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In this technical report, we present our research results on relevance-based data man-
agements. This project was partially sponsored by Oracle through a three year ERO
project titled Self-tuning Database Operations by Assessing the Importance of Data.

1 Overview

The goal of this three-year project was the development of techniques for self~tuning database
operations based on data relevance, i.e., assessing what data is needed for which query /
workload and utilizing this information to improve various aspects of data management. Specifically,
we have investigated provenance sketches which are coarse-grained approximation of what data is
relevant for answering a given query. Provenance sketches over-estimate what data is relevant using
a horizontal partitioning of input tables (this partitioning does not have to necessarily correspond to
the physical data layout of the tables) - the sketch for a query Q contains all fragments that contain
at least one row of relevant data. In the first two years of the project we have developed a suite
of techniques for using provenance sketches, compact representations of what data is relevant for
a query or workload, and to speed-up the evaluation of queries. Query answering with provenance
sketches enables database systems to exploit storage indexes, zone maps, in-memory caches and
other physical design artifacts for important types of queries like top-k and HAVING queries that
were previously not supported. Specifically, we have developed techniques for creating sketches by
instrumenting queries to output sketches instead of query results, reusing existing sketches for new
queries (we pay the overhead of creating a sketch for a query Q1 once and then amortize this cost
by using the sketch to answer future queries), automatically determining when a sketch is safe to
use (as sketches over-approximate what data is needed to answer a query, the data covered by the
sketch may not be sufficient for answering a query when the query is non-monotone, e.g., some
queries including top-k operators or HAVING clauses are non-monotone), and have developed a
cost model for sketches (this enables us to decide what horizontal partitioning to use to create a
sketch as the size of sketch depends on what horizontal partitioning it is based on).

The final outcome of the third year of this project is the development of algorithm and their im-
plementation for automated selection of provenance sketches based on their estimated size and for
incremental maintenance of sketches under updates. The techniques for maintaining sketches have
been implemented in an in-memory incremental maintenance engine for provenance sketches. Fur-
thermore, we have explored the use of sketches in converged databases, demonstrating their potential
benefits for semi-structured data management (JSON). The techniques developed in this project
have been evaluated through extensive experiments demonstrating that significant performance im-
provements can be achieved by using provenance sketches including for standard benchmark queries



which database systems are heavily optimized for. In summary, this project has laid the founda-
tion for the integration of relevance-based data management techniques into commercial database
engines.

1.1 Outline

The remainder of this document is structured as follows. In Section [2.3] we give a brief introduction
to provenance-based data skipping. In Section [3] we discuss our techniques for maintaining prove-
nance sketches under updates using an incremental in-memory engine specialized for maintaining
sketches and present experimental results comparing this approach against our previous work that
has to compute sketches from scratch when the data changes. In Section {4} we introduce techniques
for estimating the size of provenance sketches statically and discuss how to utilize these techniques
to make cost-based decisions for what sketches to create. In Section [5 we discuss preliminary in-
sights into the use of provenance sketches for semi-structured data management. Finally, in Section
[l we summarize the achievements of this project. We discuss future work in

2 Provenance-based Data Skipping

In this section, we give an introduction to provenance-based data skipping using detailed
examples to motivate the advantages of using provenance as dynamic information (this information
is data dependent and, thus, has to be captured at query runtime) for what data is relevant for
answering a query over approaches that rely on static information (query structure and metadata
such as constraints) to decide what subset of the data is relevant for answering a query.

2.1 Provenance-based Data Relevance versus Static Approaches

Consider the following example that motivates that the dynamic view on relevance provided by
provenance enables new types of optimizations that are not possible with a static view that ignores
the data. Assume a simple data skipping approach that excludes fragments of a partitioned table
from query processing if they are guaranteed to not include data that is needed to answer the query.
For instance, consider a sales table (depName, item, numItemsSold) partitioned on depName. For
sake of the example assume that the each fragment stores a single depName value. Any reasonable
database optimizer will be able to exclude fragments for a query such as the one shown below since
only the fragment containing the toys department can contain any relevant data.

SELECT sum(itemsSold)
FROM sales
WHERE depName = ‘toys’

depName item numlItemsSold
toys doll 367
toys teddy 500
toys shovel + bucket 600
electronic  x-box 544
electronic iphone 140
furniture  chair 800
furniture  table 230



While this approach can be effective, it is not always applicable. Namely, if it is not possible
to determine from the query alone which fragments are needed to answer the query. Consider the
query shown below. Note that only two departments (toys and furniture) fulfill the HAVING clause
and, thus, contribute to the final result (numHigh = 2).

SELECT count (*) AS numHigh

FROM (SELECT depName, sum(itemsSold)
FROM sales
GROUP BY depName
HAVING sum(sales) > 1000)

There is no way to determine statically (without taking the data into account) for which depart-
ments the HAVING clause will evaluate to true. However, provenance unearths this information. If
we capture provenance at the granularity of fragments for this query (the provenance is a set of
fragments, {toys, furniture} in our example), then a subsequent execution of the query can be
sped up by excluding fragments that do not contain any provenance, e.g., by adding a selection
condition:

depName = 'toys' OR depName = 'furniture'
resulting in the following query:

SELECT count (*) AS numHigh
FROM (SELECT depName, sum(itemsSold)
FROM sales
WHERE depName = 'toys' OR depName = 'furniture'
GROUP BY depName
HAVING sum(sales) > 1000)

Given these extra conditions any decent query optimizer will use these conditions to exclude other
fragments of the partitioning on depName. That is, the execution of this query will not touch any
data in the furniture fragment (the last two rows of the table). Similar issues arise if the selection
conditions of a query are not aligned with the data layout, e.g.,

SELECT sum(itemsSold)
FROM sales
WHERE item IN (‘teddy’, ‘doll’);

For this example, there is no selection condition on the column depName on which the table is
partitioned on. However, the items listed here all belong to the toys department. Provenance
captured at the granularity of fragments would expose this. Again, we can force the database
optimizer to skip partitions by adding a selection condition.

depName = 'toys'

2.2 Access-based versus Provenance-based Relevance

Many techniques for optimizing query performance such as caching and data lifecycle management
require data usage to be tracked to inform lifecycle management decisions. For instance, a popular
approach for data caching is to cache data that has been accessed frequently (is "hot") in main



memory with the hope that this will enable future queries to largely be answered from the cache.
For lack of better alternatives, current approaches for tracking data usage define data usage as "has
been accessed by a query”. Obviously, data that was not accessed to answer a query, is irrelevant
for computing the query’s result. This has to be true, unless the query execution engine is buggy
and does not correctly implement the semantics of the query language that was used. However,
by far not all data that is accessed is typically relevant for answering a query. As in the example
above, we did propose to use provenance to determine which subset of the accessed data is actually
relevant to answer a query.

Example 2.1. Consider the simple SQL query shown below which returns the details of all sales
made by the "electronics” department.

SELECT *
FROM sales
WHERE depName = 'electronics';

If no index on depName exists or the selectivity of the query is not sufficiently low, then the
database system’s optimizer may decide to execute the query using a full table scan, i.e., by accessing
the full sales table. However, obviously only sales from the "electronics" department have any affect
on the result. Provenance information captures precisely what data is relevant for computing a
query’s result. For instance, applying any database provenance approach, e.g., our GProM system
(https://github.com/IITDBGroup/gprom), we would be able to correctly identify the relevant part
of the input, the set of rows with department equal to "electronics".

One may argue that the example above does not motivate the need for provenance tracking since
the set of relevant data can be determined upfront by a static analysis of the query. However, as
the following example demonstrates, static analysis is often not enough.

Example 2.2. Consider the SQL query shown below which exhibits non-trivial relevance relation-
ships. This query computes the number of departments with more than 1000 sales:

SELECT count(*) AS numHigh

FROM (SELECT depName, SUM(itemsSold)
FROM sales
GROUP BY depName
HAVING SUM(sales) > 1000)

The data provenance for this query only contains sales of departments with more than 1000 total
sales. For such a query it is not possible to statically determine what parts of the input table will
be relevant for answering the query.

As explained in the example above, data provenance captures dynamically (at query runtime and
data-dependent) what data is relevant for answering a query. The critical observation here is that
once we know what data is relevant for a query (is sufficient for producing the query’s result), we
can exploit this knowledge to filter out irrelevant data early on during query processing. However,
for this to be feasible we had to overcome the following fundamental challenges:

e Efficient Provenance Capture: Capturing provenance for a query has to be efficient since
we spend time to capture provenance for a query which has to be amortized later to improve
the performance of subsequent queries. Thus, to maximize performance, the runtime overhead
incurred by capturing provenance has to be low.


https://github.com/IITDBGroup/gprom

e Low Storage Requirements: We will have to materialize provenance information for a large
number of queries. To be able to keep this information available in memory for, e.g., instru-
menting a query to skip data based on provenance, the storage requirements of provenance
have to be low.

e Effective Use of Provenance: The provenance representation has to be light-weight enough
to enable its use for the optimizations we propose. For example, it has to be possible to
determine which rows belong to the provenance to for effectively utilizing this information to
skip data or determine whether a query can be answered from data that has been cached in
main memory. Specifically, it should be possible for the database to utilize existing physical
design to efficiently prune data that is not relevant for a query.

e Pay once, use many times: When capturing provenance for one query, we would like to
use the provenance for as many subsequent queries as possible. Again, the goal is to maximize
the benefits of captured provenance.

2.3 Provenance-based Data Skipping

In provenance-based data skipping we seek to exploit relevance information to improve data man-
agement. The fundamental idea behind provenance-based data skipping (PBDS) is to generate
compact over-approximations of what data is relevant for a query (a so-called provenance sketch
for the query) based on horizontal range-based partitions of an input table (that do not have to
correspond to a physical partitioning of the table). A sketch created for a query @1 can then be
used to speed up the execution of a similar query ()2 by injecting additional WHERE clause conditions
into the query that filter out irrelevant data (data that does not belong to the sketch).

Example 2.3. For example, evaluating the query shown below over the example table shown below
returns a single result (CA,10000). The provenance of the query’s result are the rows highlighted in
bold. Evaluating the query over the provenance Prov(Q, D) is guaranteed to yield the same result
as running the query over the whole table (the provenance of a query is guaranteed to be sufficient
for answering the query). To over-approximate what subset of the table is relevant (belongs to the
provenance of the query), we can (virtually) horizontally range-partition the table, e.g., on state as
shown below, and record which fragments contain (some) relevant data. For the example, this is
the fragment {f;}. We refer to such an over-approximate as a provenance sketch. To utilize a
provenance sketch to filter irrelevant data, a sketch can be translated into WHERE clause conditions
that filter out data that does not belong to the sketch, state = CA’ for this example.

SELECT state, sum(sales) AS rev
FROM sal

GROUP BY state

HAVING sum(sales) > 5000

state sales | fragment
IL Chicago 3000
IL Schaumburg 500 fi
IL Springfield 10

CA Sacramento 2000
CA San Francisco 8000 fo
CA Santa Cruz 1000




We formally define provenance sketches a below.

Definition 2.1. A provenance sketch P for a query ) and database D contains for each table R
in D accessed by @ a pair:

e a horizontal partitioning Fg for R
e a set of fragments: P(R) C Fg

Data contained in a sketch:

DP:Uf

fepr

We require provenance sketches to over-approximate provenance:

Prov(Q,D) C Dp

Note that the fact that provenance sketches have to cover all tables accessed by a query is not a
practical requirement, but just assumed here to simplify the definition. A provenance sketch which
covers a subset of the tables can be modeled by using a partitioning with a single fragment (that
contains all data of the table).

2.3.1 Creating Sketches

Given a partitioning F, of a table R and a query @, we can generate a sketch for @) wrt. F through
query instrumentation. That is we generate another query @ sgetep, Which returns the sketch. This is
achieved by using a set of a query instrumentation rules for individual relational algebra operators
that generate initial sketches as "seeds" (for table access operators) or propagate and combine input
sketches according the provenance semantics for the operator (other algebra operators). The rules
we have developed ensure that the sketch generated as the output over-approximates all data that
is relevant for the query.

Example 2.4. For example consider the following query:

SELECT dept, avg(salary) AS avgsal
FROM emp

GROUP BY dept

HAVING count(*) > 10

To instrument this query to generate a sketch, according to a range-partitioning on attribute
salary using ranges {[0, 500], [501, 800], [801, 5000], [5001, 20000] }, we first determine for each input
row which fragment it belongs to using a CASE statement and create singleton sets with these
fragments (encoded as bitvectors). We merge these individual sketches using bit-wise or (set union)
to produce a sketch for each group. Finally, the sketches for all groups fulfilling the HAVING clause
are merged into the final sketch for the query as shown below.

SELECT bit_or_agg(provsketch) AS provsketch
FROM
(SELECT dept, avg(salary) AS avgsal, bit_or_agg(provsketch) AS provsketch
FROM
(SELECT salary, dept,



CASE WHEN salary BETWEEN O AND 500 THEN 1 << O
WHEN salary BETWEEN 501 AND 800 THEN 1 << 1

END AS provsketch
FROM empl) init_sketch
GROUP BY dept
HAVING count(*) > 10) agg

2.3.2 Using Sketches to Speed-up Queries

If we know that a sketch P contains sufficient information for answering a query @), then we an
instrument @ to filter out data not belong to P early on by injecting additional WHERE clause
conditions above a table access to filter data not belonging to the sketch early on. Given the right
physical design, the DBMS may be able to utilize existing indexes, zone maps, partitioning, or other
physical design artifacts to evaluate these conditions efficiently.

Example 2.5. Assume the sketch P produced by the query from the previous example, contains
fragments {[0, 500], [801, 5000]} and let us assume that we determined already that P can be used
to answer the query shown below.

SELECT dept, avg(salary) AS avgsal
FROM emp

GROUP BY dept

HAVING count(*) > 100

To instrument the query to use the sketch we create WHERE clause conditions that filter all rows
whose salary is not in one of the fragments of the sketch as shown below.

SELECT dept, avg(salary) AS avgsal

FROM emp

WHERE (salary BETWEEN O AND 500) OR (salary BETWEEN 801 AND 5000)
GROUP BY dept

HAVING count(*) > 100

2.3.3 Reusing Sketches

In the examples shown above we have assumed that we know whether a sketch for a query ()1 can
be used to answer a query Q2. That is the case if the data contained in the sketch is sufficient for
Q1. In general, this not trivial to determine. As part of our work we have developed techniques
for determining statically whether a sketch for query Q1 can be used for a query Q2 where both
()1 and ()2 are instances of the same query with bind parameters and have demonstrated that
this technique is effective through end-to-end experiments where we evaluate a workload consisting
of a large number of instances of a set of query templates and compare the runtime of executing
the workload without sketches and executing the workload using sketches (no sketches are created
before execution of the workload, i.e., the cost of creating sketches where needed is included in the
execution time).



3 Maintenance of Sketches Under Updates

A provenance sketch is created over a particular version of a database and can be used to answer
queries efficiently as long as the database does not change. Similar to materialized views, when
the database is updated, then sketches may become stale and no longer correctly reflect what data
is needed to answer a query. To avoid having to invalidate sketches after every update to the
database, we need methods for maintaining sketches under updates. While incremental view
maintenance techniques could be directly applied to this problem, because sketches are generated
by queries, the approximate nature of sketches enables trade-offs between size of the sketch (and,
thus, the benefits of using a sketch) and the cost of maintaining the sketch. Furthermore, having
specialized techniques for data associated with sketches rather than incrementalizing the query that
generates the sketch can be beneficial.

Over the course of this project we have developed such techniques and have have investigated
two implementation strategies:

e (i) SQL-based strategy: the state required for incremental maintenance of operators which
produce data annotated with sketches is persisted as database tables. Incremental mainte-
nance is modeled as queries and updates over these tables. This approach has the advantage
that data-heavy operations are executed inside the database and that there is no need to
transfer large amounts of data between the client and DBMS. However, incremental opera-
tions can not always be efficiently expressed in SQL and materializing state in tables results
in overhead for updating and accessing the state compared to an in-memory data structure.

e (ii) Native in-memory strategy: the state for incremental maintenance is kept in-memory
and an in-memory execution engine is used that implements the incremental semantics of
operators. This approach has the advantage that we can exploit specialized data structures
that are suited best for incremental maintenance operations for data annotated with sketches.
However, it requires replicating parts of the database execution engine in a middleware.

Independent of the choice of strategy also have studied how to separate incremental maintenance
into two steps:

e (i) generating a table of deltas from updates that serves as input to incremental maintenance

e (ii) updating a sketch based on such a delta using incremental implementations of operators

This has the advantage that we can develop new strategies for each of these two steps without
having to change the implementation of the other step. We discuss our methods for these two steps
in more detail in the following.

3.1 Incremental Maintenance of Sketches

We have developed generic rules for maintaining sketches under updates, one for each type of
relational algebra operator. These rules expect as input a delta that consists of a set of delta tuples
which either correspond to the insertion or deletion of a tuple from an input of an operator associated
with a set of fragments (a partial sketch). Intuitively, the set of fragments associated with the tuple
contains exactly the fragments that belong to the provenance of this tuple. This model is powerful
enough to encode changes to an (intermediate) query result as well as to encode changes to the
provenance (sketch) of an (intermediate) result tuple. For instance, consider a tuple ¢ associated
with a set of fragments {f1, f2, f3}. If f3 has to be deleted from the provenance of the tuple, then



this would be modeled as two delta tuples: $-t — {f1, f2, f3} and +t — {f1, f2}, i.e., tuple t with
provenance { f1, f2, f3} is deleted and tuple ¢ with provenance { fi, fo} is inserted. This can then be
further optimized by allowing a delta to update the sketch for a result tuple that already is in the
output of the operator before the delta was applied, e.g., in the example we could use t — +{f3} to
denote that f3 is added to the sketch for ¢. In our incremental maintenance approach, each operator
takes as input a set of such deltas and has to output a set of deltas representing the changes to
its output (and the provenance of the output). Furthermore, incremental maintenance for some
operators may require us to maintain additional state, e.g., for group-by aggregation we have to
store the aggregation result for each group and which fragments are in the provenance of each group.
The advantage of this operator-centric approach is that it allows incremental maintenance of any
query that is constructed from the operators for which we have defined such rules.

3.2 In-Database Generation of Deltas

As mentioned above, the first step in incremental maintenance is to determine the delta between
the database version for which a sketch was originally produced and the current database version
(or the database version seen by a query for which was want to use a sketch). We have investigated
different techniques for how our incremental maintenance approach can be informed about updates
to compute such deltas. For the first prototype we assumed that all updates are provided as SQL
statements (e.g., as provided by Oracle’s audit logging functionality) each associated with a SCN. A
provenance sketch is also associated with an SCN that indicates which database version is reflected
in the sketch. We can maintain multiple outdated versions of a sketch for long running transactions
that need an older version of a sketch. This is sensible as sketches are typically small (100s to 1000s
of bytes). When we decide to use a sketch created for a query that did run at SCN x to answer a
query that will see the version of the database at SCN y > x, then we need to make sure that the
sketch reflects all updates executed between x and committed before y. Thus, we have to retrieve all
relevant updates between z and y (the delta between x and y) and apply incremental maintenance
to create the sketch version for SCN y. If storage is a concern, then we can garbage-collect sketches
for which we have newer versions that are sufficient for serving active and future transactions. For
instance, assume we have two versions of a sketch at SCN z and y with x < y and the oldest
currently active transaction is running under SCN z > y. In this case, we can delete the sketch for
SCN =z as it not visible to the current or any future transactions and if we have to bring the sketch
up to date for any future transaction, then we can do this more efficiently using the version for SCN
y then the one for SCN x as the one for SCN y already reflects all updates between SCN z and y.

3.2.1 Strategies for retrieving deltas

We have considered the following strategies (some of which require changes to Oracle internals and,
thus, could not be implemented, but only simulated):

e Audit log: we use an audit log (as supported by Oracle) to retrieve all DML statements
run by transactions that committed between z and y. Then we use reenactment, a technique
developed in a prior ERO project for retroactively computing the provenance of transactions
to generate a temporal query simulating these statements. With minor modifications to the
reenactment technique, it is possible to generate reenactment queries that return the delta
between z and y rather then the version of a table at y. The advantage of this approach is
that it piggybacks onto existing audit logging facilities. That is, for customers that already
use audit logging, this method does not incur any additional runtime overhead for query and
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transaction processing. However, the disadvantage is that it requires SQL code to be shipped
to our system and our system to parse these SQL statements.

e Time travel: using time travel (e.g., Oracle’s flashback data archive functionality) we can
determine which row versions were created between SCN z and y and generate deltas based
on this information. Alternatively, we retrieve the version of a table x as well as the version
of this table at y and then compute their symmetric difference in SQL. This approach is
advantageous for customers that do not use audit logging and for workloads with many SQL
statements that each change only a few rows. Of course, time travel has to be available for the
table to retrieve the table at SCN x. For instance, for users that do not activate flash-back
archive (FBA) only versions that have not been garbage-collected yet (are still available in
the Undo segment) can be retrieved.

e In-memory columnar notification mechanism: We have started to explore different
ways of retrieving updates such as computing a diff between two database versions or using
the notification mechanisms implemented in Oracle for in-memory columnar. For such an
approach we can extract the differences between pages that have changed and use this to
generate the delta.

3.2.2 Optimizations

We have studied several techniques for improving the performance of delta generation:

e Merge updates: for tables with a primary key, we only have to retain the first version of
the tuple valid at y (this is the version that has to be deleted) and the latest version (valid
at x, this version will be inserted). This is particularly effective if the distribution of updates
is skewed towards a relatively small number of hot rows. This technique is theoretically also
applicable for tables without PKs, but we have to decide what columns are used to identify
tuples and have to deal with multiple tuples with the same identity that have different values
in the same database version.

e Focus on relevant tables: given a provenance sketch for a query ) that accessed tables Ry,
.., Ry, any update of a table .S not in this list can be ignored

e Pushing selections into delta computation: For sketches of queries including selections,
we can use the selection condition to directly filter delta rows that do not fulfill the selection
condition as these rows are guaranteed to not result in any changes to the sketch we want to
maintain.

3.3 SQL-based implementation

Our first implementation of our incremental maintenance rules for sketches uses the database to
store and update the state of incremental operators. This has the advantage that no data has to
be transferred between GProM (our middleware) and the database. However, we are limited to
algorithms for maintenance that can be efficiently implemented in SQL and cannot use specialized
data structures to store operator state. This makes this approach significantly less efficient than
the incremental query engine we describe next.
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3.4 A Incremental In-Memory Maintenance Engine

In addition to the SQL based implementation we have implemented a prototype in-memory engine
for incremental maintenance of sketches inside GProM. An operator of this engine takes as input a
delta table (encoded in columnar form), a set of tuples which where deleted from (inserted into) the
input table(s) of the operator, and computes a delta table for the operator’s output. In contrast to
traditional incremental view maintenance, these operators work on annotated relations where each
tuple is associated with a (partial) provenance sketch. The result of evaluating an execution plan
that consists of such operators over a delta table representing changes to the database is an updated
provenance sketch. These operators maintain state that can be reused across maintenance runs and
can be persisted in the database.

3.4.1 Optimizations

1. Joins The standard approach for incrementally maintaining a join requires access to the tables
before the delta was applied. If AR denotes the delta for table R and R denotes the version
before the update, then the delta of the join result A(R < S) can be computed as AR
SUR > ASUAR <1 AS. Note that this requires access to both R and S. We could either store
both R and S in-memory, but this only works if both tables fit into memory. Alternatively, we
can compute AR 1 S and R <1 AS in the database by sending AR and AS to the database
and send A(R < S) back to the incremental engine. However, this requires the execution of
additional queries in the database and results in more communication between the database
and the incremental engine. To optimize this process further, we can considered to only store
bloom filters for the join attributes of R and S in the incremental engine. These bloom filters
can then be used for classical semi-join reducers to filter AR and AS using the bloom filters,
implementing the semi-join AR x B(S) where B(S) is the bloom filter for the join attribute
of S. In the ideal case the result of such a semi-join is empty and we can avoid the round trip
to the database. If the result of the semijoin is not empty then may have still reduced the size
of the deltas to be send to the database.

3.5 Experimental Results

We have experimentally evaluated our in-memory engine and compared it against regenerating a
sketch (recapture). We show a few selected results here.

3.5.1 Data, Setup & Workload

We synthetically generated data for the experimental evaluation. We use a table with
(Boris says: TODO J

rows and the following schema. The data is randomly generated using the following distribution:

(Boris says: TODO J

. All experiments were run on
(Boris says: DESCRIBE MACHINE j

. We describe the queries used in the experiments in the following:
Query Aggl is TODO

SELECT
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3.5.2 Simple Aggregation Queries with Having

In the first experiment we evaluated incremental maintenance for a simple aggregation query Aggl
varying the relative size of the input delta (fraction of the input table changed by the delta). The
results are shown in Figure . For deltas of a size up to 6% of the data (a relatively large delta),
incremental maintenance outperforms the approach we recaptures the sketch.

- B e =

PR

Figure 1: Incremental maintance of a sketch vs. recapture for Aggl varying relative size of the delta

3.5.3 Varying number of groups

We now compare the performance for two variants of Aggl - one returning 1k groups and the other
one returning 5k groups. The results are shown in Figures[2] and [B] Performance decreases slightly
in the number of groups: incremental maintenance outperforms recapture for deltas of a size up to
2.6% of the data for 1k groups and 2.2% for 5k groups.

Figure 2: Incremental maintance of a sketch vs. recapture for Aggl varying relative size of the delta
(1k groups).

3.5.4 Pushing Selections into Delta Retrieval

In this experiment we evaluate the effectiveness of pushing the selection conditions of a query into
the generation of the delta. As expected, the runtime of retrieving the delta when pushing the filter
decreases when the selectivity of the query decreases.
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Figure 3: Incremental maintance of a sketch vs. recapture for Aggl varying relative size of the delta
(5k groups).

Figure 4: Pushing filters into the delta computation varying query selectivity.

4 Cost-based Selection of Provenance Sketches

Based on a preliminary experimental evaluation of our cost estimation techniques for sketches, we
have identified several areas of improvement. Recall that for cost estimation we combine histograms
with sampling. Specifically, for aggregations with large number of groups our approach was signifi-
cantly overestimating aggregation results, because we did not estimate the total number of groups
and scaled estimates based on that. Furthermore, for such aggregations our estimates of the aggre-
gation result for a particular group will dependent on a small number (in worst case) one sample we
have for the group. This leads to high variance in the estimates for aggregation values which in turn
leads to poor estimation of the selectivity of HAVING conditions evaluated over such aggregation
results. To address this problem we have investigated different techniques for estimating the number
of tuples per group and the correlation of this metric with the group-by attribute values. Further-
more, we are currently investigating how to selectively gather more information about a sample of
groups when the number of group-by values is very large (which implies that we are unlikely to have
sufficient information about each group to accurately estimate aggregation function results).

We have designed several strategies for determining what sketches to consider for creation starting
from simplistic strategies such as randomly selecting an attribute and always using primary key
attributes over strategies that heuristically select attributes by static analyzing the query (e.g.,
group-by and selection attributes are often decent candidates for creating sketches) to strategies
that use our cost estimation approach to select the attribute(s) which are estimated to yield the
smallest sketches (possibly combined with prefiltering based on statically analyzing the query).

4.1 Estimating Sketch Size

We treat the estimation of the size of a sketch as an approximate-query-processing (AQP) problem.
We have to estimate the count of fragments in the sketch.
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4.2 Experimental Results

We now evaluate the effectiveness of multiple strategies for selecting sketches, some of which utilize
our cost model.

4.2.1 Compared strategies

Based on our experiment experience, for the most cases, the performance of the attribute which has
small distinct value number is much worse than the performance of the attribute which has large
distinct value number. Thus, for our experiments, we firstly have a pre-filtering of the candidates
of attribute, filtering the attribute which has fewer distinct value. Many strategies can be applied
to choose the optimal attribute for provenance sketch. Different strategies include random picking
from all attributes candidates after pre-filtering which is notated as RAN-ALL, random picking
from query-relatively attributes which is notated as RAN-REL-ALL, random picking from group-
by attributes which is notated as RAN-GB, random picking from primary key attributes which
is notated as RAN-PK. random picking from aggregation attributes which is notated as RAN-
AGG. The random picking strategy is that we choose the attributes for provenance sketches from
the candidates using the uniform assumption. For example, for random picking from primary key, we
uniformly random choose one attribute from all the primary key attributes for provenance sketch.
The CB-OPT-REL strategy involves selecting the relative attributes based on the cost-based
optimal approach. The CB-OPT-GB strategy involves selecting the group by attribute based on
the cost-based optimal approach. The CB-OPT strategy involves selecting the best one based on
the cost-based optimal approach.

4.2.2 Self-tuning with Sketches

In this set of experiments we evaluated the end-to-end performance of running a workload, gener-
ating sketches where needed and using re-using existing sketches where possible.

4.2.3 Summary

We have demonstrated that our techniques can estimate the size of for sketches using histogram,
sampling, and approximate query processing technique with the accuracy needed to make informed
choices about what attributes to partition on to generate more effective sketches. Furthermore,
we explored whether taking static information about what attributes are "relevant" for a query
(e.g., attributes used in group-by expressions) into account can improve the performance of costing
by avoiding to generate cost estimates for sketches on attributes that are unlikely to yield good
sketches. In end-to-end experiments we compared our cost-based approach against strategies that
select sketch candidates based on heuristics and have demonstrated that the overhead of costing
sketch candidates is amortized easily by selecting more effective sketches, leading to significant
improvement over these baselines.

5 Hierarchical Sketches for Semi-structured Data

Master student Anjali Veer did investigate different ideas for how to create hierarchical sketches for
semi-structured data and did evaluate the feasibility of using existing physical design techniques to
skip data based on such sketches. The preliminary results produced by this project demonstrate that
several existing techniques such as full text path indexes, expression indexes and zone maps (with
modifications to skip data based on path expressions) can be used to efficiently skip data based on
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JSON path expressions. This demonstrate the potential of hierarchical sketches for semi-structured
data.

6 Summary

In this project we have developed a suite of techniques for improving data management based on
data relevance. The main contribution is the development of provenance sketches, light-weight
over-approximations of what data is relevant for a query, and the use of sketches for improving the
performance of queries. We have developed a full suite of techniques and have implemented them in
our database middleware GProM (available as open-source at https://github.com/IITDBGroup/
gprom) which is a query rewrite frontend to multiple DBMS including Oracle and PostgreSQL.

The developed techniques are ready for integration into DBMS for immediate impact on query
performance. However as we will explain in 7] there are several short-term and long-term extensions
to these techniques that would result in significant additional improvements of the utility of these
techniques including for converged databases and vector databases.

6.1 Artifacts

e open source implementation of provenance-based data skipping including the new techniques
developed in the last three years in GProM: https://github.com/IITDBGroup/gprom

6.2 Publications

e Provenance-based Data Skipping published at PVLDB in 2021 [NLL"21| and presented
at VLDB 2022 (https://vldb.org/pvldb/vol15/p451-niu.pdf)

e Xing Niu’s Ph.D. thesis: Integrating Provenance Management and Query Optimiza-
tion thesis as pdf

e Oracle PBDS Experiments ,Boris Glavic, Xing Niu, Pengyuan Li and Ziyu Liu, Techni-
cal Report #IIT/Cs-db-2022-01 (http://cs.iit.edu/%7edbgroup/assets/pdfpubls/GN22.
pdf)

7 Future Work

As explained above, the developed techniques are mature enough for integration into database
system. Nonetheless, there are several immediate and long-term extensions that would further
increase the potential of relevance-based data management.

7.1 Converged databases

We see significant potential for the use of provenance sketches for converged databases to (i) speed
up the execution of queries over semi-structured and property graph data and (ii) to make informed
decisions of what data to index (only relevant data should be indexed). During this project, master
student Anjali Veer has evaluated the potential of building sketches based on paths in JSON doc-
uments. However, additional research is needed to determine strategies for selecting what paths to
build provenance sketches on and how to extend this idea for property graphs. This is an immediate
extension of the results of this project.
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7.2 Vector databases

Vector databases have seen significant adoption and interest in recent years. Using an Al model,
data is mapped into an embedding space that preserves semantic similarity between data points.
This enables similarity-based queries (perhaps expressed in natural language) by mapping queries
into the embedding space and ranking data based on their distance to the query. As data can now
be mapped into a vector space, this enables new types of provenance sketches that are based on
clustering data based on their distance. This is an immediate extension of our work in this project.
Furthermore, we envision that similar to, e.g., a model can learn the correspondence between images
and textual descriptions, it will also be possible to learn embedding for queries and data based on
the correspondence between data and queries (this data is relevant for that query).

7.3 Value of data

We envision an objective metric of the value of data based on relevance. Such a metric could be
the basis for dealing with dark data (data that is not utilized) through controlled recommendations
(dark data is recommended to users to learn over time which data is under-utilized and which data is
not useful) and would have important applications in many aspects of data management (including
automated physical design and data life-cycle management based on data value).
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