell’s expression is updated, cells that depend on it (even transitively) must be recomputed, so the index must support downstream reachability queries. For efficient downstream lookups, the index maintains a “backward” index relating ranges to the set of patterns that depend on all cells in the range. The resulting algorithm over the backward index is analogous to deps.

4 EXPERIMENTS

In this section we explore the performance of the overlay approach. Concretely, we are interested in two questions: (i) How does data size affect the performance of each system? (ii) How does dependency chain length affect the performance of each system? Experiments were run on an 8-core 2.3 GHz Intel i7-11800H running Linux (Kernel 5.19), with 32G of DDR4-3200 RAM, and a 2TB 970 EVO NVME solid state drive.
We compare three systems: (i) **DataSpread**: Dataspread version O.5 [4]; (ii) **Vizier**: Our prototype implementation of overlay spreadsheets; and (iii) **Vizier (Simulated Batch- ing)**: Simulated hybrid batch processing (see Setup, below). All experiments were performed with a warm cache.

Setup. We address our questions through a microbenchmark modeled after TPC-H query 1 [9]. The spreadsheet is defined by the TPC-H line item dataset with N rows and four additional columns defined by the patterns:

\[
\begin{align*}
\text{base_price}[1-N] & = \text{ext_price}[+0] \\
\text{disc_price}[1-N] & = \text{base_price}[+0] * (1 - \text{discount}[+0]) \\
\text{charge}[1-N] & = \text{disc_price}[+0] * (1 + \text{tax}[+0]) \\
\text{sum_charge}[1] & = \text{charge}[1] \\
\text{sum_charge}[2-N] & = \text{charge}[+0] + \text{sum_charge}[-1]
\end{align*}
\]

The sum_charge column is a running total, creating a dependency chain that grows linearly with row index. As the user scrolls down the page (under normal usage), the runtime to compute visible cells grows linearly. Each system loads the spreadsheet with a viewable area of 50 rows and updates a single cell. We measure (i) the cost of initialization and (ii) the cost of a single update. Time is measured until quiescence. To emulate batch processing, we replace the formula for the sum_change[i - 1] (where i is the first visible row) with a formula that computes the analogous aggregate query.

Moving View. Figure 5(a,c) shows costs for a fixed dataset size of approximately 600,000 rows, varying the viewable rows. Due to the running sum, later rows require more computation. Costs for Vizier and Dataspread grow significantly with the length of the dependency chain, while batch processing can compute the updated sum significantly faster.

Scaling Data. Figure 5(b,d) shows costs when varying data size, with the view fixed on the first cell. Because dependencies in the visible area are of constant size, Vizier is faster.

6 CONCLUSIONS AND FUTURE WORK

In this work, we introduced overlay spreadsheets as a potential direction for reproducible spreadsheets in workflow and provenance analysis systems like Vizier. Overlay spreadsheets decouple the user’s edits from the source data they are applied to, enabling replayability. We demonstrated how a compact, declarative encoding of formulas, in turn enables optimized evaluation of recursive patterns.

Recursive patterns remain the source of several open challenges for us. Most notably, in the absence of recursive patterns, the depth of a dependency chains is bounded by the number of user interactions. We suggested two strategies for improving performance in the presence of recursive patterns: (i) Closed-form computation of dependencies, and (ii) using bulk processing to avoid individual cell evaluation.

We also observe two additional challenges of adapting a dataset to new source data. Row identity is a critical challenge for updating source data, as each row in the updated dataset needs to be mapped to its corresponding row in the original. Additionally, the spreadsheet itself may need to change, for example extending patterns to incorporate newly introduced rows in the dataset.
REFERENCES

