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ABSTRACT

Uncertainty arises naturally in many application domains. It can be caused by

an uncertain data source (sensor errors, noise, etc.). Data preprocessing techniques

(data curation, data integration, etc.) can also results in uncertainty to the data.

Analyzing uncertain data without accounting for its uncertainty can create hard to

trace errors, with severe real world implications. Certain answers are a principled

method for coping with the uncertainty that arises in many practical data man-

agement tasks. Unfortunately, this method is expensive and may exclude useful (if

uncertain) answers. Other techniques from incomplete database record and propagate

more detailed uncertainty information. However, most of these approaches are either

too expensive to be practical, or only focus on a narrow class of queries and only work

for a specific representation. In this thesis, we investigate models and query semantics

for uncertain data management and present a framework that is general and practi-

cally e�cient, backed up by fundamental theoretical foundations and with formally

proven correctness guarantees. We first propose Uncertainty Annotated Databases

(UA-DB), which combine an under- and over-approximation of certain answers to

combine the reliability of certain answers with the performance of a classical data-

base system. We then introduce attribute-annotated uncertain databases (AU-DB),

which extend the UA-DB model with attribute-level annotations that record bounds

on the values of an attribute across all possible worlds. AU-DB extends UA-DBs to

encode a compact over-approximation of possible answers which is necessary to sup-

port non-monotone queries including aggregation and set di↵erence. With a further

extension to AU-DB that supports ranking and windowed aggregation queries using

native implementation on modern DBMS, our approaches scale to complex queries

and large datasets, and produces accurate results. Furthermore, they significantly

outperforms alternative methods for uncertain data management.

viii
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CHAPTER 1

INTRODUCTION

Uncertainty arises naturally in many application domains due to data entry

errors, sensor errors and noise [1], uncertainty in information extraction and pars-

ing [2], ambiguity from data integration [3–5], and heuristic data wrangling [6–8].

Analyzing uncertain data without accounting for its uncertainty can lead to hard to

trace errors, with severe real world implications, such as financial damages, incorrect

scientific conclusions, or even a↵ect people’s physical well-being. Incomplete database

techniques [9] have emerged as a principled way to model and manage uncertainty

in data1. An incomplete database models uncertainty by encoding a set of possible

worlds, each is one possible state of the real world. Table 1.1 shows Covid infection

data gathered from two di↵erent sources. The two sources may disagree with each

other on some part of the data (i.e. Los Angeles has 3% infection rate in D1 and 4%

in D2). Each possible instance of the data is a possible world. Naively, querying

over an incomplete database can be processed by running the query on every possible

world. In real world applications, the number of possible world can grow exponen-

tially with respect to number of uncertain tuples in the database. Thus, the naive

approach is not practical. Previous works developed di↵erent querying semantics for

incomplete databases.

General semantics: Under the commonly used certain answer semantics [11, 12],

a query returns the set of answer tuples guaranteed to be in the result, regardless of

1Probabilistic databases [10] generalize incomplete databases with a probability
distribution over all possible worlds. We focus on contrasting with the former for sim-
plicity, but many of the same cost and expressivity limitations also a↵ect probabilistic
databases.
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Table 1.1. An incomplete database with two possible worlds
D1

locale rate size

Los Angeles 3% metro

Austin 18% city

Houston 14% metro

Berlin 3% town

Sacramento 1% null

Springfield null town

D2

locale rate size

Los Angeles 4% metro

Austin 18% metro

Houston 14% metro

Berlin 1% city

Sacramento 1% null

Springfield null town

which possible world is correct. Many computational problems are intractable over

incomplete databases. Even approximations (e.g., [13–15]) are often still not e�cient

enough, are insu�ciently expressive, or exclude useful answers [9, 16]. Thus, typical

database users resort to resolving uncertainty using heuristics and then treating the

result as a deterministic database [6]. In other words, this approach selects one possi-

ble world for analysis, ignoring all other possible worlds. We refer to this approach as

selected-guess query processing (SGQP). SGQP is e�cient, since the resulting dataset

is deterministic, but discards all information about uncertainty, with the associated

potential for severe negative consequences.

Example 1. Alice is tracking the spread of COVID-19 and wants to use data ex-

tracted from the web to compare infection rates in population centers of varying size.

Table 1.2 (left) shows an example of unreliable input data. Parts of this data are

trustworthy, while other parts are ambiguous; [v1, . . . , vn] denotes an uncertain value

(e.g., conflicting data sources) and null indicates that the value is completely un-

known (i.e., any value from the attribute’s domain could be correct). D encodes a set

of possible worlds, each a deterministic database that represents one possible state of
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Table 1.2. Unreliable data in x-DBs [17] representation
D

locale rate size

Los Angeles [3%,4%] metro

Austin 18% [city,metro]

Houston 14% metro

Berlin [1%,3%] [town,city]

Sacramento 1% null

Springfield null town

Q(D)

size rate

village 0%

village 1%

town 0%

. . . . . .

metro 12%

the real world. Alice’s ETL heuristics select (e.g., based on the relative trustworthi-

ness of each source) one possible world DSG (Table 1.3) by selecting a deterministic

value for each ambiguous input (e.g., an infection rate of 3% for Los Angeles). Alice

next computes the average rate by locale size.

SELECT size , avg(rate) AS rate

FROM locales GROUP BY size

Querying DSG may produce misleading results, (e.g., an 18% average infection

rate for cities). Conversely, querying D using certain answer semantics [12] produces

no results at all. Although there must exist a result tuple for metros, the uncertain

infection rate of Los Angeles makes it impossible to compute one certain result tuple.

Furthermore, the data lacks a size for Sacramento, which can contribute to any result,

rendering all rate values uncertain, even for result tuples with otherwise perfect data.

An alternative is the possible answer semantics, which enumerates all possible results.

However, the number of possible results is inordinately large (e.g., Table 1.2, right).

With only integer percentages there are nearly 600 possible result tuples for towns

alone. Worse, enumerating either the (empty) certain or the (large) possible results



4

Table 1.3. A Selected Guess world (SG)
DSG

locale rate size

Los Angeles 3% metro

Austin 18% city

Houston 14% metro

Berlin 3% town

Sacramento 1% town

Springfield 5% town

Q(DSG)

size rate

metro 8.5%

city 18%

town 3%

is expensive (coNP-hard/NP-hard).

Aggregation semantics: Neither certain answers nor possible answer semantics are

meaningful for aggregation over uncertain data (e.g., see [9] for a deeper discussion),

further encouraging the (mis-)use of SGQP. One possible solution is to develop a

special query semantics for aggregation, either returning hard bounds on aggregate

results (e.g., [18–20]), or computing expectations (e.g., [20,21]) when probabilities are

available. Unfortunately, for such approaches, aggregate queries and non-aggregate

queries return incompatible results, and thus the class of queries supported by these

approaches is typically quite limited. For example, most support only a single ag-

gregation as the last operation of a query. Worse, these approaches are often still

computationally intractable. Another class of solutions represents aggregation re-

sults symbolically (e.g., [22,23]). Evaluating queries over symbolic representations is

often tractable (PTIME), but the result may be hard to interpret for a human, and

extracting tangible information (e.g., expectations) from symbolic instances is again

hard. In summary, prior work on processing complex queries involving aggregation

over incomplete (and probabilistic) databases (i) only supports limited query types;
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(ii) is often expensive; and/or (iii) returns results that are hard to interpret.

Order-based semantics: Uncertain versions of order-based operators like SORT /

LIMIT (i.e., Top-K) have been studied extensively in the past [24–27]. However, the

resulting semantics often lacks closure. That is, composing such operators with other

operators typically requires a complete rethinking of the entire system [28], because

the model that the operator expects its inputs to be encoded with di↵ers from the

model encoding the operator’s outputs. Further more, to the best of our knowledge,

there are no existing works supports uncertain windowed aggregations.

1.1 Requirements

As general goal of the thesis, we want to develop solutions to incomplete data

processing that fulfill following requirements:

1. Compact, general and easy to use encoding of uncertainty information

2. E�cient semantics that propagate uncertainty information through queries cor-

rectly

3. Support wild classes of queries

We propose two uncertain data models: Uncertainty-Annotated Databases(UA-DBs)

and Attribute-annotated uncertain databases (AU-DBs) that addressing these re-

quirements.

1.2 Uncertainty-Annotated Databases (UA-DBs)

As a initial step toward modeling uncertain data, UA-DB addressed require-

ment 1 and 2 from Sec. 1.1. we developed an approach that generalizes to a wide range

of data models, is easy to use like SGQP, is compatible with a wide range of proba-

bilistic and incomplete data representations (e.g., tuple-independent databases [10],
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C-tables [12], and x-DBs [17]) and sources of uncertainty (e.g., inconsistent databases

[15, 29–33], imputation of missing values, and more), and is principled like certain

answers. We address the generality requirement (1) by rethinking incomplete data

management in terms of Green et. al.’s K-database framework [34]. In this frame-

work, each tuple is annotated with an value from a semiring K. Choosing an ap-

propriate semiring, K-databases can encode a wide range of query processing se-

mantics including classical set- and bag-semantics, as well as query processing with

access control, provenance, and more. Our primary contribution here is to identify a

natural, backwards-compatible generalization of certain answers to a broad class of

K-databases.

The second major contribution for UA-DB is to combine an under-approximation

of certain answers with selected-guess query processing to create an Uncertainty-

Annotated Database (UA-DB). A UA-DB is built around one distinguished possible

world of an incomplete K-database, for instance the ”selected-guess” world that would

normally be used in practice. This world serves as an over-approximation (upper-

bound) of certain answers. Tuples from this world are labeled as either certain or

uncertain to encode an under-approximation (lower-bound) of certain answers. As

illustrated in Figure 1.2, a UA-DB bounds the certain answers between under- and

over-approximations. A lightweight (extensional [10]) query evaluation semantics

then propagates labels while preserving the approximation’s guarantees.

Example 2. Continuing previous example, consider query

SELECT locale, size FROM locales WHERE rate >= 3%,

Table 1.4 shows the encoding of UA-DB and result of the query as a set UA-DB. When

the UA-DB is built, one designated possible world of is selected. For this example, we

select the DSG. The result is based on this one designated possible world, which serves

as an over-approximation of the certain answers. A subset of these tuples (tuple 3)
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Incomplete 
K-database

Compact Incomplete 
Data Model UA-DB

Rep
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Cert

Certain 
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Certain
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Best-Guess
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Best-Guess

Labeling

Certain
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bounds
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Query Query Query

over
approximation

under
approximation

over
approximation

under
approximation

Figure 1.1. The relationship between UA-DBs, certain answers, and other incomplete
data models

Table 1.4. UA-DB encoding (based on DSG)
DUA

locale rate size B

Los Angeles 3% metro F

Austin 18% city F

Houston 14% metro T

Berlin 3% town F

Sacramento 1% town F

Springfield 5% town F

Q(DUA)

locale size B

Los Angeles metro F

Austiny city F

Houston metro T

Berlin town F

Springfield town F

are explicitly labeled as certain. This is the under-approximation: A tuple might still

be certain even if it is not labeled as such. We consider the remaining tuples to be

“uncertain”. In Figure 1.4, tuple 3 are correctly marked as certain, while tuple 1 is

mis-classified as uncertain even though it appears in all worlds. We stress that even a

mislabeled certain answer is still present: a UA-DB sandwiches the certain answers.

Fig. 1.1 Shows an overview of our approach. We provide certain under-

approximations that derive a UA-DB from common incomplete data models. The

resulting UA-DB bounds the certain tuples from above and below, a property pre-
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served through queries. UA-DBs are both e�cient and precise. We demonstrate

e�ciency by implementing a bag UA-DB as a query-rewriting front-end on top of a

classical relational DBMS: UA-DB queries have minimal performance overhead com-

pared to the same queries on deterministic data. We demonstrate precision both

analytically and experimentally. First, under specific conditions, some of which we

identify in Sec. 4.8, exactly the certain answers will be marked as certain. Second,

we show experimentally that even when these conditions do not hold, the fraction of

misclassified certain answers is low. Importantly, a wide range of uncertain data mod-

els can be translated into UA-DBs through simple and e�cient transformations that

(i) determine a selected-guess world (SGW ) and (ii) obtain an under-approximation

of the certain answers. We define such transformations for three popular models of

incomplete data in Sec. 4.5: tuple-independent databases [10], x-DBs [17] and C-

tables [12]. In classical incomplete databases, where probabilities are not available,

any possible world can serve as a SGW. In probabilistic databases (or any incomplete

data model that ranks possible worlds), we preferentially use the possible world with

the highest probability (if computationally feasible), or an approximation thereof. We

emphasize that our approach does not require enumerating (or even knowing) the full

set of possible worlds. As long as some possible world can be obtained, our approach

is applicable. In worst case, if no certainty information is available, our approach la-

bels all tuples as uncertain and degrades to classical selected-guess query processing.

Furthermore, our approach is also applicable to use cases like inconsistent query

answering [33] where possible worlds are defined declaratively (e.g., all repairs of an

inconsistent database).

We significantly extend the state-of-the-art on under-approximating certain

answers [13, 35, 36]: (1) we combine an under-approximation with best-guess query

processing bounding certain answers from above and below; (2) we support sets, bags,

and any other data model expressible as semiring annotations from a large class of
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semirings; (3) we support translation of a wide range of incomplete and probabilistic

data models into our UA-DB model; (4) in contrast to certain answers, UA-DBs are

closed under queries.

1.3 Attribute-annotated uncertain databases (AU-DBs)

UA-DBs full-filled part of our requirements by providing a tuple level uncertain

model that bounds certain answers using under-approximation of certain answers

and SGQP. However, UA-DBs only meaningfully supports RA
+ queries which is a

subset of the query classes. In this model, we are aiming to address requirement 3

while keeping requirement 1 and requirement 2 satisfied. We present AU-DBs, an

annotated data model that approximates an incomplete database by annotating one

of its possible worlds. As an extension of the recently proposed UA-DBs, AU-DBs

generalize and subsume current standard practices (i.e., SGQP). An AU-DB is built

on a selected world, supplemented with two sets of annotations: lower and upper

bounds both on attributes, and on tuple annotations (multiplicities in the case of

bag semantics). Thus, each tuple in an AU-DB may encode a set of tuples from

each possible world, each with attribute values falling within the provided bounds. In

addition to being a strict generalization of SGQP, an AU-DB relation also includes

enough information to bound both the certain and possible answers as illustrated in

Fig. 1.2.

Everything

Over-Approximation of Possible

Possible

Over-approximation of Certain
(Selected Guess World)

Certain

Under-approximation 
of Certain

UA-DBs

AU-DBs

Figure 1.2. UA-DBs and AU-DBs sandwiching e↵ect

Example 3. Table 1.5 shows an AU-DB constructed from one possible world DSG
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Table 1.5. Possible AU-DB Encoding (based on DSG)
DAU

locale rate size N3

Los Angeles [3%/3%/4%] metro (1,1,1)

Austin 18% [city/city/metro] (1,1,1)

Houston 14% metro (1,1,1)

Berlin [1%/3%/3%] [town/town/city] (1,1,1)

Sacramento 1% [village/town/metro] (1,1,1)

Springfield [0%/5%/100%] town (1,1,1)

Q(DAU)

size spop N3

metro [6%/8.5%/12%] (1,1,1)

city [7.33%/18%/18%] (0,1,1)

town [0.33%/4%/100%] (1,1,1)

[village/village/metro] 1% (0,0,1)

of D. We refer to this world as the selected-guess world (SGW). Each uncertain

attribute is replaced by a 3-tuple, consisting of a lower bound, the value of the attribute

in the SGW, and an upper bound, respectively. Additionally, each tuple is annotated

with a 3-tuple consisting of a lower bound on its multiplicity across all possible worlds,

its multiplicity in the SGW, and an upper bound on its multiplicity. For instance, Los

Angeles is known to have an infection rate between 3% and 4% with a guess (e.g., based

on a typical ETL approach like giving priority to a trusted source) of 3%. The query

result is shown in Table 1.5. The first row of the result indicates that there is exactly

one record for metro areas (i.e., the upper and lower multiplicity bounds are both 1),

with an average rate between 6% and 12% (with a selected guess of 8.5%). Similarly,
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the second row of the result indicates that there might (i.e., lower-bound of 0) exist one

record for cities with a rate between 7.33% and 18%. This is a strict generalization

of how users presently interact with uncertain data, as ignoring everything but the

middle element of each 3-tuple gets us the SGW. However, the AU-DB also captures

the data’s uncertainty.

When sorting uncertain attribute values, the possible order-by attribute val-

ues of two tuples t1 and t2 may overlap, which leads to multiple possible sort orders.

Supporting order-based operators over AU-DBs requires encoding multiple possible

sort orders. Unfortunately, a dataset can only have one physical ordering. We address

this limitation by introducing a position attribute, decoupling the physical order in

which the tuples are stored from the set of possible logical orderings. With a tu-

ple’s position in a sort order encoded as a numerical attribute, operations that act

on this order (i.e., LIMIT) can be redefined in terms of standard relational operators.

In short, by virtualizing sort order into a position attribute, AU-DB model is su�-

cient to express the output of SQL’s order-dependent operations in the presence of

uncertainty.

To understand the intuition behind these operators, consider the logical sort

operator, which extends each input row with a new attribute storing the row’s position

wrt. to ordering the input relation on a list O of order-by attributes. If the order-

by attributes’ values are uncertain, we have to reason about each tuple t’s lowest

possible position (the number of tuples that certainly precede it over all possible

worlds), and highest possible position (the number of tuples that possibly precede

it in at least one possible world). We can naively compute a lower (resp., upper)

bound by joining every tuple t with every other tuple, counting pairs where t is

certainly (resp., possibly) preceded by its pairing. We refer to this approach as the

rewrite method, as it can be implemented in SQL. However, the rewrite approach
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has quadratic runtime. Inspired by techniques for aggregation over interval-temporal

databases such as [37], we propose a one-pass algorithm to compute the bounds on a

tuple’s position that also supports top-k queries.

Example 4 (Uncertain Sorting and Top-k). Fig. 1.3 shows a sales DB, extracted

from 3 press releases. Uncertainty arises for a variety of reasons, including extraction

errors (e.g., D3 includes term 5) or missing information (e.g., only preliminary data

is available for the 4th term in D1). The task of finding the two terms with the

most sales is semantically ambiguous for uncertain data. Several attempts to define

semantics include (i) U-top [24] (Fig. 1.3b), which returns the most likely ranked

order; (ii) U-rank [24] (Fig. 1.3b), which returns the most likely tuple at each position

(term 4 is more likely than any other value for both the 1st and 2nd position); or (iii)

Probabilistic threshold queries (PT-k) [38,39], which return tuples that appear in the

top-k with a probability exceeding a threshold (PT), generalizing both possible (PT >

0; Fig. 1.3c) and certain (PT � 1; Fig. 1.3d) answers.

With the exception of U-Top, none of these semantics return both information

about certain and possible results, making it di�cult for users to gauge the (i) trust-

worthiness or (ii) completeness of an answer. Risk assessment on the resulting data is

di�cult, preventing its use for critical applications, e.g., in the medical, engineering,

or financial domains. Furthermore, the outputs of uncertain ranking operators like

U-Top are not valid as inputs to further uncertainty-aware queries, because they lose

information about uncertainty in the source data. The AU-DB data model natu-

rally encodes query result reliability. By providing each attribute value (and tuple

multiplicity) as a range, users can quickly assess the precision of each answer.

Example 5 (AU-DB top-2 query). Table 1.6a (left) shows an AU-DB, which uses

triples, consisting of a lower bound, a selected-guess value (defined shortly), and an

upper bound to bound the value range of an attribute (Term, Sales) and the multi-
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Table 1.6. AU-DB result of the top-2 highest selling terms and rolling sum of sales
for the current and next term on the uncertain sales database.

(a) AU-DB bounding the worlds and top-2 result produced by our approach

Term Sales N3

1 [2/2/3] (1,1,1)

2 [2/3/3] (1,1,1)

[3/3/5] [4/7/7] (1,1,1)

4 [4/4/7] (1,1,1)

Term Sales Position N3

1 [2/2/3] [2/3/3] (0,0,0)

2 [2/3/3] [2/2/3] (0,0,0)

[3/3/5] [4/7/7] [0/0/1] (1,1,1)

4 [4/4/7] [0/1/1] (1,1,1)

(b) AU-DB windowed aggregation result pro-

duced by our approach

Term Sales Sum N3

1 [2/2/3] [4/5/6] (1,1,1)

2 [2/3/3] [6/10/10] (1,1,1)

[3/3/5] [4/7/7] [4/11/14] (1,1,1)

4 [4/4/7] [4/4/14] (1,1,1)

plicity of a tuple (N3). The AU-DB bounds all of the possible worlds of our running

example. Intuitively, each world’s tuples fit into the ranges defined by the AU-DB.

The selected-guess values encode one distinguished world (here, D1) — supplement-

ing the bounds with an educated guess about which possible world correctly reflects the

real world 2, providing backwards compatibility with existing systems, and a conve-

nient reference point for users [41, 42]. Table 1.6a (right) shows the result of com-

puting the top-2 answers sorted on term. The rows marked in grey encode all tuples

2 The process of obtaining a selected-guess world is domain-specific, but [16,40]
suggest the most likely world, if it can be feasibly obtained.
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that could exist in the top-2 result in some possible world. For example, the tu-

ples (3, 4) (D1), (3, 7) (D2), and (5, 7) (D3) are all encoded by the AU-DB tuple

([3/3/5], [4/7/7])! (1, 1, 1). Results with a row multiplicity range of (0,0,0) are cer-

tainly not in the result. The AU-DB compactly represents an under-approximation

of certain answers and an over-approximation of all the possible answers, e.g., for

our example, the AU-DB admit additional worlds with 5 sales in term 4.

Implementing windowed aggregation requires determining the (uncertain) mem-

bership of each window, which may be a↵ected both by uncertainty in sort position,

and in group-by attributes. Furthermore, we have to reason about which of the tuples

possibly belonging to a window minimize / maximize the aggregation function result.

It is possible implemented this reasoning in SQL, albeit at the cost of range self-joins

on the relation (this rewrite method is discussed in detail in [43] and evaluated in ??).

We propose a one-pass algorithm for windowed aggregation over AU-DBs, which we

will refer to as the native method.

The intuition behind our algorithm is to share state between multiple windows.

For example, consider the window ROWS BETWEEN 3 PRECEDING AND CURRENT ROW. In

the deterministic case, with each new window one row enters the window and one

row leaves. Sum-based aggregates (sum, count, average) can leverage commutativity

and associativity of addition, i.e., updating the window requires only constant time.

Similar techniques [44] can maintain of min/max aggregates in time logarithmic in the

window size.

Non-determinism in the row position makes such resource sharing problematic.

First, tuples with non-deterministic positions do not necessarily leave the window in

FIFO order; We need iteration over tuples sorted on both the upper- and lower-

bounds of their position. Second, the number of tuples that could possibly belong to

the window may be significantly larger than the window size. Considering all possible
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rows for a k-row window (using the naive AU-DB aggregation operator [40]) results

in a looser bound than if only subsets of size k are considered. For that, we need

access to rows possibly in a window sorted on the bounds of the aggregation attribute

values (e.g., to find the k-subset with the minimal/maximal sum) in both decreasing

order of their upper bound and increasing order of their lower bound. Furthermore,

we have to separate maintain tuples that certainly belong to a window (which must

contribute to both bounds). To e�ciently maintain sets of tuples such that they

can be accessed in several sort orders e�ciently, we develop a new data structure

which we refer to as a connected heap. A connected heap is a set of heaps where an

element popped from one heap can be e�ciently (O(log n)) removed from the other

heaps even if their sort orders di↵er from the heap we popped the element from. This

data structure allows us to e�ciently maintain su�cient state for computing AU-DB

results for windowed aggregation. In preliminary experiments, we demonstrated that,

connected heaps significantly outperform a solution based classical heaps.

Example 6 (Windowed Aggregation). Consider the following windowed aggregation

query:

SELECT *, sum(Sales) OVER (ORDER BY term ASC

BETWEEN CURRENT ROW AND 1 FOLLOWING) as sum FROM R;

Table 1.6b shows the result of this query over our running example AU-DB. The

column Sum bounds all possible windowed aggregation results for each AU-DB tuple

and the entire AU-DB relation bounds the windowed aggregation result for all possible

worlds. Notice that AU-DBs ignore correlations which causes an over-approximation

of ranges in the result. For example, term 1 has a maximum aggregation result value

of 6 according to the AU-DB representation but the maximum possible aggregation

value across all possible world is 5.

As we will demonstrate, AU-DBs have several beneficial properties that make
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them a good fit for dealing with uncertain data that satisfied our requirements:

E�ciency: Query evaluation over AU-DBs is PTIME, and by using novel optimiza-

tions that compact intermediate results to trade precision for performance and native

implementations using sweep based algorithm to process sorting based operations,

our approach scales to large datasets and complex queries. While still slower than

SGQP, AU-DBs are practical, significantly outperforming alternative uncertain data

management systems, especially for queries involving aggregation and windowed ag-

gregation.

Query Expressiveness: The under- and over-approximations encoded by an AU-

DB are preserved by queries from the full-relational algebra with multiple aggregations

(RA
agg). Thus, AU-DBs are closed under RA

agg, and are (to our knowledge) the first

incomplete database approach to support complex, multi-aggregate queries, ranking

queries and windowed aggregation queries.

Compatibility: Like UA-DBs [16], an AU-DB can be constructed from many ex-

isting incomplete and probabilistic data models, including C-tables [12] or tuple-

independent databases [10], making it possible to re-use existing approaches for expos-

ing uncertainty in data (e.g., [6,8,13,15,31,33,45]). Moreover, although AU-DBs fo-

cuses on bag semantics, our model is defined for the same class of semiring-annotated

databases [34] as UA-DBs [16] which include, e.g., set semantics, security-annotations,

and provenance.

Compactness: As observed elsewhere [35, 46, 47], under-approximating certain an-

swers for non-monotone queries (like aggregates) requires over-approximating possible

answers. A single AU-DB tuple can encode a large number of tuples, and can com-

pactly approximate possible results. This over-approximation is interesting in its own

right to deal with missing data in the spirit of [48–50].
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Simplicity: AU-DBs use simple bounds to convey uncertainty, as opposed to the

more complex symbolic formulas of m-tables [48] or tensors [23]. Representing uncer-

tainty as ranges has been shown to lead to better decision-making [42]. AU-DBs can

be integrated into uncertainty-aware user interfaces, e.g., Vizier [42, 51].

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 discusses related

work. Chapter 3 introduces backgrounds and notations used. Chapter 4 introduces

the UA-DB model and semantics. Chapter 5 introduces the AU-DB model and se-

mantics. Chapter 6 presents and discusses the experimental results. Chapter 7 states

conclusions and discusses future plans to finish this thesis. 3

3Partial contents of these chapters are from S.F.’s published works [16, 40, 52]
with copy rights to use in this thesis and permitted by all co-authors (B.G., O.K. and
A.H.).
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D1 Term Sales

1 2

2 3

3 7

4 4

D2 Term Sales

1 3

2 2

3 4

4 6

D3 Term Sales

1 2

2 2

5 4

4 7

Term Sales Sum

1 2 5

2 3 10

3 7 11

4 4 4

Term Sales Sum

1 3 5

2 2 6

3 4 10

4 6 6

Term Sales Sum

1 2 4

2 2 9

5 4 4

4 7 11

Term

4

3

(a) U-Top

Term

4

4

(b) U-Rank

Term

3

4

5

(c) PT(0)

Term

4

(d) PT(1)

Figure 1.3. An uncertain sales database with three possible worlds (with probability
.4, .3 and .3 respectively) with top-2 highest selling terms high-lighted.
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CHAPTER 2

RELATED WORK

We build on prior research in incomplete and probabilistic databases, certain

answers, uncertain aggregation, uncertain top-k and uncertain sorting.

2.1 Incomplete and probabilistic data models

Uncertainty was recognized as an important problem by the database com-

munity early-on. Codd [53] extended the relational model with null values to rep-

resent missing information and proposed to use 3-valued logic to evaluate queries

over databases with null values. Imielinski [12] introduced V-tables and C-tables as

representations of incompleteness. C-tables are closed under full relational algebra.

Reiter [36] proposed to model databases as logical theories, a model equivalent to

V-tables. Abiteboul [54] defined update operations over incomplete databases. Un-

derlying all these models is the possible world semantics. Probabilistic data models

quantify the uncertainty in incomplete databases by assigning probabilities to indi-

vidual possible worlds. TI-DBs [10] are a prevalent model for probabilistic data where

each tuple is associated with its marginal probability and tuples are assumed to be

independent. Green et al. [55] studied probabilistic versions of C-tables. Virtual

C-tables generalize C-tables [6, 21] by allowing symbolic expressions as values.

2.2 Probabilistic Query Processing

Probabilistic query processing (PQP) has been a field of research for several

decades (e.g., an important survey is [10]). Computing the marginal probability of a

query result tuple can be reduced to weighted model counting and, thus, is #P in gen-

eral [56]. Most practical approaches for PQP are either limited to queries which can
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be answered in PTIME (so-called safe queries) and/or compute approximate probabil-

ities for query answers (e.g., [57]). Systems implementing PQP include Sprout [58],

Trio [17], MCDB [59], Mimir [60], MYSTIQ [61], and many others. Of particular note,

Gatterbauer and Suciu [62] showed that (e�cient) extensional evaluation semantics

compute a lower bound on result probabilities.

2.3 Annotated Databases

Green et al. [34] introduced the semiring annotation framework that we utilize

in this work. The connection between annotated databases, provenance, and uncer-

tainty has been recognized early-on. A particular type of semiring annotations, often

called Lineage, has been used for probabilistic query processing (e.g., see [10, 63]).

Green et al. [34] observed that set semantics incomplete databases can be expressed

as K-relations by annotating each tuple with the set of worlds containing it. We define

a more general type of incomplete databases based on K-relations which is defined for

any l-semiring. Kostylev et al. [64] investigate how to deal with dependencies among

annotations from multiple domains. Similar to [64], we consider “multi-dimensional”

annotations, but for a very di↵erent purpose: to extend incomplete databases beyond

set semantics.

2.4 Approximations of Certain Answers

Queries over incomplete databases typically use certain answer semantics [11,

12,35,46,47] first defined in [76]. Computing certain answers is coNP-complete [11,12]

(data complexity) for relational algebra. Several techniques for computing an under-

approximation (subset) of certain answers have been proposed. Reiter [36] proposed

a PTIME algorithm for positive existential queries. Guagliardo and Libkin [35, 46, 47]

proposed a scheme for full relational algebra for Codd- and V-tables, and also stud-

ied bag semantics [46, 77]. Feng et. al. [16] generalized this approach to new query
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semantics through Green et. al.’s K-relations [34]. m-tables [48] compactly encode

large amounts of possible tuples, allowing for e�cient query evaluation. However, this

requires complex symbolic expressions which necessitate schemes for approximating

certain answers. Consistent query answering (CQA) [31, 33] computes the certain

answers to queries over all possible repairs of a database that violates a set of con-

straints. Variants of this problem have been studied extensively (e.g., [15,30,78]) and

several combinations of classes of constraints and queries permit first-order rewrit-

ings [13,32,79,80]. Geerts et. al. [13] study first-order under-approximations of certain

answers in the context of CQA. Notably, AU-DBs build on the approach of [16] (i.e.,

a selected guess and lower bounds), adding an upper bound on possible answers (e.g.,

as in [46]) to support aggregations, and bound attribute-level uncertainty with ranges

instead of nulls.

2.5 Aggregation in Incomplete/Probabilistic Databases

While aggregation of uncertain data has been studied extensively (see Table 2.1

for a comparison of approaches), general solutions remain an open problem [9]. A key

challenge lies in defining a meaningful semantics, as aggregates over uncertain data

frequently produce empty certain answers [72]. An alternative semantics adopted for

CQA and ontologies [18, 19, 65, 72, 75] returns per-attribute bounds over all possible

results [18] instead of a single certain answer. In contrast to prior work, we use bounds

as a fundamental building block of our data model. Because of the complexity of

aggregating uncertain data, most approaches focus on identifying tractable cases and

producing statistical moments or other lossy representations [20,21,28,66,69–71,74].

Even this simplified approach is expensive (often NP-hard, depending on the query

class), and requires approximation. Statistical moments like expectation may be

meaningful as final query answers, but are less useful if the result is to be subsequently

queried (e.g., HAVING queries [68]).



22

E↵orts to create a lossless symbolic encoding closed under aggregation [22,

67] exist, supporting complex multi-aggregate queries and a wide range of statistics

(e.g, bounds, samples, or expectations). However, even factorizable encodings like

aggregate semimodules [23] usually scale in the size of the aggregate input and not

the far smaller aggregate output, making these schemes impractical. AU-DBs are

also closed under aggregation, but replace lossless encodings of aggregate outputs

with lossy, but compact bounds.

A third approach, exemplified by MCDB [59] queries sampled possible worlds.

In principle, this approach supports arbitrary queries, but is significantly slower than

SGQP [16], only works when probabilities are available, and only supports statistical

measures that can be derived from samples (i.e., moments and epsilon-delta bounds).

A similarly general approach [48,49] determines which parts of a query result

over incomplete data are uncertain, and whether the result is an upper or lower bound.

However, this approach tracks incompleteness coarsely (horizontal table partitions).

AU-DBs are more general, combining both fine-grained uncertainty information (in-

dividual rows and attribute values) and coarse-grained information (one row in a

AU-DB may encode multiple tuples).

2.6 Uncertain Top-k

A key challenge in uncertain top-k ranking is defining semantics that intuitively

generalize the single score value of deterministic top-k; The set of tuples certainly

(resp., possibly) in the top-k may have fewer (more) than k tuples. U-Topk [24]

picks the top-k set with the highest probability. U-kRanks [24] assigns to each rank

the tuple which is most-likely to have this rank. Global-Topk [39] first ranks tuples

by probability of being in the top-k and returns the k most likely. Probabilistic

threshold top-k [38] returns all tuples that have a probability of being in the top-k



23

that exceeds a pre-defined threshold. Expected rank [25] calculates the expected rank

for each tuple across all possible worlds and picks the top-k. Ré et al. [26] proposed

a multisimulation algorithm that stops when a guaranteed top-k probability can be

guaranteed. Soliman et al. [81] proposed a framework that integrates tuple retrieval,

grouping, aggregation, uncertainty management, and ranking in a pipelined fashion.

Li et al. [27] proposed a unified ranking approach for top-k based on generating

functions which use and/xor trees to reason over complex correlations. Each of these

generalizations necessarily breaks some intuitions about top-k, producing more (or

fewer) than k tuples, or producing results that are not the top-k in any individual

world.

2.7 Uncertain Order

In contrast to uncertain top-k, which focuses on reasoning about the exis-

tence of result tuples, uncertain ordering focuses on annotating tuples with logical

orders. Amarilli et. al. developed an approach based on a partially ordered relational

model [82,83]. For more general use cases where posets can not represent all possible

worlds, Amarilli et. al. also develop a symbolic model of provenance [84] that can

materialize uncertain sort orders in a column. Both approaches are limited to set

semantics.

2.8 Temporal Aggregation

Similar to the ranges representations in AU-DBs, temporal databases also need

to reason about tuples associated with partially overlapping intervals. For example, a

window aggregate (both deterministic or uncertain) may be recast as an interval self-

join, where one table defines the set of windows and each of its tuples is joined with

the tuples in the window. Accordingly, we take inspiration from temporal databases

for our own operator implementations. The first temporal aggregation algorithm was
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given in [85]. Moon et al. [86] proposed a balanced tree algorithm for count, sum

and avg aggregates, and a divide-and-conquer algorithm for min and max. Kline

and Snodgrass proposed the aggregation tree [87], an in-memory data structure that

supports incremental computation of temporal aggregates. Yang et al. [88] proposed

a materialized version called the SB-tree that can be used as an index for incremental

temporal aggregation computations. The MVSB-tree [89] is and extension of the

SB-tree that supports predicates in the aggregation query. Piatov and Helmer [37]

proposed a sweep-line based approach the reduces the space needed to compute min

and max aggregates over temporal data.



25

T
ab

le
2.
1.

C
om

p
ar
is
on

of
ap

p
ro
ac
h
es

fo
r
ag

gr
eg
at
io
n
ov
er

u
n
ce
rt
ai
n
d
at
a.

F
ea
tu
re
s
in
cl
u
d
e
th
e
ab

il
it
y
to

ch
ai
n

ag
gr
eg
at
es
,
su
p
p
or
t

ha
vi
n
g
p
re
d
ic
at
es
,
an

d
su
p
p
or
t
gr
ou

p
in
g.

F
D
:
F
u
n
ct
io
n
al

D
ep

en
d
en

cy
R
ep

ai
r,

T
G
D
:
S
ou

rc
e-
T
ar
ge
t
tg
d
s,

C
-T

b
:
C
-T
ab

le
,
X
-T

b
:
X
-

T
ab

le
(a
ka

B
lo
ck
-I
n
d
ep

en
d
en
t)
,
T
I:
T
u
p
le
-I
n
d
ep

en
d
en
t,
V
-T

b
:
V
-T
ab

le
,
IA

:
T
ab

le
s
(o
r
h
or
iz
on

ta
l
p
ar
ti
ti
on

s)
ar
e
an

n
ot
at
ed

to
in
d
ic
at
e

w
h
et
h
er

(i
)
th
ei
r
at
tr
ib
u
te

va
lu
es

ar
e
co
rr
ec
t,
w
h
et
h
er

th
ey

m
ay

n
ot

co
nt
ai
n
al
l
ce
rt
ai
n
tu
p
le
s,
an

d
w
h
et
h
er

th
ey

co
nt
ai
n
tu
p
le
s
th
at

ar
e

n
ot

ce
rt
ai
n
,
G
L
B
on

ly
:
u
n
d
er
-a
p
p
ro
xi
m
at
es

ce
rt
ai
n
an

sw
er
s
(a

lo
w
er

b
ou

n
d
on

ev
er
y
p
os
si
b
le
w
or
ld
),
G
L
B
+
L
U
B
:
u
n
d
er
-a
p
p
ro
xi
m
at
es

ce
rt
ai
n
an

sw
er
s
an

d
ov
er
-a
p
p
ro
xi
m
at
es

p
os
si
b
le

an
sw

er
s
(a
n
u
p
p
er

b
ou

n
d
on

ev
er
y
p
os
si
b
le

w
or
ld
).

1
:
P
ro
b
ab

il
is
ti
c
X
M
L
an

al
og

ou
s

to
C
-T
ab

le
s.

2
:
th
e
in
p
u
t
is

an
en
ti
ty

re
so
lu
ti
on

p
ro
b
le
m

th
at

ca
n
b
e
re
p
re
se
nt
ed

as
u
si
n
g
X
-T
ab

le
s.

A
p
p
ro

a
ch

A
g
g
re

g
a
te
s

F
ea

tu
re

s
In

p
u
t

O
u
tp

u
t

C
o
m
p
le
x
it
y

S
u
m
/
C
n
t

A
v
g

M
in
/
M

a
x

C
h
a
in

H
av

in
g

G
ro

u
p

A
re
n
as

et
.
al
.
[1
8]

X
×

X
×

×
×

F
D

G
L
B
+
L
U
B

N
P
-h
ar
d

F
u
xm

an
n
et
.
al
.
[6
5]

X
×

X
×

×
X

F
D

G
L
B
+
L
U
B

co
N
P
-h
ar
d
/
P
T
IM

E

A
fr
at
i
et
.
al
.
[1
9]

X
X

X
×

×
×

T
G
D

G
L
B
+
L
U
B

N
P
-h
ar
d
/
P
T
IM

E

F
in
k
et
.
al
.
[2
2]

X
×

X
X

X
X

C
-T

b
S
ym

b
ol
ic

N
P
-h
ar
d

M
u
rt
hy

et
.
al
.
[2
0]

X
X

X
×

×
×

X
-T

b
G
L
B
+
L
U
B

/
M
om

en
ts

N
P
-h
ar
d
/
P
T
IM

E

A
b
it
eb

ou
l
et
.
al
.

[6
6]

X
X

X
×

×
×

C
-T

b
1

G
L
B
+
L
U
B

/
M
om

en
ts

N
P
-h
ar
d

L
ec
ht
en
b
or
ge
r
et
.
al
.
[6
7]

X
×

×
X

X
X

C
-T

b
S
ym

b
ol
ic

N
P
-h
ar
d

R
e
et
.
al
.
[6
8]

`
—
—

H
A
V
I
N
G
on

ly
—
—
a

X
X

X
T
I

M
om

en
ts

N
P
-h
ar
d
/
P
T
IM

E

S
ol
im

an
et
.
al
.
[2
8]

`
—
—

T
O
P
-
K
on

ly
—
—
a

×
×

X
C
-T

b
M
om

en
ts

N
P
-h
ar
d
/
P
T
IM

E

C
h
en

et
.
al
.
[6
9]

X
X

X
×

×
X

X
-T

b
G
L
B
+
L
U
B

N
P
-h
ar
d
/
P
T
IM

E

Ja
yr
am

et
.
al
.
[7
0]

X
X

X
×

×
×

X
-T

b
M
om

en
ts

P
T
IM

E
(a
p
p
ro
x)

B
u
rd
ic
k
et
.
al
.
[7
1]

X
X

×
×

×
X

X
-T

b
M
om

en
ts

P
T
IM

E
(a
p
p
ro
x)

C
al
va
n
es
e
et
.
al

[7
2]

X
×

×
×

×
×

F
D

G
L
B

on
ly

N
P
-h
ar
d

K
os
ty
le
v
et
.
al
.
[7
3]

`
—
—

C
O
U
N
T
/
D
I
S
T
I
N
C
T
—
—
a

×
×

×
F
D

G
L
B

on
ly

co
N
P
-c
om

p
le
te

Y
an

g
et
.
al
.
[7
4]

`
—
—

A
gg

C
on

st
ra
in
t
on

ly
—
—
a

×
×

×
X
-T

b
S
am

p
le

of
In
p
u
t

co
N
P
-c
om

p
le
te

Ja
m
p
an

i
et
.
al
.
[5
9]

`
—
—

N
o
re
st
ri
ct
io
n
s
—
—
a

X
X

X
V
-T

b
O
u
tp
u
t
S
am

p
le

P
T
IM

E
(a
p
p
ro
x)

K
en

n
ed

y
et
.
al
.
[2
1]

X
X

X
×

X
×

C
-T

b
O
u
tp
u
t
S
am

p
le

P
T
IM

E
(a
p
p
ro
x)

L
an

g
et
.
al
.
[4
9]

X
X

X
X

X
X

IA
IA

D
at
a-
In
d
ep

./
P
T
IM

E

S
is
m
an

is
et

al
.
[7
5]

X
X

X
×

×
X

X
-T

b
2

G
L
B
+
L
U
B

P
T
IM

E
(a
p
p
ro
x)

O
u
r
a
p
p
o
ra

ch
X

X
X

X
X

X
A
ny

G
L
B
+
L
U
B

P
T
IM

E
(a
p
p
ro
x)



26

CHAPTER 3

BACKGROUND

A database schema Sch(D) = {Sch(R)1, . . . ,Sch(R)n} is a set of relation

schemas. A relational schema Sch(R)(A1, . . . , An) is a relation name and a set of

attribute names A1, . . . , An. The arity arity(Sch(R)) of a relation schema Sch(R)

is the number of attributes in Sch(R). An instance D for database schema Sch(D)

is a set of relation instances with one relation for each relation schema in Sch(D):

D = {R1, . . . , Rn}. Assume a universal domain of attribute values D. A tuple with

schema Sch(R) is an element from Darity(Sch(R)). In this work, we consider both bag

and set semantics. A set (resp., bag) relation $ with schema Sch(R) is a set (resp.,

bag) of tuples with schema Sch(R). That is, for a set, $✓ Darity(Sch(R)). We use

TupDom to denote the set of all tuples over domain D.

3.1 Possible Worlds Semantics

Incomplete and probabilistic databases model uncertainty and its impact on

query results. An incomplete database D is a set of deterministic database instances

D1, . . . , Dn of schema Sch(D), called possible worlds. We write t 2 D to denote that

a tuple t appears in a specific possible world D.

Example 7. Figure 3.1 shows the two possible worlds in the result of the spatial

join. Observe that some tuples (e.g., (1, Lasalle,NY )) appear in all worlds. Such

tuples are called certain. Tuples that appear in at least one possible world (e.g.,

(2, Tuscon,AZ)) are called possible.

Decades of research [10, 12, 17, 55, 61, 90] has explored query processing over

incomplete databases. These techniques commonly adopt the “possible worlds” se-
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Table 3.1. Example incomplete database D = {D1, D2}.

(a) D1

id locale state

1 Lasalle NY

2 Tucson AZ

3 Kingsley NY

4 Kensington NY

(b) D2

id locale state

1 Lasalle NY

2 Grant Ferry NY

3 Kingsley NY

4 Kensington NY

mantics: The result of evaluating a query Q over an incomplete database is the set

of relations resulting from evaluating Q over each possible world individually using

deterministic semantics.

Q(D) := { Q(D) | D 2 D } (3.1)

Example 8. QNY := �state=0NY 0(D) returns locations in NY State from the database

D shown in Figure 3.1. The result of QNY (D) is the set of worlds computed by

evaluating QNY over each world of D as shown in Figure 3.2. Observe that the

location with id 2 appears in QNY (D2), but not QNY (D1).

3.2 Certain and Selected-Guess Answers

An important goal of query processing over incomplete databases is to di↵er-

entiate query results that are certain from ones that are merely possible. Formally, a

tuple is certain if it appears in every possible world. [12, 76]:

certain(D) := {t | 8D 2 D : t 2 D} (3.2)

possible(D) := {t | 9D 2 D : t 2 D} (3.3)

In contrast to [12], which studies certain answers to queries, we define certainty

at the instance level. These approaches are equivalent since we can compute the
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Table 3.2. The result of a query Q over an incomplete database D is the set of results
in all worlds D 2 D.

(a) QNY (D1)

id locale state

1 Lasalle NY

3 Kingsley NY

4 Kensington NY

(b) QNY (D2)

id locale state

1 Lasalle NY

2 Grant Ferry NY

3 Kingsley NY

4 Kensington NY

certain answers of query Q over incomplete instance D as certain(Q(D)). Although

computing certain answers is coNP-hard [11] in general, there exist PTIME under-

approximations [35, 36, 47].

Selected Guess Query Processing: As mentioned in the introduction, another

approach commonly used in practice is to select one possible world. Queries are

evaluated solely in this world, and ambiguity is ignored or documented outside of the

database. We refer to this approach as best-guess query processing (SGQP) [6] since

typically one would like to select the possible world that is deemed most likely.

We now review K-relations, a generalization of classical incomplete databases

called incomplete K-relations, and the UA-DBs model extended here. A database

schema Sch(D) = {Sch(R1), . . . , Sch(Rn)} is a set of relation schemas Sch(Ri) =

(A1, . . . , An). The arity arity(Sch(R)) of Sch(R) is the number of attributes in

Sch(R). An instance D for database schema Sch(D) is a set of relation instances

with one relation for each relation schema in Sch(D): D = {R1, . . . , Rn}. Assume a

universal domain of attribute values D. A tuple with schema Sch(R) is an element
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from Darity(Sch(R)). We assume the existence of a total order over the elements of D.4

3.3 K-Relations

The generalization of incomplete databases we use here is based on K-

relations [34]. In this framework, relations are annotated with elements from the

domain K of a (commutative) semiring K = (K,+K, ·K, 1K, 0K), i.e., a mathematical

structure with commutative and associative addition (+K) and product (·K) oper-

ations where +K distributes over ·K and k ·K 0K = 0K for all k 2 K. An n-nary

K-relation is a function that maps tuples to elements from K. Tuples that are not in

the relation are annotated with 0K. Only finitely many tuples may be mapped to an

element other than 0K. Since K-relations are functions from tuples to annotations, it

is customary to denote the annotation of a tuple t in relation R as R(t).

The specific information encoded by an annotation depends on the choice

of semiring. For instance, bag and set relations can be encoded as semirings: the

natural numbers (N) with addition and multiplication, (N,+,⇥, 0, 1), annotates each

tuple with its multiplicity; and boolean constants B = {T, F} with disjunction and

conjunction, (B,_,^, F, T ), annotates each tuple with its set membership. Abusing

notation, we often use K to denote both the domain and the corresponding semiring.

Query Semantics: Operators of the positive relational algebra (RA
+) over K-

relations are defined by combining input annotations using operations +K and ·K.

4The order over D may be arbitrary, but range bounds are most useful when
the order makes sense for the domain values (e.g., the ordinal scale of an ordinal
attribute).
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Union: (R1 [R2)(t) = R1(t) +K R2(t)

Join: (R1 t R2)(t) = R1(t[Sch(R)1]) ·K R2(t[Sch(R)2])

Projection: (⇡U(R))(t) =
X

t=t0[U ]

R(t0)

Selection: (�✓(R))(t) = R(t) ·K ✓(t)

For simplicity we assume in the definition above that tuples are of a compatible

schema (e.g., Sch(R)1 for a union R1 [ R2). We use ✓(t) to denote a function that

returns 1K i↵ ✓ evaluates to true over tuple t and 0K otherwise.

A homomorphism is a mapping h : K! K
0 from a semiring K to a semiring

K
0 that maps 0K and 1K to their counterparts in K

0 and distributes over sum and

product (e.g., h(k +K k0) = h(k) +K0 h(k0)). Any homomorphisms h can be lifted

from semirings to K-relations or K-databases by applying h to the annotation of

every tuple t: h(R)(t) = h(R(t)). We will use the same symbol for a homomorphism

and its lifted variants. Importantly, queries commute with semiring homomorphisms:

h(Q(D)) = Q(h(D)).

We will make use of the so called natural order �K for a semiring K which is

the standard order  of natural numbers for N. Formally, k �K k0 if it is possible to

obtain k0 by adding to k: 9k00 : k +K k00 = k0. Semirings for which the natural order

is a partial order are called naturally ordered [91].

8k, k0 2 K :
�
k �K k0

�
,

�
9k00 2 K : k +K k00 = k0

�
(3.4)

3.4 Incomplete K-relations

Many incomplete data models do not support bag semantics. Our first con-

tribution unifies set and bag semantics under a joint framework. Recall that an
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incomplete database is a set of deterministic databases (possible worlds). We now

generalize this idea to K-databases.

Definition 1 (Incomplete K-database). Let K be a semiring. An incomplete K-

database D is a set of K-databases D = {D1, . . . , Dn} called possible worlds.

Like classical incomplete databases, queries over an incomplete K-database use

possible world semantics, i.e., the result of evaluating a query Q over an incomplete

K-database D is the set of all possible worlds derived by evaluating Q over every

possible world D 2 D.

Q(D) := { Q(D) | D 2 D } (3.5)

Certain Annotations: While possible worlds semantics are directly compatible

with incomplete K-databases, the same does not hold for the concepts of certain and

possible tuples, as we will show in the following. First o↵, we have to define what

precisely do we mean by certain answers over possible worlds that are K-databases.

Example 9. Consider a N-database D (bag semantics) containing a relation LOC

with two attributes locale and state. Assume that D consists of the two possible

worlds below:

Table 3.3. ex. 9

LOC in D1

locale state N

Lasalle NY 3

Tucson AZ 2

LOC in D2

locale state N

Lasalle NY 2

Tucson AZ 1

Greenville IN 5
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Using semiring N each tuple in a possible world is annotated with its multiplic-

ity (the number of copies of the tuple that exist in the possible world). Arguably, tuples

(Lasalle, NY) and (Tucson, AZ) are certain since they appear (multiplicity higher

than 0) in both possible worlds while (Greenville, IN) is not since it is not present

(its multiplicity is zero) in possible world D1
5. However, the boolean interpretation

of certainty in incomplete databases is not suited to N-relations (or K-relations in

general) because it ignores the annotations of tuples. In this particular example, tuple

(Lasalle, NY) appears with multiplicity 3 in possible world D1 and multiplicity 2 in

possible world D2. We can state with certainty that in every possible world this tuple

appears at least twice. Thus, 2 is a lower bound (the greatest lower bound) for the

annotation of (Lasalle, NY). Following this logic, we will define certainty through

greatest lower bounds (GLBs) on tuple annotations.

To further justify defining certain answers as lower bounds on annotations,

consider classical (i.e., set) incomplete databases. Here, a tuple is certain if it appears

in all possible worlds and possible if it appears in at least one possible world. Like

the bag semantics example above, certainty (possible) is a lower (upper) bound on

a tuple’s annotation across all worlds. Consider the the order false < true. If a

tuple exists in every possible world (is always annotated true), then intuitively, the

GLB of its annotation across all worlds is true. Otherwise, the tuple is not certain

(is annotated false in at least one world), and the GLB is false.

To define a sensible lower bound for annotations, we need an order relation

for semiring elements. We use the natural order �K as introduced in Section 3.3 to

define the GLB and LUB of a set of K-elements. For a well-defined GLB, we require

5All tuples not shown in the tables are assumed to be annotated with zero.
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that �K forms a lattice over K, a property that makes K an l-semiring [64]. A lattice

over a set S and with a partial order S is a structure (S,t,u) where u (the greatest

lower bound) and t (the lowest upper bound) are operations over S defined for all

a, b 2 S as:

The least upper bound t is defined symmetrically.

a t b := min
S

({c | c 2 S ^ a S c ^ b S c})

a u b := max
S

({c | c 2 S ^ c S a ^ c S b})

In a lattice, t and u are associative, commutative, and fulfill

a t (a u b) = a a u (a t b) = a

We will use uK and tK to denote the u and t operation of the lattice over

�K for a semiring K. Abusing notation, we will apply the uK and tK operations

iteratively to sets of elements. e.g., uK{k1, k2, k2} = (k1 uK k2) uK k3. This is well-

defined for l-semirings, since in a lattice any set of elements has a unique greatest lower

bound and lowest upper bound based on the associativity and commutativity laws

of lattices. That is, no matter in which order we apply uK to the elements of a set,

the result will be the same. From here on, we will limit our discussion to l-semirings.

Many semirings, including the set semiring B and the bag semiring N are l-semirings.

The natural order of B is F �B T , k1 tB k2 = k1 _ k2, and k1 uB k2 = k1 ^ k2. The

natural order of N is the standard order of natural numbers, k1 tN k2 = max(k1, k2),

and k1 uN k2 = min(k1, k2).

We define the certain and possible annotation certK(D, t) of a tuple t in an

incomplete K-database D by gathering the annotations of tuple t from all possible
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worlds of D and then applying uK to compute the greatest lower bound.

certK(~k) := uK(~k) certK(D, t) = certK(D(t))

possK(~k) := tK(~k) possK(D, t) = possK(D(t))

Importantly, GLB coincides with the standard definition of certain answers for set

semantics (B): certB returns true only when the tuple is present in all worlds. We

also note that certN = min, is analogous to the definition of certain answers for bag

semantics from [47]. For instance, consider the certain annotation of the first tuple

from Example 9. The tuple’s certain multiplicity is certN({2, 3}) = min(2, 3) = 2.

Similarly, for the third tuple, certN({0, 5}) = 0. Reinterpreted under set semantics,

all tuples that exist (multiplicity > 0) are annotated true (T ) and all others false

(F ). For the first tuple we get, uB({T, T}) = T ^ T = T (certain). For the third

tuple we get uB({F, T}) = F ^ T = F (not certain).

KW -relations: For the formal exposition in the remainder of this work it will be

useful to define an alternative, but equivalent, encoding of an incomplete K-database

as a single K-database using a special class of semirings whose elements encode the

annotation of a tuple across a set of possible worlds6. We assume a fixed set W =

{m | m 2 N ^ 0 < m  n} of possible world identifiers for some number of possible

worlds n 2 N. Given the domain K of a semiring K, we write KW to denote the set

of elements from the n-way cross-product of K. We annotate tuples t with elements

of KW to store annotations of t in each possible world. We use ~k, ~k1, . . . to denote

elements from KW to make explicit that they are vectors.

Definition 2 (Possible World Semiring). Let K = (K, +K, ·K, 0K, 1K) be an l-semiring.

We define the possible world semiring KW = (KW ,+KW
, ·KW

, 0KW
, 1KW

). The opera-

6This encoding is a technical device that allows us to adopt results from the
theory of K-relations directly to our problem. It is not materialized.
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tions of this semiring are defined as follows

8i 2 W : 0KW
[i] = 0K

8i 2 W : 1KW
[i] = 1K

8i 2 W : (~k1+KW

~k2)[i] = ~k1[i] +K ~k2[i]

8i 2 W : (~k1·KW

~k2)[i] = ~k1[i] ·K ~k2[i]

Thus, a KW -database is simply a pivoted representation of an incomplete K-

database.

Example 10. Reconsider the incomplete N-relation from Example 9. The encoding

of this database as a N2-relation is:

Table 3.4. ex. 10

locale state N2

Lasalle NY [3,2]

Tucson AZ [2,1]

Greenville IN [0,5]

Translating between incompleteK-databases andKW -databases is trivial. Given

an incomplete K-database with n possible worlds {Di}, we create the corresponding

KW -database by annotating each tuple t with the vector [D1(t), . . . , Dn(t)]. In the

other direction, given a KW -database D with vectors of length n, we construct the

corresponding incomplete K-database by annotating each tuple t with D(t)[i] in possi-

ble world Di. In addition, we will show below that queries over KW -databases encode

possible world semantics. Thus, the following result holds and we can use incomplete

K- and KW -databases interchangeably.
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Proposition 1. Incomplete K-databases and KW -databases are isomorphic wrt. pos-

sible worlds semantics for RA
+ queries.

Observe that KW is a semiring, since we define KW using the |W |-way version

of the product operation of universal algebra, and products of semirings are also

semirings [92].

Possible Worlds: We can extract the K-database for a possible world (e.g., the

selected-guess world) from a KW -database by projecting on one dimension of its an-

notations. This can be modeled as a mapping pwi : KW
! K where i 2 W :

pwi(~k) := ~k[i] (3.6)

Recall that under possible world semantics, the result of a query Q is the set of worlds

computed by evaluating Q over each world of the input. As a sanity check, we would

like to ensure that query processing over KW -relations matches this definition. We

can state possible world semantics equivalently as follows: the content of a possible

world in the query result (pwi(Q(D))) is the result of evaluating query Q over this

possible world in the input (Q(pwi(D))): That is, KW -relations have possible worlds

semantics i↵ pwi commutes with queries:

8i 2 W : pwi(Q(D)) = Q(pwi(D))

Recall from Section 3.3 that a mapping between semirings commutes with

queries i↵ it is a semiring homomorphism. Note that KW -relations admit a trivial

extension to probabilistic data by defining a distribution P : W 7! [0, 1]. See [93] for

details.

Lemma 1. For any semiring K and possible world i 2 W , mapping pwi is a semiring

homomorphism.
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Proof: See Appendix A.1

Probabilistic Data: KW -relations admit a trivial extension to probabilistic data

by defining a distribution P : W 7! [0, 1] such that
P

i2W P (i) = 1. In contrast

to classical frameworks for possible worlds, where the collection of worlds is a set,

KW queries preserve the same |W | possible worlds7. Hence, the input distribution P

applies, unchanged, to the |W | possible query outputs.

Certain and Possible Annotations: Since the annotation of a tuple t in a KW -

database is a vector recording t’s annotations in all worlds, certain annotations for

incomplete K-databases are computed by applying uK to the set of annotations con-

tained in the vector. Thus, the certain annotation of a tuple t from a KW -DB D is

computed as:

certK(~k) = uK(~k) certK(D, t) = certK(D(t))

possK(~k) = tK(~k) possK(D, t) = possK(D(t))

We use possible world, certain and possible notations to show that our works

bound either certain or both certain and possible answers, thus bound the incomplete

database as input and the query result.

7Although it has no impact on our results, it is worth noting that the worlds
in a KW query result may not be distinct.
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CHAPTER 4

UA-DBs SEMANTICS

We now introduce UA-DBs (uncertainty-annotated databases) which encode

both under- and over-approximations of the certain annotations of an incomplete

K-database D. This is achieved by annotating every tuple with a pair [c, d] 2 K2

where d records the tuple’s annotation in an arbitrary possible world Dsg 2 D i.e.,

d = pwbg(D)(t) and c stores the under-approximation of the tuple’s certain annotation

(i.e., c �K certK(D, t) �K d). We call the world selected Dsg as the selected-guess

world (SGW). Both under- and over-approximations of certain annotations assign

tuples annotations from K, making them K-databases. Every possible world is by

definition a superset of the certain tuples, so a UA-DB contains all certain answers,

even though the certainty of some answers may be underestimated. We start by

formally defining the annotation domains of UA-DBs and mappings that extract the

two components of an annotation.

4.1 UA-semirings

We define a UA-semiring as a K2-semiring, i.e., the direct product of a semiring

K with itself (see Section 4.1). In the following we will write kk0 instead of k ·K

k0 if the semiring K is clear from the context. Recall that operations in K
2 =

(K2,+K2 , ·K2 , 0K2 , 1K2) are defined pointwise, e.g., [k1, k1
0] ·K2 [k2, k2

0] = [k1 ·K k2, k1
0
·K

k2
0].

Definition 3 (UA-semiring). Let K be a semiring. We define the corresponding

UA-semiring KUA := K
2

Note that for any K, KUA is a semiring, because, as mentioned earlier, products
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of semirings are semirings.

4.2 Creating UA-DBs

We now discuss how to derive UA-relations from a KW -database or a compact

encoding of a KW -database using some uncertain data model like c-tables. Consider a

KW -database D, let D be one of its worlds and D
# a K-database under-approximating

the certain annotations of D. We refer to D
# as a certain lower-bound and will study

such bound in depth in Sec. 4.4 and Sec. 4.6. We cover in Sec. 4.5 how to generate

a UA-DB from common uncertain data models by extracting a (best-guess) world D

and an under approximation D
#. We construct a UA-DB DUA as an encoding of D

and D
# by setting for every tuple t:

DUA(t) := [D#(t), D(t)]

For a UA-DB DUA constructed in this fashion we say that DUA approximates D by

encoding (D#, D). Given a UA-DB DUA, we would like to be able to restore D
# and

D from DUA. For that we define two morphisms K2
! K:

hcert([c, d]) := c hdet([c, d]) := d

Note that by construction, if an UA-DBDUA is an encoding of a possible worldD and

a lower-bound D
# of a KW -database D then: hdet(DUA) = D and hcert(DUA) = D

#.

4.3 Querying UA-DBs

We now state the main result of this section: query evaluation over UA-DBs

preserves the under-approximation and over-approximation of certain annotations.

To prove the main result, we first show that hcert and hdet are homomorphisms,

because this implies that queries over UA-DBs are evaluated over the c and the

d component of an annotation independently. Thus, we can prove the result for

under- and over-approximations separately. For over-approximation we can trivially
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show an even better result: By definition (Section 3.4) the possible world used as

an over-approximation is preserved exactly. Hence, the over-approximation property

is preserved and UA-DBs are also backwards compatible with SGQP. For under-

approximations we have to show that query evaluation preserves under-approximations.

This part is more involved and we will prove this result in Section 4.6.

Theorem 1 (Queries Preserve Bounds). Let D be a KW -database, D
# an under

estimation for KW , D one of its possible worlds, and DUA be the UA-DB encoding

the pair (D#, D). Clearly DUA approximates D. Then Q(DUA) is an approximation

for Q(D) encoding the pair (Q(D#), Q(D)).

Proof: See Appendix A.1

4.4 Approximations of certain (bounding)

We now define certainty apprximations, which are K-databases whose annota-

tions approximate certain annotations of tuples in a KW -database with respect to the

natural order of semiring K. A approxiation scheme is a mapping from an incomplete

databases to bounds.

Definition 4 (Uncertainty approximation Scheme). Let DBK be the set of all K-

databases, M an incomplete/probabilistic data model, and DBM the set of all possible

instances of this model. A certain approximation scheme is a function transUADB :

DBM ! DBK such that the transfer D
# = transAUDB(D) has the schema Sch(D).

Ideally, we would like the annotation D
#(t) of a tuple t from an lower-bound

D
# to be exactly certK(D, t). Observe that an exact bound can always be computed

in O(W) time if all worlds of the incomplete database can be enumerated. However,

the number of possible worlds is frequently exponential in the data size. Thus, most

incomplete data models rely on factorized encodings, with size typically logarithmic

in W. Ideally, we would like bounding schemes to be PTIME in the size of the encoding
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(rather than in W). As mentioned in the introduction, computing certain answers

is coNP-complete, so for tractable query semantics we must accept that D
#(t) may

either over- or under-approximate certK(D, t) (with respect to �K). For instance,

under bag semantics (semiring N), a label n may be smaller or larger than the certain

multiplicity of a tuple. We call a approximation certain lower-bound (no false posi-

tives) if it consistently under-approximates the certain annotation of tuples, certain

upper-bound (no false negatives) if it consistently over-approximates certainty, and

exact certain if it annotates every tuple with its certain annotation. We also apply

this terminology to approximation schemes, e.g., a certain lower-bound scheme only

produces certain lower-bound approximations. For UA-DBs we are mainly interested

in certain lower-bound approximations to provide an under-approximation of certain

annotations.

Definition 5. If D# is an uncertainty approximation for D.

We call D
#
. . . . . . i↵ for all tuples t 2 D. . .

certain lower-bound D
#(t) �K certK(D, t)

certain upper-bound certK(D, t) �K D
#(t)

exact certain certK(D, t) = D
#(t)

A approximation is both certain lower-bound and certain upper-bound i↵ it

is exact certain. Ideally, queries over approximations would preserve these bounding

e↵ects.

Definition 6 (Preservation of Bounds). A query semantics for uncertainty approxi-

mations preserves a property X (certain lower-bound, certain upper-bound, or exact

certain) wrt. a class of queries C, if for any incomplete database D, approximation

D
# for D that has property X, and query Q 2 C we have: Q(D#) is an uncertainty

approximation for Q(D) with property X.
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4.5 Approximation Schemes

We define e�cient (PTIME) apprixmation schemes for three existing incom-

plete data models and their probabilistic extensions: Tuple-Independent probabilis-

tic databases [10], the disjoint-independent x-relation model from [17], and (P)C-

Tables [12]. We also show how to extract a selected-guess world from an KW -database

derived from these models. Since computing certain answers is hard in general, our

PTIME approximation schemes cannot be exact certain for all models.

Tuple-Independent Databases: A tuple-independent database (TI-DB) D is a

database where each tuple t is marked as optional or not. The incomplete database

represented by a TI-DB D is the set of instances that include all non-optional tuples

and some subset of the optional tuples. That is, the existence of a tuple t is indepen-

dent of the existence of any other tuple t0. In the probabilistic version of TI-DBs each

tuple is associated with its marginal probability. The probability of a possible world

is then the product of the probability of all tuples included in the world multiplied by

the product of 1� P (t) for all tuples from D that are not part of the possible world.

We define a approximation function transUADB

TI-DB for TI-DBs that returns a B D
# that

annotates a tuple with T (certain) i↵ it is not optional. For probabilistic TI-DBs we

annotate tuples as certain if their marginal probability is 1.

D
#(t) := T , t is not marked as optional (4.1)

Theorem 2 (transUADB

TI-DB is exact certain). Given a TI-DB D, transUADB

TI-DB (D) is an

exact certain approximation.

Proof: Trivially holds. An incomplete (probabilistic) database tuple is certain i↵ it

is not optional (if P (t) = 1).

C-tables: C-Tables [12] use a set ⌃ of variable symbols to define possible worlds.

Tuples are annotated by a boolean expression over comparisons of values from ⌃[D,
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called the local condition. Each variable assignment v : ⌃ ! D satisfying a boolean

expression called the global condition defines a possible world, derived by retaining

only tuples with local conditions satisfied under v. Computing certain answers for first

order queries is coNP-complete [11, 94] even for Codd-tables. Since the result of any

first order query over a Codd-table can be represented as a C-table and evaluating

a query in this fashion is e�cient, it follows that determining whether a tuple is

certain in a C-table cannot be in PTIME. Instead, consider the following su�cient,

but not necessary condition for a tuple t to be certain. If (1) a tuple t in a C-table

contains only constants and (2) its local condition �D(t) is a tautology, then the tuple

is certain. To see why this is the case, recall that under the closed-world assumption,

a C-table represents a set of possible worlds, one for each valuation of the variables

appearing in the C-table (to constants from D). A tuple is part of a possible world

corresponding to such a valuation if the tuple’s local condition is satisfied under the

valuation. Thus, a tuple consisting of constants only, with a local condition that is

a tautology is part of every possible world represented by the C-table. If the local

condition of a tuple is in conjunctive normal form (CNF) then checking whether it is

a tautology is e�cient (PTIME). Our approximation for C-tables applies this su�cient

condition and, thus, is a certain lower-bound. Formally, D# = transUADB

C-table(D), where

for a C-table D and any tuple t 2 TupDom:

D
#(t) = T , �D(t) is in CNF ^ (|= �D(t))

Green et. al. [55] introduced PC-tables a probabilistic version of C-tables

where each variable is associated with a probability distribution over its possible

values. Variables are considered independent of each other, i.e., the probability of

a possible world is computed as the product of the probabilities of the individual

variable assignments based on which the world was created. Our approximation

scheme works for both the incomplete and probabilistic version of C-tables.
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Theorem 3 (transUADB

C-table is a certain lower-bound). Given an incomplete database D

encoded as C-tables, transUADB

C-table(D) is a certain lower-bound.

Note that D
# is not guaranteed to be exact certain. For instance, a tuple t

consisting only of constants and for which �D(t) is a tautology is guaranteed to be

certain, but D#(t) = F if �D(t) is not in CNF.

Example 11. Consider a C-table consisting of two tuples t1 = (1, X) with �D(t1) :=

(X = 1) and t2 = (1, 1) with �D(t2) := (X 6= 1). transUADB

C-table would mark (1, 1) as

uncertain, because even though this tuple exists in the C-table and it’s local condition

is in CNF, the local condition is not a tautology. However, tuple (1, 1) is certain since

either X = 1 and then first tuple evaluates to (1, 1) or X 6= 1 and the second tuple is

included in the possible world.

x-DBs: An x-DB [17] is a set of x-relations, which are sets of x-tuples. An x-tuple ⌧

is a set of tuples {t1, . . . , tn} with a label indicating whether the x-tuple is optional.

Each x-tuple is assumed to be independent of the others, and its alternatives are

assumed to be disjoint. Thus, a possible world of an x-relation $ is constructed by

selecting at most one alternative t 2 ⌧ for every x-tuple ⌧ from $ if ⌧ is optional, or

exactly one if it is not optional. The probabilistic version of x-DBs (also called a Block-

Independent or BI-DB) as introduced in [17] assigns each alternative a probability

and we require that P (⌧) =
P

t2⌧ P (t)  1. Thus, a tuple is optional if P (⌧) < 1

and there is no need to use labels to mark optional tuples. We use |⌧ | to denote the

number of alternatives of x-tuple ⌧ . We define a approximation scheme transUADB

x-DB for

x-relations where tuple t’s annotation is T i↵ t is the single, non-optional alternative

of an x-tuple. In probabilistic x-DBs we check P (⌧) = 1.

D
#(t) := T , 9⌧ 2 D : |⌧ | = 1 ^ ⌧ is not optional
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Theorem 4 (transUADB

x-DB is c-correct). Given a database D, transUADB

x-DB (D) is an exact

certain approximation.

4.5.1 Extracting selected-guess worlds. Computing some possible world

is trivial for most incomplete and probabilistic data models. However, for the case

of probabilistic data models we are particularly interested in the highest-probability

world (the selected guess world). We now discuss in more detail how we choose the

SGW Dsg for the data models for which we have introduced approximation schemes

above.

TI-DB: For a TI-DB D, the selected guess world consists of all tuples t such that

P (t) � 0.5. To understand why this is the case recall that the probability of a world

from a TI-DB is the product of the probabilities of included tuples with one minus

the probability of excluded tuples. This probability is maximized by including only

tuples where P (t) � 0.5. For the incomplete version of TI-DBs we have to include

all non-optional tuples and can choose arbitrarily which optional tuples to include in

Dsg.

PC-tables: For a PC-table, computing the most likely possible world reduces to an-

swering a query over the database, which is known to be #P in general [10]. Specific

tables (e.g., those generated by “safe” queries [10]) admit PTIME solutions. Alter-

natively, there exist a wide range of algorithms [14, 58, 62, 95] that can be used to

compute an arbitrarily close approximation of the most likely world.

Disjoint-independent databases: Since the x-tuples in an x-DB are independent

of each other, the probability of a possible world from an x-DB D is maximized by in-

cluding for every x-tuple ⌧ its alternative with the highest probability argmax
t2⌧ P (t)

or no alternative if maxt2⌧ P (t) < (1� P (⌧)), i.e., if the probability of not including

any alternative for the x-tuple is higher than the highest probability of an alternative
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for the x-tuple.

4.6 Querying over bounds

We now study whether queries over bounds produced by approximation schemes

preserve certain lower-bound. Specifically, we demonstrate that standard K-relational

query evaluation preserves bounding e↵ect for any certain lower-bound approximation

scheme. Recall that a query semantics preserves bounds if a query Q(D#) evaluated

on a certain approximation D
# of incomplete database D is a certain lower-bound for

Q(D). Our result generalizes a previous result of Reiter [36] to any type of incomplete

K-database for which we can define an e�cient certain under approximation scheme.

We need the following lemma, to show that the natural order of a semiring factors

through addition and multiplication. This is a known result that we only state for

completeness.

Lemma 2. Let K be a naturally ordered semiring. For all k1, k2, k3, k4 2 K we have:

k1 �K k3 ^ k2 �K k4 ) k1 +K k2 �K k3 +K k4

k1 �K k3 ^ k2 �K k4 ) k1 ·K k2 �K k3 ·K k4

Proof: See Appendix A.1

4.7 Preservation of Certain Lower-bound

We now prove that RA
+ over D#preserves certain lower-bound. Since queries

over both KW -databases and D
#have K-relational query semantics, we can make use

of the fact that RA
+ over K-relations is defined using +K and ·K. At a high level, the

argument is as follows: (a) we show that certK applied to the result of an addition

(or multiplication) of two KW -elements ~k1 and ~k2 yields a larger (wrt. �K) result

than adding (or multiplying) the result of applying certK to ~k1 and ~k2; (b) Since

D
#for an input provide a lower bound on certK, we can apply Lemma 2 to show

that the query result over certain lower-bound (or exact certain) is a lower bound
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for certK of the result of the query. Combining arguments, we get preservation of

certain lower-bound.

Functions that have the property mentioned in (a) are called superadditive

and supermultiplicative. Formally, a function f : A ! B where A and B are closed

under addition and multiplication, and B is ordered (order B) is superadditive

(supermultiplicative) i↵ for all a1, a2 2 A:

f(a1 + a2) �B f(a1) + f(a2) (superadditive)

f(a1 ⇥ a2) �B f(a1)⇥ f(a2) (supermultiplicative)

In a nutshell, if we are given a lower-bound estimation, then evaluating any RA
+-

query over the bound using K-relational query semantics preserves bounding e↵ect if

we can prove that certK is superadditive and supermultiplicative.

Lemma 3. Let K be a semiring. certK is superadditive and supermultiplicative wrt.

the natural order �K.

Proof: See Appendix A.1

Using the superadditivity and -multiplicativity of certK, we now prove preser-

vation of certain lower-bound. We first prove a restricted version of this result.

Lemma 4. Let D be a KW -database and D
# be a certain answer K-approximation

for D. RA
+ queries over D

# preserve certain lower bound.

The major drawback of Lemma 4 is that it is limited to exact certain input

apprixmations. Next, we show that certain lower bound is still preserved even if the

input approximation is only an under approximation.

Theorem 5. Let D be a KW -database and D
# an exact certain apprximation for D.

RA
+ queries over D

# preserve certain lower-bound.
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Proof: See Appendix A.1

In Appendix 4.8 we demonstrate that under certain circumstances, queries

also preserve exact certain.

4.8 Preservation of Certain Upper-bound

TI-DBs: We now demonstrate that positive queries preserve certain upper-bound if

the input is a certain approximation produced by the selected guess approximation

scheme transUADB

TI-DB (Sec. 4.5). To show this, we observe that if there exists a possible

world for which two KW -elements ~k1 and ~k2 are both minimal then uK commutes with

addition and multiplication, and standard K-relational semantics preserves certain

upper bound.

Lemma 5. Let ~k1, ~k2 2 KW for some possible world semiring KW . If there exists

i 2 W such that uK(~k1) = ~k1[i] and uK(~k2) = ~k2[i], then the following holds:

uK(~k1+KW

~k2) = uK(~k1) +K uK(~k2) = (~k1+KW

~k2)[i]

uK(~k1·KW

~k2) = uK(~k1) ·K uK(~k2) = (~k1·KW

~k2)[i]

Proof: Recall that pwi is a homomorphism (Lemma 1), so (~k1+KW

~k2)[i] = ~k1[i] +K

~k2[i] and uK(~kj) = ~kj[i] for j 2 {1, 2}. Thus, (~k1+KW

~k2)[i] = uK(~k1) +K uK(~k2).

Next, uK(~k1+KW

~k2) = (~k1+KW

~k2)[i] which holds if for any j 6= i 2 W we have

(~k1+KW

~k2)[i] �K (~k1+KW

~k2)[j]. Since ~k1[i] = uK(~k1) and uK is defined based on the

natural order, we know that ~k1[i] �K ~k1[j] and analog for ~k2 we have ~k2[i] �K ~k2[j].

Lemma 2 then implies (~k1+KW

~k2)[i] �K (~k1+KW

~k2)[j]. The proof for multiplication

is analog using Lemma 2 to show that (~k1·KW

~k2)[i] �K (~k1·KW

~k2)[j] for any j 2 W .

To demonstrate certain-upperbound preservation for TI-DBs we have to demon-

strate that the encoding of a TI-DB as a KW -database fulfills the precondition of

Lemma 5.
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Lemma 6. Let D be a KW -database that represents a TI-DB. Then there exists i 2 W

such that for any tuple t:

uK(D(t)) = D(t)[i].

Proof: Consider the possible world D defined as follows:

D(t) =

8
>><

>>:

uK(D(t)) ifP (t) = 1

0K otherwise

This world exists, because in a TI-DB all tuples with probability p = 1 have anno-

tation 1B in all worlds. Furthermore, since the tuples are independent events, there

must exist one world containing no tuples with probability p < 1. Let i denote the

identifier of this world and denote by D = pwi(D). (Case 1) P (t) = 1 and so

8j 2 W : D(t)[i] = D(t)[j]. (Case 2) P (t) < 1 and D(t) = D(t)[i] = 0K. Be-

cause 8k 2 K : 0K �K k, it follows that uK(D(t)) = 0K = D(t)[i]. As a result,

8t 2 TupDom : uK(D(t)) = D(t) = D(t)[i]

Lemmas 5 and 6 together imply that our apprximation approach preserves certain

upper-bound if the input is a TI-DB.

Corollary 1. Let D# be a approximation for a TI-DB D computed as transUADB

TI
(D).

Then RA
+ over D

# preserves upper-bound.

x-DBs: In general, RA
+ queries over approximations derived from x-DBs using our

approximation transUADB

x-DB from Section 4.5 do not preserve certain upper-bound. We

present a su�cient condition for a query to preserve certain upper-bound over such a

apprximation. To this end, we define x-keys, constraints that ensure that alternatives

within the scope of an x-tuple are not all identical if projected on a set of attributes A.

Since our approximation scheme for x-DBs is certain upper-bound, queries preserve

such bound unless a result tuple that is certain is derived from multiple correlated
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uncertain input tuples. Since x-tuples from an x-DB are independent of each other,

this can only be the case if a result tuple is derived from alternatives of an x-tuple

⌧ from every possible world (i.e., where ⌧ is not optional). Such a situation can be

avoided if it is guaranteed that it is impossible for a result tuple to be derived from

all alternatives of an x-tuple.

Definition 7 (x-key). Let R be an x-relation with schema Sch(R). A set of attributes

A ✓ Sch(R) is called an x-key for $ i↵

8⌧ 2 R : (⌧ is optional) _ |⌧ | = 1 _ (9t1, t2 2 ⌧ : t1[A] 6= t2[A])

An x-key is a set of attributes A such that for any x-tuple ⌧ that is not optional

and has more than one alternative, there exists at least two alternatives that di↵er

in A. The following lemma states that a superset of an x-key is also an x-key.

Lemma 7. Let A ✓ B ✓ Sch(R) where Sch(R) is the schema of an x-relation $.

If A is an x-key for R, then so is B.

Proof: Whether the first condition or first subcondition of the second condition of

Definition 7 hold for an x-tuple is independent of the particular choice of x-key. If

the second subcondition is true (which trivially implies that the first subcondition

is true), then two alternatives of the x-tuple di↵er on A which trivially implies that

they di↵er on a superset of A.

We prove that for any x-DB D, if a conjunctive, self-join free query Q (a query

using selection, projection, and join that accesses no relation more than once) returns

at least one x-key per accessed relation, then the query preserves certain upper-bound.

Theorem 6. Let D# be an approximation for a x-DB D computed using transUADB

x-DB .

Consider a conjunctive query Q in canonical form ⇡A(�✓(R1⇥ . . .⇥Rn)) with Ri 6= Rj

for all i 6= j 2 {1, . . . , n}. Query Q preserves certain upper-bound if A contains an

x-key for every relation Ri accessed by Q.
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Proof: Let D = {R1, . . . , Rn} be an x-database, D0 = {R01, . . . , R
0
n
} its encoding

as a BW -database, D
# a certain upper-bound approximation for D

0 derived using

transUADB

x-DB , and Q be a selfjoin-free query of the form ⇡A(�✓(R1⇥ . . .⇥Rn)) such that

A contains an x-key for every relation Ri for i 2 {1, . . . , n}. Any selfjoin-free RA
+

query without union can be brought into this form. We have to show that Q(D#) is a

certain upper-bound for Q(D0). We prove this claim by contradiction. For sake of the

contradiction assume that Q(D#) is not exact certain. Then there has to exist a tuple

t 2 Q(D0) such that Q(D#)(t) = F and certB(Q(D0)(t)) = T . Recall that +B = _

and ·B = ^. Unfolding definitions of relational algebra operators over K-relations we

get:

Q(D#)(t) =
_

u:u[A]=t^8i2{1,...,n}:u[Ri]=ti

 
n^

i=1

D
#(ti)

!
^ ✓(u)

Q(D0)(t) =
X

u:u[A]=t^8i2{1,...,n}:u[Ri]=ti

R01(t1) ·BW
. . . ·BW

R0
n
(tn) ·BW

✓(u)

Note that for result tuples u of the crossproduct for which u 6|= ✓ we have ✓(u) = F

(respective ✓(u) = 0BW
). Thus, any monomial (product) corresponding to such a u

will evaluate to F (0BW
). Thus, we can equivalently write the above expressions as

shown below where the j values identify monomials for which u |= ✓ WLOG assuming

that there are m 2 N such monomials.

Q(D#)(t) =
_

8j2{1,...,m}

 
n^

i=1

D
#(tji)

!

Q(D0)(t) =
X

8j2{1,...,m}

nY

i=1

R0
i
(tji)

We use bji to denote D
#(tji) and ~kji to denote R0

i
(tji). Based on our assumption we

know:
_

8j2{1,...,m}

 
n^

i=1

bji

!
= F

So this can only be the case if for every j 2 {1, . . . ,m} there exists f 2 {1, . . . , n}

such that bjf = F . For any j 2 {1, . . . ,m} let minj denote the smallest such f , i.e.,
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the first element in the jth conjunct that is false and let tminj
denote the corresponding

tuple. Based on the fact that D
# = transUADB

x-DB (D0) and that transUADB

x-DB is a certain

upper bound, we know that if D#(tminj
) = F then tminj

is not certain. We will use

this fact to derive a contradiction with the assumption certB(Q(D0)(t)) = T . For

that, we partition the set of monomials from Q(D0)(t) into two subsets M1 and M1
C

where M1 contains the identifiers j of all monomials such that minj = 1 and M1
C

contains all remaining monomials. We will show that

certB(
X

j2M1

nY

i=1

kji) = F

, then

certB(
X

j2M1
C

nY

i=1

kji) = F

, and finally

certB(Q(D0)(t)) = certB(
X

j2M1

nY

i=1

kji +BW

X

j2M1
C

nY

i=1

kji) = F

which is the contradiction we wanted to derive.

First, consider
X

j2M1

nY

i=1

kji

Since ·B = ^ and ·BW
is defined as point-wise application of ^ to a vector ~k 2 BW we

have ~k ·BW

~k0 �BW

~k for any ~k and ~k0. Thus,

X

j2M1

nY

i=1

kji �BW

X

j2M1

kj1

. We show certB(
P

j2M1
kj1) = F , from which follows

certB(
X

j2M1

nY

i=1

kji) = F

.
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By construction we have that tj1 is not certain for all j in M1. Now consider

the set of x-tuples from R1 for which the tuples tj1 are alternatives. WLOG let

⌧1, . . . , ⌧l be these x-tuples. Now consider an arbitrary x-tuple ⌧ from this set and

let s1, . . . , so be its alternatives that are present in M1. We know that none of the

si are certain based on the fact that alternatives are disjoint events and x-tuples are

independent of each other. We distinguish 2 cases: either ⌧ is optional or ⌧ is not

optional. In the latter case based on the fact that the query result contains an x-key

for R1 we know that there exists at least one alterative s of ⌧ that is neither in M1

nor in M1
C. To see why this is the case observe that its presence in M1 would violate

the x-key while by construction M1
C only contains tuples t from R01 which are certain.

Next we construct a possible world w 2 W from D which does not contain any of

the tj1 which means that kj1 [w] = F . In turn, this implies that
P

j2M1
kj1 = F .

We construct w as follows: for every x-tuple ⌧ from ⌧1, . . . , ⌧l we either include no

alternative of ⌧ if the x-tuple is optional or an alternative that is not present in M1.

Now further partition M1
C into two subsets: M2 which contains all monomials for

which minj = 2 and M2
C for all remaining monomials. Then using an argument

symmetric to the one given for M1 above we can construct a possible world for which
P

j2M2

Q
n

i=1 tji [w] = F and, thus, certB(
P

j2M2

Q
n

i=1 kji) = F . Because the x-tuples

from M1 and M2 are from di↵erent relations there is no overlap between these sets of

x-tuples. Based on the independence of x-tuples in x-DBs this implies that we can also

construct a possible world w where
P

j2M1

Q
n

i=1 kji [w] +BW

P
j2M2

Q
n

i=1 kji [w] = F

and, thus, certB(
P

j2M1

Q
n

i=1 kji +BW

P
j2M2

Q
n

i=1 kji) = F . We can now continue

this construction to include M3, M4, and so on. Note that we are guaranteed that

Mn contains all monomials that will be left over at this point, because we started

from the observation that at least one k in every monomial corresponds to a tuple t
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which is not certain. It follows that

certB(Q(D0)(t)) = certB

 
nX

o=1

 
X

j2Mo

nY

i=1

kji

!!
= F

which contradicts our assumption that certB(Q(D0)(t)) = T and thus concludes the

proof.

4.9 UA-DB Implementation

We now discuss the implementation of a UA-DB as a query rewriting front-end

built on top of a relational DBMS. A KUA-relation with schema Sch(R)(A1, . . . , An)

annotated with a pairs of K-elements [c, d] is encoded by K-relation Sch(R)0(A1, . . . ,

An, C) where the annotation of each tuple encodes d and attribute C stores c. We

specifically implement UA-DBs for bag semantics, as this is the model used by most

DBMSes. In contrast to N-relations where the multiplicity of a tuple is stored as its

annotation, relational databases represent a tuple t with multiplicity n as n copies

of t. We use C as a boolean marker and mark c copies of t as certain (1) and the

remaining d� c copies as uncertain (0) as shown in the example in Sec. 1.2.

Our frontend rewriting engine receives queries of the form Q(DUA) over an

NUA-annotated database DUA with schema { Sch(R)i(A1, . . . , An) }. It rewrites

these into equivalent queries JQKUA(D) over a classical bag-relational database D

with schema { Sch(R)0
i
(A1, . . . , An, C) } where C 2 {0, 1} denotes the uncertainty

label. The rewrite rules implementing J·KUA are given in Fig. 4.1. Implementations of

the certain lower-bound and SGW-extraction schemes from Sec. 4.5 are used to make

our rewriting engine directly compatible with a wide range of incomplete and prob-

abilistic data models; Such inputs are translated inline into encoded NUA-relations.

We implement our approach as a middleware over a database system through an

extension of SQL. An input query is first parsed, translated into a relational algebra

graph, rewritten using J·KUA, and then converted back to SQL for execution.
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JRKUA = A Labeled R (see Section 4.5)

J�✓(Q)KUA = SELECT * FROM JQKUA WHERE ✓

J⇡A1...An(Q)KUA = SELECT A1, ..., AN, C FROM JQKUA

JQ1 ./✓ Q2KUA = SELECT Q1.*, Q2.*, Q1.C*Q2.C AS C

FROM JQ1KUA, JQ2KUA WHERE ✓

JQ1 [Q2KUA = JQ1KUA UNION ALL JQ2KUA

Figure 4.1. Query rewrite rules

4.10 Relational Algebra Rewriting and Correctness

To prove that the rewriting defined above is correct, we first formally define

the function Enc implementing the encoding of a NUA-database as an N-database

and restate JKUA as relational algebra rewriting rules. Afterwards, we prove that this

rewriting correctly encodes NUA query semantics. In the following, we use {t 7! k}

to denote a singleton relation where tuple t is annotated with k and all other tuples

are annotated with 0. Recall that arity(R) denotes the arity (number of attibutes)

of a relation.

Definition 8 (Multiset encoding). Enc(R) is a function from NUA-relations to N-

relations. Let R be a NUA-relation with schema A1, . . . , An. Let R0 be an N-relation

with schema A1, . . . , An, U that is the result of Enc(R) for some R. Enc and its

inverse are defined as:

Enc(R) =
[

t2Darity(R)

{(t, 1) 7! hcert(R(t))}

[ {(t, 0) 7! hdet(R(t))� hcert(R(t))}

Enc�1(R0) =
[

t2Darity(R)

t 7! (R0(t, 1), R0(t, 0) +R0(t, 1))

We define Enc over databases as applying Enc to every relation in the data-
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JRKUA = R

J�✓(Q)KUA = �✓(JQKUA)

J⇡A(Q)KUA = ⇡A,C(JQKUA)

JQ1 t ✓Q2KUA = ⇡Sch(Q1 t Q2),min(Q1.C,Q2.C)!C(JQ1KUA t ✓JQ2KUA)

JQ1 [Q2KUA = JQ1KUA [ JQ2KUA

Figure 4.2. Relational algebra rewrite rules implementing JQKUA

base. Note that even though we define the encoding for bag semantics here, it can be

generalized to any KUA where semiring K has a monus [91] by replacing � with �K

(the monus operation). Next, we define the relational algebra version of our rewrit-

ing J·KUA that translates an input query into a query over the encoding produced by

Enc. Again, the rewriting is defined through a set of rules (one per relational algebra

operator). The rules are shown in Figure 4.2. Here Sch(Q) denotes the schema of

the result of query Q and e ! a used in generalized projection expressions denotes

projecting on the result of evaluating expression e and calling the resulting attribute

a.

Theorem 7. Let DUA be a NUA-database and Q an RA
+ query. The following holds:

Q(DUA) = Enc�1(JQKUA(Enc(DUA)))

Proof: Straightforward induction over the structure of queries. Base case: Q = R:

WLOG consider a tuple t and let R(t) = [c, d]. We know that

Enc(R)(t, 0) = hdet(R(t))� hcert(R(t)) = d� c

and

Enc(R)(t, 1) = hcert(R(t)) = c
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LetR00 = Enc�1(JQKUA(Enc(R))) = Enc�1(Enc(R)). ThenR00(t) = [R(t, 1), R(t, 0)+

R(t, 1)] = [c, d� c+ c] = [c, d].

Induction Step: Assume that the claim holds for queries Q1 and Q2, we have to show

that it also holds for applying an operator of RA
+ to the result of these queries. We

use QJKUA i
= JQiKUA and $i = Qi(DUA).

Selection �✓(Q1): Note that

J�✓(Q1)KUA = �✓(JQ1KUA)

Consider a tuple t with R1(t) = [c, d]. Let R1
00 = Enc�1(�✓(Enc(R1)). We have

�✓(R1)(t) = R1(t) ·NUA
✓(t) and

�✓(Enc(R1)(t, 0)) = (d� c) · ✓(t, 0)

�✓(Enc(R1)(t, 1)) = c · ✓(t, 1)

Since the selection condition does not access attribute U , we have

✓(t, 0) = ✓(t, 1) = 1, ✓(t) = [1, 0]

Applying the definition of Enc�1, we get

R1
00(t) = [c · ✓(t, 1), (d� c) · ✓(t, 0) + c · ✓(t, 1)]

We now distinguish two cases: either t |= ✓ and t 6|= ✓. First consider the case where

t |= ✓. Then, ✓(t, 0) = ✓(t, 1) = 1 and we get

R1
00(t) = [c · 1, (d� c+ c) · 1] = [c, d] = R1(t) = R1(t) ·NUA

✓(t)

Now consider the case t 6|= ✓. Then, ✓(t, 0) = ✓(t, 1) = 0 and we get
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R1
00(t) = [c · 0, (d� c+ c) · 0] = [0, 0] = R1(t) ·NUA

✓(t)

Natural Join Q1 t ✓Q2: Let

$
00= Enc�1(JQ1 t ✓Q2KUA(Enc(R1),Enc(R2))

and consider a tuple t with t |= ✓ and let t1 = t[R1], t2 = t[R2], Ri(ti) = [ci, di] for

i 2 {1, 2}, and Qres = JQ1 t ✓Q2KUA.

Qres =⇡Sch(Q1 t ✓Q2),min(Q1.C,Q2.C)!C(Qjoin)

Qjoin =JQ1KUA t ✓JQ2KUA

Based on the induction assumption we have

JQiKUA(ti, 0) = di � ci and JQiKUA(ti, 1) = ci. Mapping Enc creates two versions of

ti, thus, there are 4 ways of joining these versions:

Qjoin(t, 0, 0) = JQ1KUA(t1, 0) · JQ2KUA(t2, 0)

= (d1 � c1) · (d2 � c2)

Qjoin(t, 0, 1) = JQ1KUA(t1, 0) · JQ2KUA(t2, 1)

= (d1 � c1) · c2

Qjoin(t, 1, 0) = JQ1KUA(t1, 1) · JQ2KUA(t2, 0)

= c1 · (d2 � c2)

Qjoin(t, 1, 1) = JQ1KUA(t1, 1) · JQ2KUA(t2, 1)

= c1 · c2
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The projection expression min(Q1.C,Q2.C) maps the first three cases to (t, 0)

and the last case to (t, 1). Thus,

Qres(t, 0) = (d1 � c1) · (d2 � c2) + (d1 � c1) · c2 + c1 · (d2 � c2)

= d1 · d2 � c1 · c2

Qres(t, 1) = c1 · c2

Finally, we get

R00(t) = [c1 · c2, d1 · d2 � c1 · c2 + c1 · c2] = [Q1 t ✓Q2](t)

Projection ⇡A(Q1): J⇡A(Q1)KUA = ⇡A,C(JQ1KUA). Recall the definition of projection:

[⇡A(R1)](t) =
P

s[A]=t
R1(s). Consider a tuple t and let {s1, . . . , sn} be the set of

tuples with si[A] = t. Furthermore, let si = [ci, di] and

R1
00 = Enc�1(⇡A,C(Enc(R1))

Then, R1
00(t) = [kt,1, kt,0 + kt,1] for

kt,0 =
X

(s,0)[A,U ]=(t,0)

Enc(R1)(s, 0) =
nX

i=1

di �
nX

i=1

ci

kt,1 =
X

(s,1)[A,U ]=(t,1)

Enc(R1)(s, 1) =
nX

i=1

ci

Thus, we get

R1
00(t) = [kt,1, kt,0 + kt,1]

=

"
nX

i=1

di �
nX

i=1

ci +
nX

i=1

ci,
nX

i=1

ci

#

=
X

s[A]=t

R1(s)

= ⇡A(R1)(t)
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Union Q1 [Q2: JQ1 [Q2KUA = (JQ1KUA [ JQ2KUA). Consider a tuple t with Ri(t) =

[ci, di]. Let

R00 = Enc�1(Enc(R1) [ Enc(R2))

.

We have [R1 [R2](t) = [c1 + c2, d1 + d2] and

[Enc(R1) [ Enc(R2)](t, 0)) = (d1 � c1) + (d2 � c2)

[Enc(R1) [ Enc(R2)](t, 1)) = c1 + c2

Based on this we get

R1
00(t) = [c1 + c2, (d1 � c1) + (d2 � c2) + (c1 + c2)]

= [c1 + c2, d1 + d2]

= [c1, d1] +NUA
[c2, d2] = [R1 [R2](t)

4.10.1 SQL Implementations of Approximation Schemes. We now show

SQL implementations of our methods for extracting selected guess worlds and certain

lower-bounds from Sec. 4.5.

TI-DBs: Consider a TI-DB relation R(A1, . . . , An) which is stored as a relation

R0(A1, . . . , An, P ) where attribute P stores the probabilities of tuples. Recall that we

include all tuples t where P (t) � 0.5 in the selected guess world and certain lower-

bound for TI-DBs annotates tuples t with T (certain) if P (t) = 1. In SQL this is

expressed as

SELECT A1, ... An,

CASE WHEN P = 1

THEN 1

ELSE 0
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END AS C

FROM R

WHERE P >= 0.5

We expect the user to specify the name of the attribute storing the probability

for any relation that is marked to be a TI-DB relation. The example shown below

illustrates how to mark a relation R which stores probabilities in attribute p as a

TI-DB relation.

SELECT * FROM R IS TI WITH PROBABILITY (p)

x-DBs: For an x-relation R(A1, . . . , An) which is stored as a relation R0(Xid, Altid

, A1, . . . , An, P ) where Xid stores identifiers for x-tuples and Altid store an identifier

for alternatives that is unqiue within the scope of an x-tuple. For each x-tuple ⌧ we

pick the alternative with the highest probability if the total probability mass of the

x-tuple is larger or equal to 0.5. We only mark alternatives of x-tuples as certain if

P (⌧) = 1 and |⌧ | = 1. In the SQL implementation we make extensive use of analytical

functions (SQL’s OVER-clause).

SELECT A1, ..., An

CASE WHEN P = 1

THEN 1

ELSE 0

END AS C

FROM R

WHERE Aid = FIRST_VALUE(Aid) OVER w1

AND 1 - (sum(P) OVER w2)

>= max(P) OVER w2

WINDOW w1 AS (PARTITION BY Xid ORDER BY P DESC),

w2 AS (PARTITION BY Xid)
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When an input relation is identified as an x-relation, we require that the

user specifies which attributes stores x-tuple identifies, alternative identifiers, and

probabilities. For example, consider the SQL snipplet shown below.

SELECT *

FROM R IS X WITH XID (tid)

ALTID (aid)

PROBABILITY (p)

C-tables: For a C-table R(A1, . . . , An) which is stored as a relation R0(A1, . . . , An,

V1, . . . , Vn, LC) where LC stores the local condition �D(t) (as a string) and Vi stores a

variable name if Ai = v for some variable v and NULL otherwise. The SQL implemen-

tation of the certain lower-bound and selected guess world computation for C-tables

assumes the existence of a UDF isTautology that implements the tautology check as

described in Sec. 4.5.

SELECT A1 , ..., An

CASE WHEN isTautology(LC)

THEN 1

ELSE 0

END AS C

FROM R

WHERE V1 IS NULL AND ... AND Vn IS NULL

To mark an input as a C-table the user has to specify which attributes store

the Vi’s and local condition.

SELECT *

FROM R IS CTABLE WITH VARIABLES (V1 , ..., Vn)

LOCAL CONDITION (lc)
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CHAPTER 5

AU-DBs SEMANTICS

Query evaluation over UA-DBs is e�cient (PTIME data complexity and ex-

perimentally shown to have performance comparable to SGQP). However, UA-DBs

may not be as precise and concise as possible since uncertainty is only recorded at

the tuple-level. For example, the encoding of the town tuple in Table 1.2 needs just

shy of 600 uncertain tuples, one for each combination of possible values of the un-

certain size and rate attributes. Additionally, UA-DB query semantics does not

support non-monotone operations like aggregation and set di↵erence, as this requires

an over-approximation of possible answers.

We address both shortcomings in AU-DBs through two changes relative to

UA-DBs: (i) Tuple annotations include an upper bound on the tuple’s possible mul-

tiplicity; and (ii) Attribute values become 3-tuples, with lower- and upper-bounds

and a selected-guess (SG) value. These building blocks, range-annotated scalar ex-

pressions and NAU -relations, are formalized in Sec. 5.1 and 5.2, respectively.

Supporting both attribute-level and tuple-level uncertainty creates ambiguity

in how tuples should be represented. As noted above, the tuple for towns is certain

(i.e., deterministically present) and has uncertain (i.e., multiple-possible values) at-

tributes, but could also be expressed as 600 tuples with certain attribute values whose

existence is uncertain. This ambiguity makes it challenging to define what it means

for an AU-DB to bound an incomplete database, a problem we resolve in Sec. 5.2.3 by

defining tuple matchings that relate tuples in an AU-DB to those of a possible world.

An AU-DB bounds an incomplete database if such a mapping exists for every possible

world. This ambiguity is also problematic for group-by aggregation, as aggregating
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a relation with uncertain group-by attribute values may admit multiple, equally vi-

able output AU-relations. We propose a specific grouping strategy in Sec. 5.5.3 that

mirrors SGW query evaluation, and show that it behaves as expected.

5.1 Scalar Expressions

Recall that D denotes a domain of values. For this section we assume that D

that consists of R and the boolean values (? and >). Furthermore, let V denote a

countable set of variables.

Definition 9 (Expression Syntax). For any variable x 2 V, x is an expression and

for any constant c 2 D, c is an expression. If e1, e2 and e3 are expressions, then . . .

e1 ^ e2 e1 _ e2 ¬e1 e1 = e2 e1 6= e2 e1  e2

e1 + e2 e1 · e2
1

e1
if e1 then e2 else e3

are also expressions. Given an expression e, we denote the variables in e by vars(e).

We will also use 6=, �, <, �, and > since these operators can be defined using

the expression syntax above, e.g., e1 > e2 = ¬ (e1  e2). Assuming that D contains

negative numbers, subtraction can be expressed using addition and multiplication.

For an expression e, given a valuation ' that maps variables from vars(e) to constants

from D, the expression evaluates to a constant from D. The semantics of expression

evaluation is defined below.

Definition 10 (Expression Semantics). Let e be an expression. Given a valuation

' : vars(e) ! D, the result of evaluating expression e over ' is denoted as JeK'.

Note that J1
e
K' is undefined if JeK' = 0. The semantics of expression is defined as

shown below:

JxK' := '(x) JcK' := c J¬e1K' := ¬Je1K'
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Je1 ^ e2K' := Je1K' ^ Je2K' Je1 _ e2K' := Je1K' _ Je2K'

Je1 + e2K' := Je1K' + Je2K' Je1 · e2K' := Je1K' · Je2K'

J 1
e1

K' :=
1

Je1K'

Je1 = e2K' := Je1K' = Je2K' Je1  e2K' := Je1K'  Je2K'

Jif e1 then e2 else e3K' :=

8
>><

>>:

Je2K' if Je1K'

Je3K' otherwise

5.1.1 Incomplete Expression Evaluation. We now define evaluation of expres-

sions over incomplete valuations, which are sets of valuations. Each valuation in such

a set, called a possible world, represents one possible input for the expression. The se-

mantics of expression evaluation are then defined using possible worlds semantics: the

result of evaluating an expression e over an incomplete valuation � = {'1, . . . ,'n}

is the set of results obtained by evaluating e over each 'i using the deterministic

expression evaluation semantics defined above.

Definition 11 (Incomplete Expression Semantics). An incomplete valuation � is a

set {'1, . . . ,'n} where each 'i is a valuation. The result of evaluating an expression

e over � denoted as JeK� is:

JeK� := {JeK' | ' 2 �}

Example 12. Consider an expression e := x + y and an incomplete valuation with

possible bindings � = {(x = 1, y = 4), (x = 2, y = 4), (x = 1, y = 5)}. Applying

deterministic evaluation semantics for each of the three valuations from � we get

1 + 4 = 5 ,2 + 5 = 6, and 1 + 5 = 6. Thus, the possible outcomes of this expression

under this valuation are: JeK� = {5, 6}.

5.1.2 Range-Annotated Domains. We now define range-annotated values,

which are domain values that are annotated with an interval that bounds the value
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from above and below. We define an expression semantics for valuations that maps

variables to range-annotated values and then prove that if the input bounds an incom-

plete valuation, then the range-annotated output produced by this semantics bounds

the possible outcomes of the incomplete expression.

Definition 12. Let D be a domain and let  denote a total order over its elements.

Then the range-annotated domain DI is defined as:

�
[c#/csg/c"] | c#, csg, c" 2 D ^ c#  csg  c"

 

A value c = [c#/csg/c"] from DI encodes a value csg 2 D and two values (c#

and c") that bound csg from below and above. We call a value c 2 DI certain if

c# = csg = c". Observe, that the definition requires that for any c 2 DI we have

c#  csg  c".

Example 13. For the boolean domain D = {?,>} with order ? < >, the corre-

sponding range annotated domain is:

DI = {[>/>/>], [?/>/>], [?/?/>], [?/?/?]}

We use valuations that map the variables of an expression to elements from

DI to bound incomplete valuations.

Definition 13 (Range-annotated valuation). Let e be an expression. A range-annotated

valuation '̃ for e is a mapping vars(e)! DI .

Definition 14. Given an incomplete valuation � and a range-annotated valuation '̃

for e, we say that '̃ bounds � i↵

8x 2 vars(e) : 8' 2 � : '̃(x)#  '(x)  '̃(x)"

9' 2 � : 8x 2 vars(e) : '(x) = '̃(x)sg
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Example 14. Consider the incomplete valuation � = {(x = 1), (x = 2), (x = 3)}.

The range-annotated valuation x = [0/2/3] is a bound for �, while x = [0/2/2] is not

a bound.

5.1.3 Range-annotated Expression Evaluation. We now define a semantics

for evaluating expressions over range-annotated valuations. We then demonstrate

that this semantics preserves bounds.

Definition 15. [Range-annotated expression evaluation] Let e be an expression.

Given a range valuation '̃ : vars(e)! DI , we define '̃sg(x) := '̃(x)sg. The result of

expression e over '̃ denoted as JeK'̃ is defined as:

JxK'̃ := ['̃(x)#/'̃(x)sg/'̃(x)"] JcK'̃ := [c/c/c]

Note that J1
e
K'̃ is undefined if JeK'̃#  0 and JeK'̃" � 0, because then '̃ may bound a

valuation ' where JeK' = 0. For any of the following expressions we define JeK'̃sg :=

JeK'̃sg . Let Je1K'̃ = a, Je2K'̃ = b, and Je3K'̃ = c. Then,

Je1 ^ e2K'̃# := a# ^ b# Je1 ^ e2K'̃" := a" ^ b"

Je1 _ e2K'̃# := a# _ b# Je1 _ e2K'̃" := a" _ b"

J¬e1K'̃# := ¬ a" J¬e1K'̃" := ¬ a#

Je1 + e2K'̃# := a# + b# Je1 + e2K'̃" := a" + b"

Je1 · e2K'̃# := min(a" · b", a" · b#, a# · b", a# · b#)

Je1 · e2K'̃" := max(a" · b", a" · b#, a# · b", a# · b#)

J 1
e1

K'̃# :=
1

a"
)

J 1
e1

K'̃" :=
1

a#
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Ja  bK'̃# := a"  b# Ja  bK'̃" := a#  b"

Ja = bK'̃# := (a" = b# ^ b" = a#) Ja = bK'̃" := a#  b" ^ b#  a"

Jif e1 then e2 else e3K'̃# :=

8
>>>>>><

>>>>>>:

b# if a# = a" = >

c# if a# = a" = ?

min(b#, c#) else

Jif e1 then e2 else e3K'̃" :=

8
>>>>>><

>>>>>>:

b" if a# = a" = >

c" if a# = a" = ?

max(b", c") else

5.1.4 Preservation of Bounds. Assuming that an input range-annotated

valuation bounds an incomplete valuation, we need to prove that the output of range-

annotated expression evaluation also bounds the possible outcomes.

Definition 16. A value c 2 DI bounds a set of values S ✓ D if:

8ci 2 S : c#  ci  c" 9ci 2 S : ci = csg

Theorem 8. Let '̃ be a range-annotated valuation that bounds an incomplete valua-

tion e for an expression e, then JeK'̃ bounds JeK�.

Proof: We prove this theorem through induction over the structure of an expression

under the assumption that '̃ bounds �.

Base case: If e := c for a constant c, then e# = esg = e" = c which is also the result

of e in any possible world of �. If e := x for a variable x, then since '̃ bounds �, the

value of x in any possible world is bounded by '̃(x).

Induction step: Assume that for expressions e1, e2, and e3, we have that their results

under � are bounded by their result under '̃:
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8i 2 {1, 2, 3} : 8c 2 JeiK� : JeiK'̃#  c  JeiK'̃"

9' 2 � : 8i 2 {1, 2, 3} : JeiK'̃sg = JeiK'

Note that the second condition trivially holds since JeK'̃sg was defined as applying

deterministic expression semantics to '̃sg. We, thus, only have to prove that the lower

and upper bounds are preserved for all expressions e that combine these expressions

using one of the scalar, conditional, or logical operators.

e := e1 + e2: Inequalities are preserved under addition. Thus, for any ' 2 � we have

Je1K'̃# + Je2K'̃#  Je1K' + Je2K'  Je1K'̃" + Je2K'̃".

e := e1 · e2: We distinguish sixteen cases based on which of Je1K'̃#, Je2K'̃#, Je1K'̃", and

Je2K'̃# are negative. For instance, if all numbers are positive then clearly Je1K'̃# ·

Je2K'̃#  Je1K' · Je2K'. While there are sixteen cases, there are only four possible

combinations of lower and upper bounds we have to consider. Thus, if we take the

minimal (maximal) value across all these cases, we get a lower (upper) bound on e.

e := 1
e1
: For any pair of numbers c1 and c2 that are either both positive or both

negative, we have c1  c2 implies 1
c1
�

1
c2
. Thus, 1

a" is an upper bound on 1
c
for any c

bound by a. Analog, 1
a# is an upper bound.

e := e1 ^ e2 and e := e1 _ e2: Both _ and ^ are monotone in their arguments wrt. the

order F �B T . Thus, applying these operations to combine lower (upper) bounds

preserves these bounds.

e := ¬ e1: We distinguish three cases: (i) Je1K' = ? for all ' 2 �; (ii)Je1K' = > for

some ' 2 � and Je1K' = ? for some ' 2 �; and (iii) Je1K' = ? for all ' 2 �. In case

(i) for '̃ to bound the input either Je1K'̃ = [?/?/?] in which case JeK'̃ = [>/>/>]
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or Je1K'̃ = [?/?/>] and JrK'̃ = [?/>/>]. We have JeK' = > for all ' 2 � and, thus,

in either case JeK'̃ bounds JeK�. In case (ii), JeK'̃# = ? and JeK'̃" = > which trivially

bound JeK�. The last case is symmetric to (i).

e := e1  e2: Recall that ?  >. e1  e2 is guaranteed to evaluate to true in every

possible world if the upper bound of e1 is lower than or equal to the lower bound of

e2. In this case it is safe to set JeK'̃# = >. Otherwise, there may exist a possible

world where e1  e2 evaluates to false and we have to set JeK'̃# = ?. Similarly, if the

lower bound of e1 is larger than the upper bound of e2 then e1  e2 evaluates to false

in every possible world and JeK'̃" = ? is an upper bound. Otherwise, there may exist

a world where e1  e2 holds and we have to set JeK'̃" = >.

if e1 then e2 else e3: When e1 is certainly true (Je1K'̃# = Je1K'̃" = >) or certainly false

(Je1K'̃# = Je1K'̃" = ?) then the bounds e2 (certainly true) or e3 (certainly false) are

bounds for e. Otherwise, e may evaluate to e2 in some worlds and to e3 in others.

Taking the minimum (maximum) of the bounds for e2 and e3 is guaranteed to bound

e from below (above) in any possible world.

We conclude that the result of range-annotated expression evaluation under '̃

which bounds an incomplete valuation � bounds the result of incomplete expression

evaluation for any expression e.

Conditional range-annotated expressions are bound-preserving for any totally-

ordered domain. We can add support for additional scalar operations as long as

a bound-preserving evaluation semantics can be defined. Important classes of scalar

operations are operations that preserve the order over the domain, i.e., for any domain

values a < b and c < d which a ⇧ b. For instance, this is the case for addition over

natural numbers. For any such operation, point-wise application to range-annotated

domain values is bound preserving. For categorical values where no sensible order
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can be defined, we impose an arbitrary order. Note that in the worst-case, we can

just annotate a value with the range covering the whole domain to indicate that it is

completely uncertain.

5.2 Attribute-Annotated Uncertain Databases

We define attribute-annotated uncertain databases (AU-DBs) as a special type

of K-relations over range-annotated domains and demonstrate how to bound an in-

complete K-relation using this model. Afterwards, define a metric for how precise the

bounds of an incomplete K-database encoded by a AU-DB are and proceed to define

a query semantics for AU-DBs and prove that this query semantics preserves bounds.

Tuple annotations of AU-DBs are triples of elements from a semiring K. These triples

form a semiring structure KAU . The construction underlying KAU is well-defined if

K is an l-semiring, i.e., a semiring where the natural order forms a lattice over the

elements of the semiring. Importantly, N (bag semantics), B (set semantics), and

many provenance semirings are l-semirings.

5.2.1 AU-DBs. In addition to allowing for range-annotated values, AU-DBs also

di↵er from UA-DBs in that they encode an upper bound of the possible annotation

of tuples. Thus, instead of using annotations from K
2, we use K

3 to encode three

annotations for each tuple: a lower bound on the certain annotation of the tuple,

the annotation of the tuple in the SGW, and an over-approximation of the tuple’s

possible annotation.

Definition 17 (Tuple-level Annotations). Let K be an l-semiring and let �K denote

its natural order. Then the tuple level range-annotated domain KAU is defined as:

{(k#, k, k") | k, k#, k" 2 K ^ k# �K k �K k"}

We use KAU to denote semiring K
3 restricted to elements from KAU .
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Similar to the range-annotated domain, a value (k1, k2, k3) from KAU encodes

a semiring element from K and two elements (k1 and k3) that bound the element from

below and above. Given an KAU -element k = (k1, k2, k3) we define k# = k1, ksg = k2,

and k" = k3. Note that KAU is a semiring since when combining two elements of KAU

with +K3 and ·K3 , the result (k1, k2, k3) fulfills the requirement k1 �K k2 �K k3. This

is the case because semiring addition and multiplication preserves the natural order

of K and these operations in K
3 are defined as pointwise application of +K and ·K,

e.g., (k#, k, k") +K3 (l#, l, l") = (l# +K l#, k +K l, k" +K l") and k1 �K k2 ^ k3 �K k4 )

k1 +K k3 �K k2 �K k4 for any k1, k2, k3, k4 2 K.

Definition 18 (KAU -relations). Given a range-annotated data domain DI and l-

semiring K, an KAU -relation of arity n is a function R : DI
n
! KAU .

As a notational convenience we show certain values, i.e., values c 2 DI where

c# = csg = c" = c0, as the deterministic value c0 they encode.

5.2.2 Extracting Selected-Guess Worlds. Note that the same tuple t may

appear more than once in a KAU -relation albeit with di↵erent value annotations. We

can extract the selected-guess world encoded by a KAU -relation by grouping tuples by

the SG of their attribute values and then summing up their tuple-level SG annotation.

Definition 19. We lift function sg from values to tuples: sg : DI
n
! Dn, i.e., given

an AU-DB tuple t = (v1, . . . , vn), tsg := (v1sg, . . . , vnsg). For a KAU -relation R, Rsg,

the SGW encoded by R, is then defined as:

Rsg(t) :=
X

tsg=t

R(t)sg

Example 15. Figure 5.1a shows an instance of a NAU -relation R where each attribute

is a triple showing the lower bound, selected-guess and upper bound of the value.

Each tuple is annotated by a triple showing the lower bound, selected-guess and upper

bound of the annotation value. Since this is a NAU relation, the annotations encode
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Table 5.1. Example AU-DB relation and the SGW it encodes

(a) Example AU-DB instance

A B N3

[1/1/1] [1/1/1] (2,2,3)

[1/1/1] [1/1/3] (2,3,3)

[1/2/2] [3/3/3] (1,1,1)

(b) selected-guess

world

A B N

1 1 5

2 3 1

multiplicities of tuples. For example, the first tuple represents a tuple (1, 1) that

appears at least twice in every possible world (its lower bound annotation is 2), appears

twice in the SGW, and may appear in any possible world at most thrice. Figure 5.1b

shows the SGW encoded by the AU-DB produced by summing up the annotations of

tuples with identical SG values. For instance, the first two tuples both represent tuple

(1, 1) and their annotations sum up to 5, i.e., the tuple (1, 1) appears five times in

the chosen SGW.

5.2.3 Encoding Bounds. We now formally define what it means for an AU-DB

to bound a an incomplete K-relation from above and below. For that we first define

bounding of deterministic tuples by range-annotated tuples.

Definition 20 (Tuple Bounding). Let t be a range-annotated tuple with schema

(a1, . . . , an) and t be a tuple with same schema as t. We say that t bounds t written

as t v t i↵

8i 2 {1, . . . , n} : t.ai
#
 t.ai  t.ai

"

Obviously, one AU-DB tuple can bound multiple di↵erent conventional tuples

and vice versa. We introduce tuple matchings as a way to match the annotations of

tuples of a KAU -database (or relation) with that of one possible world of an incomplete
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K-database (or relation). Based on tuple matchings we then define how to bound

possible worlds.

Definition 21 (Tuple matching). Let n-ary AU-relation R and an n-ary database

R. A tuple matching T M for R and R is a function (DI)n ⇥ Dn
! K. s.t.

8t 2 DI
n : 8t 6v t : T M(t, t) = 0K

and

8t 2 Dn :
X

t2DI
n

T M(t, t) = R(t)

Intuitively, a tuple matching distributes the annotation of a tuple from R

over one or more matching tuples from R. That is, multiple tuples from a UA-DB

may encode the same tuple from an incomplete database. This is possible when the

multidimensional rectangles of their attribute-level range annotations overlap. For

instance, range-annotated tuples ([1/2/3]) and ([2/3/5]) both match the tuple (2).

Definition 22 (Bounding Possible Worlds). Given an n-ary AU-DB relation R and a

n-ary deterministic relation R (a possible world of an incomplete K-relation), relation

R is a lower bound for R i↵ there exists a tuple matching T M for R and R s.t.

8t 2 DI
n :

X

t2Dn

T M(t, t) ⌫K R(t)# (5.1)

and is upper bounded by R i↵ there exists a tuple matching T M for R and R s.t.

8t 2 DI
n :

X

t2Dn

T M(t, t) �K R(t)" (5.2)

A AU-relation R bounds a relation R written as R @ R i↵ there exists a tuple

matching T M for R and R that fulfills both Equations (5.1) and (5.2).

Having defined when a possible world is bound by a KAU -relation, we are ready

to define bounding of incomplete K-relations.
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Definition 23 (Bounding Incomplete Relations). Given an incomplete K-relation R

and a AU-relation R, we say that R bounds R, written as R @ R i↵

8R 2 R : R @ R (5.3)

9R 2 R : Rsg = R (5.4)

Note that all bounds we define for relations are extended to databases in the

obvious way.

Example 16. Consider the AU-DB from Ex. 15 and the two possible world shown

below.

Table 5.2. ex. 16

D1

A B N

t1 1 1 5

t2 2 3 1

D2

A B N

t3 1 1 2

t4 1 3 2

t5 2 4 1

This AU-DB bounds these worlds, since there exist tuple matchings that pro-

vides both a lower and an upper bound for the annotations of the tuples of these

worlds. For instance, denoting the tuples from this example as

t1 := ([1/1/1], [1/1/1])

t2 := ([1/1/1], [1/1/3])

t3 := ([1/2/2], [3/3/3])
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tuple matchings T M1 and T M2 shown below to bound D1 and D2.

T M1(t1, t1) = 2 T M1(t2, t1) = 3 T M1(t3, t1) = 0

T M1(t1, t2) = 0 T M1(t2, t2) = 0 T M1(t3, t2) = 1

T M2(t1, t3) = 2 T M2(t2, t3) = 0 T M2(t3, t3) = 0

T M2(t1, t4) = 0 T M2(t2, t4) = 2 T M2(t3, t4) = 0

T M2(t1, t5) = 0 T M2(t2, t5) = 0 T M2(t3, t5) = 1

5.2.4 Tightness of Bounds. Def. 23 defines what it means for an AU-DB to

bound an incomplete databases. However, given an incomplete database, there may

be many possible AU-DBs that bound it that di↵er in how tight the bounds are.

For instance, both t1 := ([1/15/100]) and t2 := ([13/14/15]) bound tuple (15), but

intuitively the bounds provided by the second tuple are tighter. In this section we

develop a metric for the tightness of the approximation provided by an AU-DB and

prove that finding a AU-DB that maximizes tightness is intractable. Intuitively, given

two AU-DBs D and D0 that both bound an incomplete K-database D, D is a tighter

bound than D0 if the set of deterministic databases bound by D is a subset of the

set of deterministic databases bound by D0. As a sanity check, consider D1 := {t1}

and D2 := {t2} using t1 and t2 from above and assume that D = N [ B. Then D2

is a tighter bound than D1 since the three deterministic databases it bounds {(13)},

{(14)} and {(15)} are also bound by D1, but D1 bounds additional databases, e.g.,

{(2)} that are not bound by D2.

Definition 24 (Bound Tightness). Consider two KAU -databases D and D0 over the

same schema S. We say that D is at least as tight as D0, written as D �I D0, if for

all K-databases D with schema S we have:

D @ D! D @ D0
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We say that D is a strictly tighter than D, written as D �I D0 if D �I D0 and there

exists D @ D0 with D 6@ D. Furthermore, we call D a maximally tight bound for an

incomplete K-database D if:

D @ D 6 9D0 : D0 �I D

Note that the notion of tightness is well-defined even if the data domain D is

infinite. For instance, if we use the reals R instead of natural numbers as the domain

in the example above, then still D1 �I D2. In general AU-DBs that are tighter

bounds are preferable. However, computing a maximally tight bound is intractable.

Theorem 9 (Finding Maximally Tight Bounds). Let D be an incomplete N-database

encoded as a C-table [12]. Computing a maximally tight bound D for D is NP-hard.

Proof: Note that obviously, C-tables which apply set semantics cannot encode every

possible incomplete N-database. However, the class of all N-databases where no

tuples appear more than once can be encoded using C-tables. To prove the hardness

of computing maximally tight bounds it su�ces to prove the hardness of finding

bounds for this subset of all N-databases. We prove the claim through a reduction

from the NP-complete 3-colorability decision problem. A graph G = (V,E) is 3-

colorable if each node n can be assigned a color C(n) 2 {r, g, b} (red, green, and

blue) such that for every edge e = (v1, v2) we have C(v1) 6= C(v2). Given such a

graph, we will construct a C-table R encoding an incomplete B-relation (C-tables

use set semantics) with a single tuple and show that the tight upper bound on the

annotation of the tuple is > i↵ the graph G is 3-colorable. We now briefly review

C-tables for readers not familiar with this model. Consider a set of variables ⌃. A

C-table [12] R = (R,�,�) is a relation R paired with (i) a global condition � which

is also a logical condition over ⌃ and (ii) a function � that assigns to each tuple t 2 R

a logical condition over ⌃. Given a valuation µ that assigns to each variable from
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⌃ a value, the global condition and all local conditions evaluate to either > or ?.

The incomplete database represented by a C-table R is the set of all relations R such

that there exists a valuation µ for which µ(�) is true and R = {t | µ(�(t))}, i.e., R

contains all tuples for which the local condition evaluates to true. Given an input

graph G, we associate a variable xv with each vertex v 2 V . Each possible world of

the C-table we construct encodes one possible assignment of colors to the nodes of

the graph. This will be ensured through the global condition which is a conjunction

of conditions of the form (xv = r_xv = g_xv = b) for each node v 2 V . The C-table

contains a single tuple tone = (1) whose local condition tests whether the assignment

of nodes to colors is a valid 3-coloring of the input graph. That is, the local condition

is a conjunction of conditions of the form xv1 6= xv2 for every edge e = (v1, v2). Thus,

the C-table (R,�,�) we construct for G is:

R = {tone} for tone = (1)

� =
^

v2V

(xv = r _ xv = g _ xv = b)

�(tone) =
^

(v1,v2)2E

xv1 6= xv2

Note that in any possible world R0 represented by R, each xv is assigned one of the

valid colors, because otherwise the global condition would not hold. For each such

coloring, the tuple tone = (1) exists R0(tone) = > if no adjacent vertices have the same

color, i.e., the graph is 3-colorable. Thus, if G is not 3-colorable, then R0(tone) = ? in

every possible world and if G is 3-colorable, then R0(tone) = > in at least one possible

world. Thus, the tight upper bound on tone’s annotation is > i↵ G is 3-colorable.

In the light of this result, any e�cient methods for translating incomplete and

probabilistic databases into AU-DBs can not guarantee tight bounds. Nonetheless,

comparing the tightness of AU-DBs is useful for evaluating how tight bounds are in

practice as we will do in Chapter 6. Furthermore, note that even if we were able to
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compute tight bounds for an input incomplete database, preserving the bounds under

queries is computationally hard. This follows from hardness results for computing

tight bounds for the results of an aggregation query over incomplete databases (e.g.,

see [18]).

5.3 AU-DB Query Semantics

In this section we first introduce a semantics for RA
+ queries over AU-DBs

that preserves bounds, i.e., if the input of a query Q bounds an incomplete K-database

D, then the output bounds Q(D). Conveniently, it turns out that the standard query

semantics for K-relations with a slight extension to deal with uncertain boolean values

in conditions is su�cient for this purpose. Recall from Sec. 5.1 that conditions (or

more generally scalar expressions) over range-annotated values evaluate to triples

of boolean values, e.g., [F/F/T ] would mean that the condition is false in some

worlds, is false in the SGW, and may be true in some worlds. Recall the standard

semantics for evaluating selection conditions over K-relations. For a selection �✓(R)

the annotation of a tuple t in annotation of t in the result of the selection is computed

by multiplying R(t) with ✓(t) which is defined as a function B! {0K, 1K} that returns

1K if ✓ evaluates to true on t and 0K otherwise. In KAU -relations tuple t is a tuple of

range-annotated values and, thus, ✓ evaluates to an range-annotated Boolean value as

described above. Using the range-annotated semantics for expressions from Sec. 5.1,

a selection condition evaluates to a triple of boolean values B3. We need to map such

a triple to a corresponding KAU -element to define a semantics for selection that is

compatible with K-relational query semantics.

Definition 25 (Boolean to Semiring Mapping). Let K be a semiring. We define
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function MK : B3
! K

3 as:

MK(b1, b2, b3) := (k1, k2, k3) where

8i 2 {1, 2, 3} : ki :=

8
>><

>>:

1K if bi = true

0K otherwise

We use the mapping of range-annotated Boolean values to NAU elements to

define evaluation of selection conditions.

Definition 26 (Conditions over Range-annotated Tuples). Let t be a range-annotated

tuple and ✓ be a Boolean condition over variables representing attributes from t. Fur-

thermore, let '̃t denote the range-annotated valuation that maps each variable to the

corresponding value from t. We define ✓(t), the result of the condition ✓ applied to t

as:

✓(t) := MN(J✓K'̃t)

Example 17. Consider the example NAU -relation R shown below. The single tuple

t of this relation exists at least once in every possible world, twice in the SGW, and

no possible world contains more than 3 tuples bound by this tuple.

A B NAU

[1/2/3] 2 (1, 2, 3)

To evaluate query Q := �A=2(R) over this relations, we first evaluate the

expression A = 2 using range-annotated expression evaluation semantics. We get

[1/2/3] = [2/2/2] which evaluates to [F/T/T ]. Using MN, this value is mapped to

(0, 1, 1). To calculate the annotation of the tuple in the result of the selection we then

multiply these values with the tuple’s annotation in R and get:

R(t) ·NAU
✓(t) = (1, 2, 3) · (0, 1, 1) = (0, 2, 3)
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Thus, the tuple may not exist in every possible world of the query result, appears twice

in the SGW query result, and occurs at most three times in any possible world.

5.3.1 Preservation of Bounds. For this query semantics to be useful, we need

to prove that it preserves bounds. Intuitively, this is true because expressions are

evaluated using our range-annotated expression semantics which preserves bounds on

values and queries are evaluated in a direct-product semiring NAU for which semiring

operations are defined point-wise. Furthermore, we utilize a result we have proven

in [93, Lemma 2]: the operations of l-semirings preserve the natural order, e.g., if

k1 �K k2 and k3 �K k4 then k1 +K k3 �K k2 +K k4.

Theorem 10 (RA
+Queries Preserve Bounds). Let D be an incomplete N-database,

Q be a RA
+ query, and D be an NAU -database that bounds D. Then Q(D) bounds

Q(D).

Proof: We prove this lemma using induction over the structure of a relational algebra

expression under the assumption that D bounds the input D.

Base case: The query Q consists of a single relation access R. The result is bounded

following from D @ D.

Induction step: Let R and S bound n-ary relation R and m-ary relation S. Consider

D 2 D and let T MR and T MS be two tuple matchings based on which these bounds

can be established for D. We will demonstrate how to construct a tuple matching

T MQ based on which Q(D) bounds Q(D). From this then immediately follows that

Q(D) @ Q(D). Note that by definition of KAU as the 3-way direct product of K with

itself, semiring operations are point-wise, e.g., k1 +KAU
k2# = k1# +K k2#. Practically,

this means that queries are evaluated over each dimension individually. We will make

use of this fact in the following. We only prove that T MQ is a lower bound since the

proof for T MQ being an upper bound is symmetric.
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⇡U(R): Recall that for T M to be a tuple matching, two conditions have to hold: (i)

T M(t, t) = 0K if t 6v t and (ii)
P

t2DI
n T M(t, t) = R(t). Consider an U -tuple t.

Applying the definition of projection for K-relations we have:

⇡U(R)(t) =
X

t=t0[U ]

R(t)

Since T MR is a tuple matching based on which R bounds R, we know that

by the definition of tuple matching the sum of annotations assigned to a tuple t by

the tuple matching is equal to the annotation of the tuple in R):

X

t=t0[U ]

R(t) =
X

t=t0[U ]

X

t2DI
n

T MR(t, t
0) (5.5)

By definition for any tuple matching T M we have T M(t, t) = 0K if t 6v t.

Thus, Equation (5.5) can be rewritten as:

=
X

t=t0[U ]

X

t0vt

T MR(t, t
0) (5.6)

Observe that for any n-ary range-annotated t and n-ary tuple t it is the case

that t v t implies t[U ] v t[U ] (if t matches t on all attributes, then clearly it matches

t on a subset of attributes). For pair t and t such that t[U ] v t[U ], but t 6v t we know

that TMR(t, t) = 0K. Thus,

=
X

t=t0[U ]

X

t=t0[U ]^tvt

T MR(t
0, t0) (5.7)

So far we have established that:

⇡U(R)(t) =
X

t=t0[U ]

X

t=t0[U ]^tvt

T MR(t
0, t0) (5.8)
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We now define T MQ as shown below:

T MQ(t, t) :=
X

8t0,t:t0[U ]=t^t0[U ]=t

T MR(t
0, t0) (5.9)

T MQ is a tuple matching since Equation (5.8) ensures that

8t 2 Dn :
P

t2DI
n T M(t, t) = R(t) (second condition in the definition) and we defined

T MQ such that T MQ(t, t) = 0K if t 6v t. What remains to be shown is that ⇡U(R)

bounds ⇡U(R) based on T MQ. Let |U | = m, we have to show that

8t 2 DI
m : ⇡U(R)(t)# �K

X

t2Dm

T MQ(t, t)

Since addition in KAU is pointwise application of +K, using the definition of

projection over K-relations we have

⇡U(R)(t)# =
X

t0[U ]=t

R(t0)

Furthermore, since T MR is a tuple matching based on which R bounds R,

=
X

t0[U ]=t^t2Dn

T MR(t, t)

Using again the fact that t 6v t implies T MR(t, t) = 0K,

=
X

8t0,t0:t0[U ]=t^t0vt0
T MR(t

0, t0)

=
X

tvt

X

8t0,t0:t0[U ]=t^t0[U ]=t

T MR(t
0, t0)

=
X

tvt

T MQ(t, t) =
X

t2Dm

T MQ(t, t)



84

Since we have established that ⇡U(R)(t)# �K
P

t2Dm T MQ(t, t), ⇡U(R) lower

bounds ⇡U(R) via T MQ.

�✓(R): By definition of selection and based on (i) and (ii) as in the proof of projection

we have

Q(R)(t)# = R(t)# ·K ✓(t)
#
�K

X

t2Dn

T MR(t, t) ·K ✓(t)
#

Assume that for a tuple t we have t 6v t, then by Def. 21 it follows that T Mrel(t, t) =

0K. In this case we get Q(R)(t)# = R(t) ·K 0K = 0K. Since 0K +K k = k for any

k 2 K, we get

X

t2Dn

T MR(t, t) ·K ✓(t)
# =

X

tvt

T MR(t, t) ·K ✓(t)
#

Note that based on Thm. 8, we have ✓(t)# �K ✓(t) since t v t from which follows

that:
P

tvt T MR(t, t) ·K ✓(t)# �K
P

tvt T MR(t, t) ·K ✓(t)#. It follows that Q(R) lower

bounds Q(R) through T M(t, t) := T MR(t, t) ·K ✓(t)#.

R⇥ S: Based on the definition of cross product for K-relations, (i) from above, and

that semiring multiplication preserves natural order we get (R⇥ S)(t)# = R(t[R])# ·K

S(t[S])# �K
P

t2Dn T MR(t[R], t) ·K
P

t02Dm T MS(t[S], t0). Thus, R⇥S lower bounds

R⇥ S via T MQ(t, t) :=
P

t2Dn T MR(t, t[R]) ·K
P

t2Dm T MS(t, t[S]).

R [ S: Assume that R and S are n-ary relations. Substituting the definition of

union and by (i) and (ii) from above we get: (R [ S)(t)# = R(t)# +K S(t)# �K
P

t2Dn T MR(t, t)+K
P

t2Dn T MS(t, t). Thus,R[S lower boundsR[S via T MQ(t, t) :=
P

t2Dn T MR(t, t) +K
P

t2Dn T MS(t, t).

5.4 Set Di↵erence

In this section, we discuss the evaluation of queries with set di↵erence over

AU-DBs.



85

5.4.1 Selected-Guess Combiner. In this section we introduce an auxiliary

operator for defining set di↵erence over KAU -relations that merges tuples that have

the same values in the SGW. The purpose of this operator is to ensure that a tuple

in the SGW is encoded as a single tuple in the AU-DB.

The main purpose for using the merge operator is to prevent tuples from

over-reducing or over counting. And make sure we can still extract SGW from the

non-monotone query result.

Definition 27 (SG-Combiner). Given a AU-DB relation R, the combine operator  

yields a AU-DB relation by grouping tuples with the same SGW attribute values:

 (R)(t) :=

8
>><

>>:

P
t0:tsg=t0sg R(t0) if t = Comb(R, tsg)

0k else

where Comb(R, t) defined below computes the mimimum bounding box for the ranges

of all tuples from R that have the same SGW values as t and are not annotated with

0KAU
. Let a be an attribute from the schema of R, then

Comb(R, t).a# = min
tsg=t^R(t) 6=0KAU

t.a#

Comb(R, t).asg = t.asg

Comb(R, t).a" = max
tsg=t^R(t) 6=0KAU

t.a"

The SG-combiner merges all tuples with the same SG attribute values are

combined by merging their attribute ranges and summing up their annotations. For

instance, consider a relationR with two tuples ([1/2/2], [1/3/5]) and ([2/2/4], [3/3/4])

which are annotated with (1, 2, 2) and (3, 3, 4), respectively. Applying SG-combiner

to this relation the two tuples are combined (they have the same SGW values) into a

tuple ([1/2/4], [1/3/5]) annotated with (1 + 3, 2 + 3, 2 + 4) = (4, 5, 6). Before moving

on and discussing semantics for set di↵erence and aggrgeation we first establish that

the SG-combiner preserves bounds.
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Lemma 8. Let R by a KAU -relation that bounds an n-nary K-relation R. Then  (R)

bounds R.

Proof: Consider a tuple t 2 Dn and let supp(R, t) denote the set {t | R(t) 6=

0KAU
^ tsg = t}. Observe that Comb(R, t) merges the range annotations supp(R, t).

Let t be the result of Comb(R, t). Then

 (R)(t)# =
X

tsg=t0sg

R(t0) �K
X

tsg=t0sg

X

t2Dn

T M(t, t)

Thus,  (R) bounds R through T M
0(t, t) =

P
tsg=t0sg

P
t2Dn T M(t0), t.

5.4.2 Set Di↵erence. Geerts [91] did extend K-relations to support set di↵erence

through m-semirings which are semirings equipped with a monus operation that is

used to define di↵erence. The monus operation �K is defined based on the natural

order of semirings as k1 �K k2 = k3 where k3 is the smallest element from K s.t.

k2 +K k3 ⌫K k1. For instance, the monus of semiring N is truncating subtraction:

k1 �N k2 = max(0, k1 � k2). The monus construction for a semiring K can be lifted

through point-wise application to K
3 since K

3-semirings are direct products. We get

(k1, k2, k3)�KAU
(l1, l2, l3) = (k1 �K l1, k2 �K l2, k3 �K l3)

However, the result of k �K3 k0 for k, k0 2 KAU is not necessarily in KAU , i.e., this

semantics for set di↵erence does not preserve bounds even if we disallow range-

annotated values. For instance, consider an incomplete N-relations with two possible

worlds: D1 = {R(1) 7! 2, S(2) 7! 1} and D2 = {R(1) 7! 1, R(2) 7! 1, S(1) 7! 3}.

Here we use t 7! k to denote that tuple t is annotated with k. Without using

range-annotations, i.e., we can bound these worlds using NAU -database D1: D :=

{R(1) 7! (1, 2, 2),R(2) 7! (0, 0, 1),S(1) 7! (0, 0, 3),S(2) 7! (0, 1, 1)}. Consider the

query R � S. Applying the definition of set di↵erence from Geerts [91] which is

(R�S)(t) := R(t)�K S(t), for tuple t := (1) we get the annotation R(t)�NAU
S(t) =
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(1, 2, 2)�NAU
(0, 0, 3) = (max(1� 0, 0),max(2� 0, 0),max(2� 3, 0) = (1, 2, 0). How-

ever, (1, 2, 0)# = 1 is not a lower bound on the certain annotation of t , since t is not

in the result of the query in D2 (max(1 � 3, 0) = 0). This failure of the point-wise

semantics to preserve bounds is not all surprising if we consider the following obser-

vation from [46]: because of the negation in set di↵erence, a lower bound on certain

answers can turn into an upper bound. To calculate an lower (upper) bound for the

result one has to combine a lower bound for the LHS input of the set di↵erence with

an upper bound of the RHS. Thus, we can define

(R� S)(t) := (R(t)# �K S(t)",R(t)sg �K S(t)sg,R(t)" �K S(t)#)

to get a result that preserves bounds. For instance, for t := (1) we get (max(1 �

3, 0),max(2� 0, 0),max(2� 0, 0)) = (0, 2, 2).

This semantics is however still not su�cient if we consider range-annotated val-

ues. For instance, consider the following NAU -databaseD2 that also bounds our exam-

ple incomplete N-database : {R(1) 7! (1, 1, 1),R([1/1/2]) 7! (1, 1, 1),S([1/1/2]) 7!

(1, 1, 3)}. Observe that tuple (1) from the SGW (D1) is encoded as two tuples in D2.

To calculate the annotation of this tuple in the SGW we need to sum up the annota-

tions of all such tuples in the LHS and RHS. To calculate lower bound annotations,

we need to also use the sum of annotations of all tuples representing the tuple and

then compute the monus of this sum with the sum of all annotations of tuples from

the RHS that could be equal to this tuple in some world. Two range-annotated tuples

may represent the same tuple in some world if all of their attribute values overlap.

Conversely, to calculate an upper bound it is su�cient to use annotations of RHS

tuples if both tuples are certain (they are the same in every possible world). We use

the SG-combiner operator define above to merge tuples with the same SG values and

then apply the monus using the appropriate set of tuples from the RHS.

Definition 28 (Set Di↵erence). Let t and t0 be n-ary range-annotated tuples with
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schema (a1, . . . , an). We define a predicate t ⌘ t0 that evaluates to true i↵ t = t0

and both t and t0 are certain and a predicate t ' t0 that evaluates to true i↵ 8i 2

{1, . . . , n} : t.ai# �K t0.ai# �K t.ai" _ t.a1# �K t0.ai" �K t.ai". Using these predicates

we define set di↵erence as shown below.

(R1 �R2)(t)
# :=  (R1)(t)

#
�K

X

t't0
R2(t

0)"

(R1 �R2)(t)
sg :=  (R1)(t)

sg
�K

X

tsg=t0sg

R2(t
0)sg

(R1 �R2)(t)
" :=  (R1)(t)

"
�K

X

t⌘t0
R2(t

0)#

5.4.3 Bound Preservation. We now demonstrate that the semantics we have

defined for set di↵erence preserves bounds.

Theorem 11 (Set Di↵erence Preserves Bounds). Let Q := R � S, R and S be

incomplete K-relations, and R and S be KAU -relations that bound R and S. Then

Q(R,S) bounds Q(R, S).

Proof: Given all input tuples are bounded, we first prove that the lower bound of

the query semantics reserves the bound. We assume relation R is pre-combined s.t.

R =  (R) and R preserves the bound.

For lower bounds (R� S)(t)#, on the L.H.S. of �K we have

R(t)# �K
X

t2Dn

T M(t, t)

On the R.H.S. we have

X

t't0
S(t0)" ⌫K

X

t't0

X

t02Dn

T M(t0, t0)



89

thus

(R� S)(t)# :=R)(t)# �K
X

t't0
S(t0)"

�K
X

t2Dn

T M(t, t)�K
X

t't0

X

t02Dn

T M(t0, t0)

=
X

t2Dn

(T M(t, t)�K
X

t02Dn

T M(t0, t0))

So the lower bounds is bounded by tuple-matching 8t2R : T M(t, t) = T M(t, t) �K
P

t02Dn T M(t0, t0).

5.5 Aggregation

We now introduce a semantics for aggregation over AU-DBs that preserves

bounds. We leave a generalization to other semirings to future work. See [43] for a

discussion of the challenges involved with that. Importantly, our semantics has PTIME

data complexity. One major challenge in defining aggregation over K-relations which

also applies to our problem setting is that one has to take the annotations of tuples

into account when calculating aggregation function results. For instance, under bag

semantics (semiring N) the multiplicity of a tuple a↵ects the result of SUM aggregation.

We based our semantics for aggregation on earlier results from [23]. For AU-DBs we

have to overcome two major new challenges: (i) since the values of group-by attributes

may be uncertain, a tuple’s group membership may be uncertain too and (ii) we are

aggregating over range-bounded values. To address (ii) we utilitze our expression

semantics for range-bounded values from Sec. 5.1. However, additional complications

arise when taking the NAU -annotations of tuples into account. For (i) we will reason

about all possible group memberships of range-annotated tuples to calculate bounds

on group-by values, aggregation function results, and number of result groups.

5.5.1 Aggregation Monoids. Amsterdamer et al. [23] introduced a semantics

for aggregation queries over K-relations that commutes with homomorphisms and
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under which aggregation results can be encoded with polynomial space. Contrast

this with the aggregation semantics for c-tables from [67] where aggregation results

may be of size exponential in the input size. [23] deals with aggregation functions

that are commutative monoids (M,+M , 0M), i.e., where the values from M that

are the input to aggregation are combined through an operation +M which has a

neutral element 0M . Abusing notation, we will use M to both denote the monoid

and its domain. A monoid is a mathematical structure (M,+M , 0M) where +M is a

commutative and associative binary operation over M , and 0M is the neutral element

of M . For instance, SUM := (R,+, 0), i.e., addition over the reals can be used

for sum aggregation. Most standard aggregation functions (sum, min, max, and

count) can be expressed as monoids or, in the case of avg, can be derived from

multiple monoids (count and sum). As an example, consider the monoids for sum

and min: SUM := (R,+, 0) and MIN := (R,min,1). For M 2 {SUM,MIN,MAX}

(count uses SUM), we define a corresponding monoid MI using range-annotated

expression semantics (Sec. 5.1). Note that this gives us aggregation functions which

can be applied to range-annotated values and are bound preserving, i.e., the result

of the aggregation function bounds all possible results for any set of values bound by

the inputs. For example, min is expressed as min(v, w) := if v  w then v elsew.

Lemma 9. SUMI , MINI , MAXI are monoids.

Proof: Addition in DI is applied point-wise. Thus, addition in DI is commutative

and associative and has neutral element [0/0/0]. Thus, SUMI is a monoid. For MINI

if we substitute the definition of if v  w then v elsew and v  w, if simplifying the

resulting expression we get

min([a1/a2/a3], [b1/b2/b3])

=[min(a1, b1)/min(a2, b2)/min(a3, b3)]

That is, the operation is again applied pointwise and commutativity, associativity,
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k ⇤M (m1 +M m2) = k ⇤K m1 +M k ⇤K m2 (5.10)

(k1 +K k2) ⇤M m = k1 ⇤K m+M k2 ⇤K m (5.11)

1K ⇤M m = m (5.12)

0K ⇤M m = 0M (5.13)

k ⇤M 0M = 0M (5.14)

(k1 ·K k2) ⇤M m = k1 ⇤M (k2 ⇤M m) (5.15)

Figure 5.1. Semimodule laws (semiring K paired with monoid M)

and identity of the neutral element ([1/1/1]) follow from the fact that MIN is a

monoid. The proof for max is symmetric.

Based on Lem. 9, aggregation functions over range-annotated values preserve

bounds.

Corollary 2 (Aggregation Functions Preserve Bounds). Let S = {c1, . . . , cn} ✓ DI

be a set of range-annotated values and S = {d1, . . . dn} ✓ D be a set of values such

that ci bounds di, and MI 2 {SUMI ,MAXI ,MINI}, then using the addition operation

of MI (M) we have that
P

S bounds
P

S.

Proof: The corollary follows immediately from Thm. 8 and Lem. 9.

Semimodules: One challenge of supporting aggregation over K-relations is that the

annotations of tuples have to be factored into the aggregation computation. For

instance, consider an N-relation R(A) with two tuples (30) 7! 2 and (40) 7! 3, i.e.,

there are two duplicates of tuple (30) and 3 duplicates of tuple (40). Computing the

sum over A we expect to get 30 · 2 + 40 · 3 = 180. More generally speaking, we need

an operation ⇤M : N ⇥M ! M that combines semiring elements with values from

the aggregation function’s domain. As observed in [23] this operation has to be a
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semimodule, i.e., it has to fulfill a set of equational laws, all of which are shown for

N in Fig. 5.1. Note that in the example above we made use of the fact that ⇤N,SUM is

· to get 30 ⇤N 2 = 30 · 2 = 60. Operation ⇤ is not well-defined for all semirings, but it

is defined for N and all of the monoids we consider. We show the definition for ⇤N,M

for all considered monoids below:

k ⇤N,SUM m = k ·m

k ⇤N,MIN m = k ⇤MAX m =

8
>><

>>:

m if k 6= 0

0 else

The Tensor Construction: Amsterdamer et al [23]. demonstrated that there is no

meaningful way to define semimodules for all combinations of semirings and standard

aggregation function monoids. To be more precise, if aggregation function results are

concrete values from the aggregation monoid, then it is not possible to retain the

important property that queries commute with homomorphisms. Intuitively, that

is the case because applying a homomorphism to the input may change the aggre-

gation function result. Hence, it is necessary to delay the computation of concrete

aggregation results by keeping the computation symbolic. For instance, consider an

N[X]-relation R(A) (provenance polynomials) with a single tuple (30) 7! x1. If we

compute the sum over A, then under a homomorphism h1 : x1 ! 1 we get a result of

30 · 1 = 30 while under a homomorphism h2 : x1 ! 2 we get 30 · 2 = 60. The solution

presented in [23] uses monoids whose elements are symbolic expressions that pair

semiring values with monoid elements. Such monoids are compatible with a larger

class of semirings including, e.g., the provenance polynomial semiring. Given a semi-

ring K and aggregation monoid M , the symbolic commutative monoid has as domain

bags of elements from K ⇥M with bag union as addition (denoted as +K⌦M) and

the emptyset as neutral element. This structure is then extended to a K-semimodule

K ⌦M by defining k ⇤K⌦M
P

ki ⌦ mi :=
P

(k ·K ki) ⌦ mi and taking the quotient
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(the structure whose elements are equivalent classes) wrt. the semimodule laws. For

some semirings, e.g., N and B, the symbolic expressions from K ⌦M correspond to

concrete aggregation result values from M .8 However, this is not the case for ev-

ery semiring and aggregation monoid. For instance, for most provenance semirings

these expressions cannot be reduced to concrete values. Only by applying homo-

morphisms to semirings for which this construction is isomorphic to the aggregation

monoid is it possible to map such symbolic expressions back to concrete values. For

instance, computing the sum over the N[X]-relation R(A) with tuples (30) 7! x1 and

(20) 7! x2 yields the symbolic expression 30⌦x1+N[X]⌦SUM 20⌦x2. If the input tuple

annotated with x1 occurs with multiplicity 2 and the input tuple annotated with x2

occurs with multiplicity 4 then this can be expressed by applying a homomorphism

h : N[X] ! N defined as h(x1) = 2 and h(x2) = 4. Applying this homomorphism to

the symbolic aggregation expression 30 ⌦ x1 +N[X]⌦SUM 20⌦ x2, we get the expected

result 30 · 2 + 20 · 4 = 140. If we want to support aggregation for KAU -relations with

this level of generality then we would have to generalize range-annotated values to

be symbolic expressions from K⌦M and would have to investigate how to define an

order over such values to be able to use them as bounds in range-annotated values.

For instance, intuitively we may bound (x1 + x2) ⌦ 3 +N[X]⌦SUM x3 ⌦ 2 from below

using x1 ⌦ 3 +N[X]⌦SUM x3 ⌦ 1 since x1 �N[X] x1 + x2 and 2 < 3. Then we would have

to show that aggregation computations preserve such bounds to show that queries

with aggregation with this semantics preserve bounds. We trade generality for sim-

plicity by limiting the discussion to semirings where K ⌦ M is isomorphic to M .

This still covers the important cases of bag semantics and set semantics (N and B),

but has the advantage that we are not burdening the user with interpreting bounds

that are complex symbolic expressions. For instance, consider an aggregation without

group-by over a relation with millions of rows. The resulting bound expressions for

8That is the case when M and K ⌦M are isomorphic.
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the aggregation result value may contain millions of terms which would render them

completely useless for human consumption. Additionally, while query evaluation is

still PTIME when using K⌦M , certain operations like joins on aggregation results are

ine�cient.9

5.5.2 Applying Semimodules to NAU -Relations. As we will demonstrate

in the following, even though it may be possible to define KAU -semimodules, such

semimodules cannot be bound preserving and, thus, would be useless for our purpose.

We then demonstrate that it is possible to define bound preserving operations that

combine NAU elements with DI elements and that this is su�cient for defining a

bound preserving semantics for aggregation.

Lemma 10 (Bound preserving NAU -semimodules are impossible). The semimodule

for NAU and SUM, if it exists, cannot be bound preserving.

Proof: For sake of contadiction assume that this semimodule exists and is bound

preserving. Consider k = (1, 1, 2) and m = [0/0/0]. Then by semimodule law 5.14 we

have k ~SUM m = m = [0/0/0]. Now observe that for m1 = [�1/�1/�1] and m2 =

[1/1/1] we have m = m1 +m2. Let m01 = k~SUM m1. We know that m01 = [l1/�1/u1]

for some l1 and u1. Since the semimodule is assumed to be bound preserving we

know that l1  �2 and u1 � �1 (�1 · 2 = �2 and �1 · 1 = �1). Analog, let

m02 = [l2/1/u2] = k ~SUM m2. By the same argument we get l2  1 and u2 � 2.

Applying semimodule law 5.10 we get k ~SUM m = k ~SUM (m1 +m2) = m01 +m02 =

[l1 + l2/0/u1 + u2]. Let l0 = l1 + l2, u0 = u1 + u2 and m00 = [l0/0/u0]. Based on the

inequalities constraining li and ui we know that l1 + l2  �1 and u1 + u2 � 1. Thus,

9Comparing symbolic expressions requires an extension of annotations to treat
these comparisons symbolically. The reason is that since an aggregation result cannot
be mapped to a concrete value, it is also not possible to determine whether such a
values are equal. The net result is that joins on such values may degenerate to cross
products.
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we have the contradiction k ~SUM m = [0/0/0] 6= [l0/0/u0] = k ~SUM m.

In spite of this negative result, not everything is lost. Observe that it not

necessary for the operation that combines semiring elements (tuple annotations) with

elements of the aggregation monoid to follow semimodule laws. After all, what we care

about is that the operation is bound-preserving. Below we define operations ~M that

are not semimodules, but are bound-preserving. To achieve bound-preservation we

can rely on the bound-preserving expression semantics we have defined in Sec. 5.1. For

example, since ⇤N,SUM is multiplication, we can define ⇤NAU ,SUM using our definition

of multiplication for range-annotated expression evaluation. It turns out that this

approach of computing the bounds as the minimum and maximum over all pair-wise

combinations of value and tuple-annotation bounds also works for MIN and MAX:

Definition 29. Consider an aggregation monoid M such that ⇤N,M is well defined.

Let (m#,m,m") be a range-annotated value from DI and (k#, k, k") 2 NAU . We define

~M as shown below.

(k#, k, k")~M [m#/m/m"] =

(min(k# ⇤N,M m#, k# ⇤N,M m", k" ⇤N,M m#, k" ⇤N,M m"),

k ⇤N,M m,

max(k# ⇤N,M m#, k# ⇤N,M m", k" ⇤N,M m#, k" ⇤N,M m"))

As the following theorem demonstrates ⇤NAU ,M is in fact bound preserving.

Theorem 12. Let M 2 {MIN,MAX} and K 2 {B,N} or M = SUM and K = N.

Then ~M preserves bounds.

Proof: We first prove the theorem for N. We have to show for allM 2 {MIN,MAX, SUM}

that for any ~k = (k#, ksg, k") 2 NAU and ~m = [m#/msg/m"] 2 DI we have that ~k~M ~m
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bounds k ⇤N,M m for any k bound by ~k and m bound by ~m. We prove the theorem

for each M 2 {MIN,MAX, SUM}.

M = SUM: We have k ⇤N,SUM m := k ·m. We distinguish four cases:

m# < 0, m" < 0: We have that k" · m# = min(k# · m#, k# · m", k" · m#, k" · m") and

k# ·m" = max(k# ·m#, k# ·m", k" ·m#, k" ·m"). Thus,

~k ~M ~m = [k" ·m#/ksg
·msg/k# ·m"]

Now for any k bound by ~k and m bound by ~m we have: k" ·m#  k ·m because m

is a negative number and k  k". Analog, k ·m  k# ·m", because m is negative and

m" � m and k#  k. Thus, ~k ~M ~m bounds k ⇤N,M m.

m# � 0, m" � 0: We have that k# · m# = min(k# · m#, k# · m", k" · m#, k" · m") and

k" ·m" = max(k# ·m#, k# ·m", k" ·m#, k" ·m"). Thus,

~k ~M ~m = [k# ·m#/ksg
·msg/k" ·m"]

Now for any k bound by ~k and m bound by ~m we have: k" ·m#  k ·m because m

is a positive number and k � k#. Analog, k ·m  k" ·m", because m is negative and

m" � m and k" � k. Thus, ~k ~M ~m bounds k ⇤N,M m.

m# < 0, m" � 0: We have that k" · m# = min(k# · m#, k# · m", k" · m#, k" · m") and

k" ·m" = max(k# ·m#, k# ·m", k" ·m#, k" ·m"). Thus,

~k ~M ~m = [k" ·m#/ksg
·msg/k" ·m"]

Now consider some k bound by ~k and m bound by ~m. If m is positive, then

trivially k# ·m# bounds k ·m from below since m# is negative. Otherwise, the lower

bound holds using the argument for the case of m# < 0, m" < 0. If m is negative,

then trivally k" · m" bounds k · m from above since m" is positive. Otherwise, the
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upper bound holds using the argument for the case of m# � 0, m" � 0. Thus, ~k~M ~m

bounds k ⇤N,M m.

M = MIN: We have

k ⇤N,MIN m :=

8
>><

>>:

0 if k = 0

m otherwise

We distinguish three cases.

k# � 0: If k# � 0, then k ⇤N,MINm returns m and ~k~MIN ~m returns ~m. Since ~m bounds

m also ~k ~MIN ~m bounds k ⇤N,MIN m.

k# = 0, k" � 0: Now consider the remaining case: k# = 0. Then the result of ~k~MIN ~m

simplifies to [min(0,m#)/ksg
·msg/max(0,m")]. Now consider some k bound by ~k and

m bound by ~m. If k 6= 0 then k ⇤N,MIN m = m and the claim to be proven holds.

Otherwise, k ⇤N,MIN m = 0 which is bound by [min(0,m#)/ksg
·msg/max(0,m")].

k# = 0, k" = 0: In this case ~k ~MIN ~m = [0/0/0] and since k = 0 because ~k bounds k

we have k ⇤N,MIN m = 0 which is trivally bound by [0/0/0].

M = MAX: We have

k ⇤N,MAX m :=

8
>><

>>:

0 if k = 0

m otherwise

The proof for MAX is analog to the proof for MIN.

For semiring B and M = MIN or M = MAX observe that k ⇤B,M m is the

identity for m if k 6= 0B and k ⇤B,M m = 0 otherwise. Thus, the proof is analog to the

proof for semiring N.

5.5.3 Bound-Preserving Aggregation. We now define a bound preserving

aggregation semantics based on the ~M operations. As mentioned above, the main
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challenge we have to overcome is to deal with the uncertainty of group memberships

plus the resulting uncertainty in the number of groups and of which inputs contribute

to a group’s aggregation function result values. In general, the number of possible

groups encoded by an input AU-DB-relation may be very large. Thus, enumerating

all concrete groups is not a viable option. While AU-DBs can be used to encode

an arbitrary number of groups as a single tuple, we need to decide how to trade

conciseness of the representation for accuracy. Furthermore, we need to ensure that

the aggregation result in the SGW is encoded by the result. There are many possible

strategies for how to group possible aggregation results. We, thus, formalize grouping

strategies and define a semantics for aggregation that preserves bounds for any such

grouping semantics. Additionally, we present a reaonsable default strategy. We define

our aggregation semantics in three steps: (i) we introduce grouping strategies and our

default grouping strategy that matches SG and possible input groups to output tuples

(each output tuple will represent exactly one group in the SGW and one or more

possible groups); (ii) we calculate group-by attribute ranges for output tuples based

on the assignment of input tuples to output tuples; (iii) we calculate the multiplicities

(annotations) and bounds for aggregation function results for each output tuple.

5.5.4 Grouping Strategies. A grouping strategy G is a function that takes

as input an n-ary KAU -relation R and list of group-by attributes G and returns a

triple (G, ,↵) where G is a set of output groups,  is a function associating each

input tuple t from R where R(t)sg 6= 0K with an output from G, and ↵ is a function

associating each input tuple t from R where R(t) 6= 0KAU
with an output from G.

Note that the elements of G are just unique identifiers for output tuples. The actual

range-annotated output tuples returned by an aggregation operator are not returned

by the grouping strategy directly but are constructed by our aggregation semantics

based on the information returned by a grouping strategy. Intuitively,  takes care

of the association of groups in the SGW with an output while ↵ does the same for



99

all possible groups. For G to be a grouping strategy we require that for any input

relation R and list of group-by attributes G we have:

8t, t0 2 DI
n : R(t) 6= 0KAU

^R(t0) 6= 0KAU
^ t.Gsg = t0.Gsg

!  (t) =  (t0)

This condition ensures that for every tuple that exists in the SGW, all inputs that

exists in the SGW and belong this group are associated with a single output. Our

aggregation semantics relies on this property to produce the correct result in the

SGW. We use function ↵ to ensure that every possible group is accounted for by the

KAU -relation returned as the result of aggregation. Inuitively, every range-annotated

input tuple may correspond to several possible groups based on the range annotations

of its group-by attribute values. Our aggregation semantics ensures that an output

tuple’s group-by ranges bound the group-by attribute ranges of every input associated

to it by ↵.

5.5.5 Default Grouping Strategy. Our default grouping strategy takes as input

a n-ary NAU -relation R and list of group-by attributes G and returns a pair (G,↵)

where G is a set of output tuples — one for every SG group, i.e., an input tuple’s

group-by values in the SGW. ↵ assigns each input tuple to one output tuple based

on its SG group-by values. Note that even if the SG annotation of an input tuple is

0, we still use its SG values to assign it to an output tuple. Only tuples that are not

possible (annotated with 0NAU
= (0, 0, 0)) are not considered. Since output tuples are

identified by their SG group-by values, we will use these values to identify elements

from G.

Definition 30 (Default Grouping Strategy). Consider a query Q := �G,f(A)(R). Let

t 2 DI
n such that R(t) 6= 0NAU

and t0 2 DI
n such that R(t0)sg 6= 0. The default
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grouping strategy Gdef := (G,↵) is defined as shown below.

G := {t.G | 9t : tsg = t ^R(t) 6= 0NAU
} ↵(t) := t.Gsg

For instance, consider three tuples t1 := ([1/2/2]) and t2 := ([2/2/4]) and

t3 := ([2/3/4]) over schema $ (A). Furthermore, assume that R(t1) = (1, 1, 1),

t(t2) = (0, 0, 1), and t(t3) = (0, 0, 3). Grouping on A, the default strategy will

generate two output groups g1 for SG group (2) and g2 for SG group (3). Based on

their SG group-by values, the possible grouping function ↵ assigns t1 and t2 to g1

and t3 to g2.

5.5.6 Aggregation Semantics. We now introduce an aggregation semantics

based on this grouping strategy. For simplicity we define aggregation without group-

by as a special case of aggregation with group-by (the only di↵erence is how tuple

annotations are handled). We first define how to construct a result tuple tg for each

output group g returned by the grouping strategy and then present how to calculate

tuple annotations. The construction of an output tuple is divided into two steps:

(i) determine range annotations for the group-by attributes and (ii) determine range

annotations for the aggregation function result attributes.

Group-by Bounds: To ensure that all possible groups an input tuple t with ↵(t) =

tg belongs to are contained in tg.G we have to merge the group-by attribute bounds

of all of these tuples. Furthermore, we set tg.Gsg = tg, i.e., we use the unique SG

group-by values of all input tuples assigned to tg (i.e., tg.Gsg = g) as the output’s SG

group-by value.

Definition 31 (Range-bounded Groups). Consider a result group g 2 G(G,R) for

an aggregation with group-by attributes G over a NAU -relation R. The bounds for

the group-by attributes values of tg are defined as shown below. Let g be the unique
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element from the set {t.Gsg
| R(t)sg 6= 0 ^ ↵(t) = tg}. For all a 2 G we define:

tg.a
# = min

t:↵(t)=tg
t.a# tg.a

sg = g.a tg.a
" = max

t:↵(t)=tg
t.a"

Note that in the definition above, min and max are the minimum and max-

imum wrt. to the order over the data domain D which we used to define range-

annotated values. Reconsider the three example tuples and two result groups from

above. The group-by range annotation for output tuple tg1 is [min(1, 2)/2/max 2, 4] =

[1/2/4]. Observe that [1/2/4] bounds any group t1 and t2 may belong to in some pos-

sible world.

Aggregation Function Bounds: To calculate bounds on the result of an aggre-

gation function for one group, we have to reason about the minimum and maximum

possible aggregation function result based on the bounds of aggregation function input

values, their row annotations, and their possible and guaranteed group memberships

(even when a value of the aggregation function input attribute is certain the group

membership of the tuple it belongs too may be uncertain). To calculate a conservative

lower bound of the aggregation function result for an output tuple tg, we use ~M to

pair the aggregation function value of each tuple t with ↵(t) = g) with the tuple’s an-

notation and then extract the lower bound from the resulting range-annotated value.

For some tuples their group membership is uncertain because either their group-by

values are uncertain or they may not exist in all possible worlds (their certain multi-

plicity is 0). We take this into account by taking the minimum of the neutral element

of the aggregation monoid and the result of ~M for such tuples. Towards this goal

we introduce a predicate ug(G,R, t) that is defined as shown below.

ug(G,R, t) := (9a 2 G : t.a# 6= t.a") _R(t)# = 0

We then sum up the resulting values in the aggregation monoid. Note that here

summation is assumed to use addition in M . The upper bound calculation is analog
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(using the upper bound and maximum instead). The SG result is calculated using

standard K-relational semantics. In the definition we will use t u t0 to denote that

the range annotations of tuples t and t0 with the same schema (A1, . . . , An) overlap

on each attribute Ai, i.e.,

t u t0 :=
^

i2{1,...,n}

[t.Ai
#, t.Ai

"] \ [t0.Ai
#, t0.Ai

"] 6= ;

Definition 32 (Aggregation Function Result Bounds). Consider an output g 2 G,

input R, group-by attributes G, and aggregation function f(A) with monoid M . We

use g(g) to denote the set of input tuples whose group-by attribute bounds overlap

with tg.G, i.e., they may be belong to a group represented by tg:

g(g) := {t | R(t) 6= 0NAU
^ t.G u tg.G}

The bounds on the aggregation function result for tuple tg are defined as:

tg.f(A)
# =

X

t2g(g)

lbagg(t)

lbagg(t) =

8
>><

>>:

min(0M , (R(t)~M t.A)#) if ug(G,R, t)

(R(t)~M t.A)# otherwise

tg.f(A)
sg =

X

t2g(g)

(R(t)~M t.A)sg

tg.f(A)
" =

X

t2g(g)

ubagg(t)

ubagg(t) =

8
>><

>>:

max(0M , (R(t)~M t.A)") if ug(G,R, t)

(R(t)~M t.A)" otherwise

Example 18. For instance, consider calculating the sum of A grouping on B for

a relation R(A,B) which consists of two tuples t3 := ([3/5/10], [3/3/3]) and t4 :=

([�4/�3/�3], [2/3/4]) which are both annotated with (1, 2, 2) (appear certainly once

and may appear twice). Consider calculating the aggregation function result bounds
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for the result tuple tg for the output group g which corresponds to SG group g := (3).

The lower bound on sum(A) is calculated as shown below:

X

t2g(g)

lbagg(t)

=((1, 2, 2) · [3/5/10])# +min(0, ((1, 2, 2) · [�4/�3/�3])#)

=[3/10/20]# +min(0, [�8/�6/�3]#)

=3 +min(0,�8) = �5

The aggregation result is guaranteed to be greater than or equal to �5 since t3 certainly

belongs to g (no minimum operation), because its group-by attribute value [3/3/3] is

certain and the tuple certainly exists ((1, 2, 1)# > 0). This tuple contributes 3 to the

sum and t4 contributions at least �8. While it is possible that t4 does not belong to g

this can only increase the final result (3 + 0 > 3 +�8).

Aggregation Without Group-by: Having defined how each output tuple of ag-

gregation is constructed we still need to calculate the row annotation for each result

tuple. For aggregation without group-by there will be exactly one result tuple inde-

pendent of what the input is. In this case there exists a single possible SG output

group (the empty tuple () ) and all input tuples are assigned to it through ↵. Let t()

denote this single output tuple. Recalling that all remaining tuples have multiplicity

0, we define:

Definition 33 (Aggregation Without Group-By). Consider a query Q := �f(A)(R).

Let Gdef (;,R) = (G,↵), and t be a range-annotated tuple with the same schema as

Q and g denote the single output group in G. Then

�f(A)(R)(t)# = �f(A)(R)(t)sg = �f(A)(R)(t)" :=

8
>><

>>:

1 if t = t()

0 otherwise
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Aggregation With Group-by: For aggregation with group-by in order to calculate

the upper bound on the possible multiplicity for a result tuple of a group-by aggre-

gation, we have to determine the maximum number of distinct groups each output

tuple could correspond to. We compute the bound for an output tg based on G mak-

ing the worst-case assumption that (i) each input tuple t from G(g) occurs with the

maximal multiplicity possible (R(t)") and that each tuple t encoded by t belongs to

a separate group and (ii) that the sets of groups produced from two inputs t and t0

do not overlap. We can improve this bound by partitioning the input into two sets:

tuples with uncertain group-by attribute values and tuple’s whose group membership

is certain. For the latter we can compute the maximum number of groups for an

output tg by simplying counting the number of groups using SG values for each input

tuple that overlaps with the group-by bounds of tg. For the first set we still apply

the worst-case assumption. To determine the lower bound on the certain annotation

of a tuple we have to reason about which input tuples certainly belong to a group.

These are inputs whose group-by attributes are certain. For such tuples we sum up

their tuple annotation lower bounds. We then need to derive the annotation of a

result tuple from the annotations of the relevant input tuples. For this purpose, [23]

did extend semirings with a duplicate elimination operator �N defined as �N(k) = 0 if

k = 0 and �N(k) = 1 otherwise.

Definition 34 (Aggregation With Group-By). Consider a query Q := �G,f(A)(R).

Let Gdef (R, G) = (G,↵). Consider a tuple t such that 9g 2 G with t = tg. Then,
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�G,f(A)(R)(t)# := �N

0

@
X

t0:↵(t0)=g^¬ug(G,R,t0)

R(t0)#

1

A

�G,f(A)(R)(t)sg := �N

0

@
X

t0:↵(t0)=g

R(t0)sg

1

A

�G,f(A)(R)(t)" :=
X

t0:↵(t0)=g

R(t0)"

For any tuple t such that ¬9g 2 G with t = tg, we define

�G,f(A)(R)(t)# = �G,f(A)(R)(t)sg = �G,f(A)(R)(t)" = 0

The following example illustrates the application of the aggregation semantics

we have defined in this section.

Example 19 (Aggregation). Consider the relation shown in Fig. 5.2 which records

addresses (street, street number, number of inhabitants). For the street attribute, in-

stead of showing range annotations we mark values in red to indicate that their bound

encompass as the whole domain of the street attribute. Street values v in black are

certain, i.e., v# = vsg = v". In this example, we are uncertain about particular street

numbers and the number of inhabitants at certain addresses. Furthermore, several

tuples may represent more than one address. Finally, we are uncertain about the

street for the address represented by the second tuple. Consider the aggregation query

without group-by shown in Fig. 5.2b. We are calculating the number of inhabitants.

In the SGW there are 7 inhabitants (1 · 1+2 · 1+2 · 2). As another example consider,

the query shown in Fig. 5.2c. Consider the second result tuple (group State). This

tuple certainly exists since the 3rd tuple in the input appears twice in every possible

world and its group-by value is certain. Thus, the count for group State is at least

two. Possibly, the second input tuple could also belong to this group and, thus, the

count could be 3 (the upper bound on the aggregation result).
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street number #inhab NAU

Canal [165/165/165] [1/1/1] (1,1,2)

Canal [154/153/156] [1/2/2] (1,1,1)

State [623/623/629] [2/2/2] (2,2,3)

Monroe [3574/3550/3585] [2/3/4] (0,0,1)

(a) Input Relation address

SELECT sum(# inhab) AS pop FROM address;

pop NAU

[6/7/14] (1,1,1)

(b) Aggregation without

Group-by

SELECT street , count (*) AS cnt

FROM address GROUP BY street;

street cnt NAU

Canal [1/2/3] (1,1,2)

State [2/2/4] (1,1,1)

Monroe [1/1/2] (0,0,1)

(c) Aggregation with Group-by

Figure 5.2. Aggregation over AU-DBs
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5.5.7 Preservation of bounds. We now demonstrate that our aggregation

semantics for AU-DBs is bound-preserving. In the proof of this fact, we will make

use of two auxiliary lemmas.

Lemma 11. For M 2 {SUM,MIN,MAX} we have for all k1, k2 2 NAU and m 2M3:

(k1 +NAU
k2)~M m = k1 ~M m+MI

k2 ~M m

Proof: Consider k = k1 + k2 and m 2 DI . Recall the definition of ~M :

k ~M m# = min(k# ⇤M m#, k# ⇤M m",

k" ⇤M m#, k" ⇤M m")

k ~M m" = max(k# ⇤M m#, k# ⇤M m",

k" ⇤M m#, k" ⇤M m")

MIN: Consider k ~MIN m#. ⇤MIN is the identify on D except for k = 0. Furthermore,

0MIN =1 and +MIN = min. We distinguish three cases: k# = k" = 0, k# = 0^ k" > 0

and k# > 0.

If k# = k" = 0, then (k ~MIN m)# = (k1 ~M m)#+MIN(k2 ~M m)# = (k ~MIN m)" =

(k1 ~M m)" +MIN (k2 ~M m)" = 0MIN.

If k# = 0 ^ k" > 0, then

(k ~MIN m)# = min(k# ⇤MIN m#, k# ⇤MIN m",

k" ⇤MIN m#, k" ⇤MIN m")

= k" ⇤MIN m#

= (k1 + k2)
"
⇤MIN m#

= m#
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Since k" > 0, at least one of k1" and k2" is larger than 0. WLOG k1" > 0, then

(k1 ⇤MIN m)# = m#. (k2 ⇤MIN m)# is either m# or 0MIN. Since min is idempotent, in

either case we get:

= (k1 ~M m)" +MIN (k2 ~M m)"

(k ~MIN m)" = max(k# ⇤MIN m#, k# ⇤MIN m",

k" ⇤MIN m#, k" ⇤MIN m")

= k# ⇤MIN m"

= (k1 + k2)
#
⇤MIN m"

= (k1
#
⇤MIN m") +MIN (k2

#
⇤MIN m")

= (k1 ~M m)" +MIN (k2 ~M m)"

If k# > 0, then

(k ~MIN m)# = min(k# ⇤MIN m#, k# ⇤MIN m",

k" ⇤MIN m#, k" ⇤MIN m")

= k# ⇤MIN m#

= (k1 + k2)
#
⇤MIN m#

= m#

Since k# > 0, at least one of k1# and k2# is larger than 0. WLOG k1# > 0, then
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(k1 ⇤MIN m)# = m#. Applying the same argument as above, we get:

= (k1 ~M m)# +MIN (k2 ~M m)#

(k ~MIN m)" = max(k# ⇤MIN m#, k# ⇤MIN m",

k" ⇤MIN m#, k" ⇤MIN m")

= k" ⇤MIN m"

= (k1 + k2)
"
⇤MIN m"

Since k" > 0, at least one of k1" and k2" is larger than 0. WLOG k1" > 0, then

(k1 ⇤MIN m)" = m". Applying the same argument as above, we get:

= (k1 ~M m)" +MIN (k2 ~M m)"

MAX: The proof is analog to the proof for MIN.

SUM: Consider k ~SUM m#. We first address that case m# < 0.

(k ~SUM m)# = min(k# ·m#, k# ·m", k" ·m#, k" ·m")

Since m# < 0:

=k" ·m#

=(k1 + k2)
"
·m#

=(k1
" + k2

") ·m#

=(k1
"
·m#) + (k2

"
·m#)

=(k1 ~SUM m)# +SUM (k2 ~SUM m)#
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Now consider the case m# > 0.

(k ~SUM m)#

=k# ·m#

=(k1 + k2)
#
·m#

=(k1
#
·m#) + (k2

#
·m#)

=(k1 ~SUM m)# +SUM (k2 ~SUM m)#

We now prove that k ~SUM m" = (k1 ~SUM m)" +SUM (k2 ~SUM m)".

(k ~SUM m)" = max(k# ·m#, k# ·m", k" ·m#, k" ·m")

First consider m" < 0.

(k ~SUM m)"

=k# ·m"

=(k1 + k2)
#
·m"

=(k1
#
·m") + (k2

#
·m")

=(k1 ~SUM m)" +SUM (k2 ~SUM m)"

Now consider m" � 0.

(k ~SUM m)"

=k" ·m"

=(k1 + k2)
"
·m"

=(k1
"
·m") + (k2

"
·m")

=(k1 ~SUM m)" +SUM (k2 ~SUM m)"

In addition we will prove that for M 2 {SUM,MIN,MAX} and for all m1,m2

,m3,m4 2 M such that m1  m2 and m3  m4 (here < is the order of D), we have
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m1 +M m2  m3 +M m4. This is implies as a special case m +M m0  m +M 0M for

m,m0 2M and m0  0M .

Lemma 12. Let M 2 {SUM,MIN,MAX}. 8m1,m2,m3,m4 2M :

m1  m2 ^m3  m4 ) m1 +M m2  m3 +M m4

Proof: MIN: WLOG assume that m1  m2 and m3  m4 (the other cases are

analog).

min(m1,m2) = m1  m3 = min(m3,m4)

SUM: Since addition preserves inequalities, we get

m1 +SUM m2 = m1 +m2  m3 +m4 = m3 +SUM m4

MAX: WLOG assume that m1  m2 and m3  m4 (the other cases are analog).

max(m1,m2) = m2  m4 = max(m3,m4)

Having proven this lemma, we are ready to proof that aggregation preserves

bounds.

Theorem 13. Let Q := �G,f(A)(R) or Q := �f(A)(R) and R be an incomplete K-

relation that is bound by an KAU -relation R. Then Q(R) bounds Q(R).

Proof: We first consider the case of aggregation with group-by, i.e., Q := �G,f(A)(R).

Let tg be the output tuple corresponding to g 2 G. Abusing notation, we will under-

stand ↵(t) = tg to mean ↵(t) = g. Consider one possible world R 2 R and let T MR

be a tuple matching based on which R bounds R. We will prove the existence of a

tuple matching T MQ between Q(R) and Q(R) and demonstrate that Q(R) bounds

Q(R) based on this tuple matching. For that we first prove that for each result tuple
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t 2 Q(D) the set St = {t | t v t ^ Q(R)(t) 6= 0NAU
} is non-empty. Intuitively, the

set St contains potential candidates for which we can set T MQ(t, t) to a non-zero

value, because only tuples that bound t can be associated with t in a tuple matching.

Because, for T MQ to be a tuple matching we have to assign that annotation Q(R)(t)

to a set of tuples such that
P

t T MQ(t, t) = Q(R)(t). Note that since each aggrega-

tion result in Q(R) is annotated with 1, this boils down to assigning t to exactly one

t 2 St.

Afterwards, we show that for each t 2 Q(R) it is possible to set T MQ(t, t) for

all t 2 Q(D) for which t v t such that (1) Q(R)(t)# �N
P

t:tvt Q(D)(t) �N Q(R)(t)"

and (2) for all t 2 Q(D) we have
P

t:tvt T MQ(t, t) = Q(D)(t). The consequence of

these two steps and Ex. 16 is that Q(R) bounds Q(R) based on T MQ.

We will make use of the following notation. Let G = {t.G | R(t) 6= 0}, i.e., the

set of groups in the possible world R. For a group g 2 G, we define

Tg = {t | t.G = g ^R(t) 6= 0}

Sg = {t | 9t : R(t) 6= 0 ^ t.G = g ^ T MR(t, t) 6= 0}

Og = {t | t 2 Q(R) ^ 9t0 2 Sg : ↵(t
0) = t}

Furthermore, for any o 2 Og, we define

No = {t | ↵(t) = o ^ t 62 Sg}

Consider a group g 2 G and let tg denote the result tuple in Q(R) correspond-

ing to g. There is at least on t 2 Tg, otherwise g would not be in G. Consider an

arbitrary o 2 Og. At least one such o exists since T M(t, t) 6= 0 for one or more t

with R(t) 6= 0NAU
and t has to be associated with at least one output o by ↵. Let

So = {t | t 2 Sg ^ ↵(t) = o}. We will show that tg v o.
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tg.G v o.G: For all t 2 So we know that g v t.G because for t to be in Sg it has to

be the case there exists t with t.G = g such that T M$(t, t) 6= 0. This implies t v t

which in turn implies g = t.G v t. Since ↵(t) = o and since by Def. 31 the range

annotations of o.G are defined as the union of the range annotations of all t 2 So

(and any other t with ↵(t)). Thus, g v o.G.

tg.f(A) v o.f(A): Based on the definition of aggregation over N-relation, we have:

tg.f(A) =
X

t2Tg

R(t) ⇤M t.A (5.16)

Let fg = tg.f(A). Note that based on Def. 32, o.f(A) is calculated over all tuples

from Sg and No. Observe that if t 2 No then either ug(G,R, t) or R(t)# = 0. To

see why this has to be the case consider that if t.G is certain and t exists in every

possible world (R(t)# > 0 then for T MR to be a tuple matching based on which R

bounds R there has to exist some t 2 Tg for which T MR(t, t) 6= 0 which would lead

to the contradiction t 2 Sg. Define

Suncertain

g
= {t | t 2 Sg ^ ug(G,R, t)}

Scertain

g
= Sg � Suncertain

g

We have to show that o.f(A)#  fg  o.f(A)".

o.f(A)#  fg: Substituting Def. 32 we get for o.f(A)#:
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o.f(A)# =
X

t2Scertain
g

(R(t)~M t.A)#

+M

X

t2Suncertain
g

min((R(t)~M t.A)#, 0M)

+M

X

t2Ng

min((R(t)~M t.A)#, 0M) (5.17)

Using Lem. 12, we know that

X

t2Ng

min((R(t)~M t.A)#, 0M) 
X

t2Ng

0M = 0M

Thus, we can bound Equation (5.17) from above:



X

t2Scertain
g

(R(t)~M t.A)#

+M

X

t2Suncertain
g

min((R(t)~M t.A)#, 0M) (5.18)

We next will relate Equation (5.18) to fg through T MR. Towards this goal

for any t 2 Sg we define Tt = {t | T MR(t, t) > 0}. We know that for any t 2 Sg,

we have R(t)# 
P

t2Tt
T MR(t, t)R(t)" because T MR is a tuple matching based on

which R bounds R. Consider the sum in Equation (5.18) which ranges over Scertain

g

first. Since R(t)# 
P

t2Tt
T MR(t, t)  R(t)", based on Thm. 12 we have that

(
P

t2Tt
T MR(t, t)) ⇤M t.A# is bound from below by (R(t)~M t.A)#. Thus,
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X

t2Scertain
g

(R(t)~M t.A)#



X

t2Scertain
g

 
X

t:t2Tt

T MR(t, t)

!
⇤M t.A# (5.19)

Note that for any t 2 Scertain

g
, t 62 Tg ) t 6v t since t.G is certain.

=
X

t2Scertain
g

0

@
X

t2Tg

T MR(t, t)

1

A ⇤M t.A#

For any semimodule and thus also every N-semimodule the law (k1 + k2)~M

m = k1 ⇤M m+M k2 ⇤M m holds. Applying this law we can factor out the inner sum:

=
X

t2Scertain
g

X

t2Tg

T MR(t, t) ⇤M t.A#

Using commutativity and associativity of +M , we commute the two sums:

=
X

t2Tg

X

t2Scertain
g

T MR(t, t) ⇤M t.A#

Since, t v t for any t 2 Tt, we have t.A < t.A from which follows that:

<
X

t2Tg

X

t2Scertain
g

T MR(t, t) ⇤M t.A

To recap so far we have shown that
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X

t2Scertain
g

(R(t)~M t.A)#

<
X

t2Tg

X

t2Scertain
g

T MR(t, t) ⇤M t.A (5.20)

Next we will bound the second sum from Equation (5.18) which ranges over

Suncertain

g
in a similar fashion and then show that fg is lower bound by the sum of

these bounds. For t 2 Suncertain

g
since t.G is uncertain, some t 2 Tt may belong to a

group g0 6= g. We will have to treat this case di↵erently in the following. For that

we define T+
t = {t | t 2 Tt ^ t.G = g} and T�t = {t | t 2 Tt ^ t.G 6= g}. Let

k+
t =

P
t2T+

t
T MR(t, t) and k�t =

P
t2T�

t
T MR(t, t). Using the same argument as

for Equation (5.19), we get:

X

t2Suncertain
g

min((R(t)~M t.A)#, 0M)



X

t2Suncertain
g

min
��
k+
t + k�t

�
~M t.A#, 0M

�

We consider two cases: (i) R(t)#  k+
t  R(t)" and (ii) k+

t < R(t)#  R(t)".

For case (i) first consider that based on Lem. 12, we have



X

t2Suncertain
g

R(t)~M t.A#

From (i) follows that
P

t2Tt
T MR(t, t)⇤Mt# is bound from below byR(t)~M t.A#

for any t 2 Suncertain

g
. Applying the same steps as for Scertain

g
, we get:
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

X

t2Tg

X

t2Suncertain
g

T MR(t, t) ⇤M t.A (5.21)

Now we have to prove the same for (ii), i.e., when k+
t < R(t)#. Let minA =

min({t.A | t 2 T+
t }). We now prove for each M 2 {SUM,MIN,MAX} that under

assumption (ii) for any t 2 Suncertain

g
the following holds:

min((k+
t + k�t ) ⇤M t.A#, 0M)

k+
t ⇤M mina

=

0

@
X

t2T+
t

T MR(t, t)

1

A ⇤M mina (5.22)

SUM: Recall that ⇤SUM is multiplication and 0SUM = 0. We distinguish two cases:

mina  0 and mina > 0. If mina  0, since t.A#  mina, it follows that min((k+
t +

k�t ) ⇤SUM t.A#, 0M) = min((k+
t + k�t ) · t.A

#, 0) = (k+
t + k�t ) · t.A

# < k+
t · t.A# <

k+
t ·mina. If mina > 0, then k+

t ·mina � 0 and since min(m, 0)  0 for any m, we

get min((k+
t + k�t ) ⇤SUM t.A#, 0)  k+

t ·mina.

MIN: Since ⇤MIN is the identity on MIN except for when k = 0 and because 0MAX =1,

we get min((k+
t + k�t ) ⇤MIN t.A#, 0M) = (k+

t + k�t ) ⇤MIN t.A#. Distinguish two cases. If

k+
t = 0, then k+

t ⇤MINt.A# =1 > m for anym including (k+
t +k�t )⇤MINt.A#. Otherwise,

since ⇤MIN is the identify on MIN if k 6= 0, we have (k+
t +k�t )⇤MIN t.A# = k+

t ⇤MIN t.A#.

MAX: Since 0MAX = �1, we get min((k+
t +k�t )⇤MAXt.A#, 0M) = �1  k+

t ⇤MAXmina.

Using Equation (5.22) proven above, we can apply the same steps as in the

proof of Equation (5.20) to deduce that:
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X

t2Suncertain
g

min(R(t)~M t.A#, 0M)



X

t2Suncertain
g

0

@
X

t2T+
t

T MR(t, t)

1

A~M mina

=
X

t2Suncertain
g

0

@
X

t2Tg

T MR(t, t)

1

A~M mina

=
X

t2Suncertain
g

X

t2Tg

T MR(t, t)~M mina



X

t2Suncertain
g

X

t2Tg

T MR(t, t)~M t.A

=
X

t2Tg

X

t2Suncertain
g

T MR(t, t)~M t.A (5.23)

Combining Equation (5.20) with Equation (5.21) and Equation (5.23) and

using Lem. 12 we get

o.f(A)# 
X

t2Tg

X

t2Scertain
g

T MR(t, t) ⇤M t.A

+M

X

t2Tg

X

t2Suncertain
g

T MR(t, t) ⇤M t.A

=
X

t2Tg

X

t2Sg

T MR(t, t) ⇤M t.A

= fg

o.f(A)" � fg: We still need to prove that o.f(A)" � fg.
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o.f(A)" =
X

t2Scertain
g

(R(o)~M t.A)"

+M

X

t2Suncertain
g

max((R(o)~M t.A)", 0M)

+M

X

t2Ng

max((R(o)~M t.A)", 0M)

This prove is analog to the prove for o.f(A)#  fg except that it is always the

case that k+
t  R(t)" which simplifies the case for Suncertain

g
.

Q(R)(o)# 
P

tvo T MQ(o, t)  Q(R)(o)": So far we have established that for any

o 2 Og we have tg v o. For that follows that when constructing a tuple matching

T MQ based on which Q(t) bounds Q(R) we can associate tg with any subset of Og.

It remains to be shown that we can find such a tuple matching such that Q(R)(o)# 
P

tvo T MQ(o, t)  Q(R)(o)". Since each aggregation result in Q(R) appears exactly

once, this boils down to proving that Q(R)(o)#  |{t | T MQ(o, t) 6= 0}|  Q(R)(o)".

We will make use of the following notation:

Tup
R
= {t | R(t) 6= 0}

TupR = {t | R(t) 6= 0}

Tup
output

= {o | Q(R)(o) 6= 0}

Recall that G denotes the set of groups in R. For the construction of T MQ

we will use a mapping gcover : G ! Tup
R
⇥ TupR ⇥ Tup

output
such that for any

g 2 G for which gcover(g) = (t, t,o) the following conditions hold:

t 2 Tg T MR(t, t) 6= 0 ↵(t) = o
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We will refer to such a mapping as a group cover. The purpose of a group cover

gcover is to assign each group g in the possible world to an output o which represents

this group and to justify this assignment through an input t that is associated by

TMR with at least one tuple from group g and is assigned by the grouping strategy

to the AU-DB output tuple o. We will first prove that at least one group cover exists

and then prove that a group cover induces a tuple matching T MQ for which the

condition we want to prove (Q(R)(o)# 
P

tvo T MQ(o, t)  Q(R)(o)") holds for all

o 2 Tup
output

.

Group cover exists: To prove the existence of a group cover, we will show how to

construct such a group cover for any aggregation query Q, input R that is bound by

a NAU -relation R. Consider a group g 2 G and pick an arbitrary tuple t 2 Tg and

t 2 Sg such that T MR(t, t) 6=. At least one such t has to exist for g to be a group in

the result of Q(R). Furthermore, since T MR is a tuple matching based on which R

bounds R, there has to exist at least one such t. Now recall that ↵ associates each

tuple t for which R(t) 6= 0NAU
with one output in Q(R). WLOG let o = ↵(R). We

set gcover(g) = (t, t,o). By construction gcover is a group cover.

Q(R)(o)# 
P

tvo T MQ(o, t)  Q(R)(o)": It remains to be shown that it is possible

to construct a tuple matching T MQ such that for any o in Q(R) we have

Q(R)(o)# 
X

tvo

T MQ(o, t)  Q(R)(o)"

which implies that Q(R) bounds Q(R) based on T MQ. Since aggregation returns

a single result tuple tg for each group g, we know that that Q(R)(tg) = 1. Using

gcover, we construct T MQ as shown below:

T MQ(tg,o) =

8
>><

>>:

1 if 9t, t : gcover(g) = (t, t,o)

0 otherwise
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Obviously,
P

t T MQ(tg, t) = 1 = Q(R(tg)). Thus, T MQ is a tuple matching. It

remains to be shown that for each o in Q(R) we have Q(R)(o)# 
P

t
T MQ(t,R) 

Q(R)(o)". Observe that based on how we have constructed gcover, the following

holds for any such o:

X

tg

T MQ(o, tg) =
X

g2G:9t,t:gcover(g)=(t,t,o)

1

For any group cover if gcover(g) = (t, t,o) then T MR(t, t) 6= 0. Then,



X

g2G:9t,t:gcover(g)=(t,t,o)

R(t)"

Since ↵ may assign to o additional tuples which do not co-occur with o in gcover,

i.e., where ¬9g, t, tup : gcover(g) = (t, t,o), we get:



X

t:↵(t)=o

R(t)" = Q(R)(o)"

It remains to be shown that Q(R)(o)# 
P

tvo T MQ(o, t). From the construction of

T MQ follows that:

X

tvo

T MQ(o, t)

=
X

g2G:9t,t:gcover(g)=(t,t,o)

1

Based on Def. 34,

Q(R)(o)# = �N

0

@
X

t0:↵(t0)=g

R(t0)#

1

A (5.24)

First consider the case where the set {t | ↵(t) = o} is empty. It follows that

Q(R)(o)# = 0 and the claim trivially holds.

If the set is non empty, then
P

tvo T MQ(o, t) � 1. Also

�N

0

@
X

t0:↵(t0)=o

R(t0)#

1

A  1
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, because for any k 2 N, �N(k)  1 if k 6= 0. Thus,

1 

X

tvo

T MQ(o, t)

Thus, we have shown that Q(R)(o)# 
P

tvo which together with
P

tvo  Q(R)(o)"

and the fact that TMQ only assigns non-zero annotations to t and o if t v o that we

have proven above implies that Q(R) bounds Q(R) based on T MQ.

Aggregation without group-by: The proof for aggregation without group-by is analog

except for that both Q(R) and Q(R) contain a single result tuple annotated with

1 and (1, 1, 1) respectively. Let t and o denote this single result tuple. Then we

trivially define T MQ(t, t) = 1 and T MQ(t0, t0) = 0 if either t0 6= t or t 6= t0). Then,

Q(R)(o)# 
P

tvo T MQ(o, t)  Q(R)(o)". The proof of t v o is analog to the proof

for group-by aggregation.

From Thm. 13, Thm. 11, and Thm. 10 follows our main technical result: Our

query semantics for RA
agg queries preserves bounds.

Corollary 3 (Preservation of bounds for RA
agg). Let Q be an RA

agg query and D

an incomplete N-database that is bound by an NAU -database D. Then Q(D) bounds

Q(D).

D @ D) Q(D) @ Q(D)

Note that our semantics for RA
agg queries over NAU -relations has PTIME data

complexity.

Theorem 14 (Data Complexity of RA
agg Queries). Evaluation of RA

agg queries

over NAU -relations has PTIME data complexity.

Proof: Query evaluation for RA
+ over K-relations is known to be in PTIME. For

RA
+, our semantics only di↵ers in the evaluation of expressions which adds an over-

head that is independent on the size of the input database. For set di↵erence, the
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semantics according to Def. 28 is in worst-case accessing the annotation of every tuple

in the right-hand side input to calculate the annotation of a result tuple. Since each

result tuple belongs to the left-hand side input, the complexity is certainly in O(n2)

which is PTIME. Finally, for aggregation, the number of result tuples is at most linear

in the input size and even a naive implementation just has to test for each input

whether it contributes to a particular output. Thus, aggregation is certainly in O(n2)

and we get an overall PTIME data complexity for evaluation of RA
agg queries over

NAU -relations.

We then introduce the semantics for sorting and windowed aggregations. In

order to formalize these semantics in AU-DBs, we first define deterministic sorting

and windowed aggregation semantics. Note that, our formalization focuses on logical

order; the objective of these operators is to materialize sort positions of rows as data.

5.6 Deterministic Top-k and Windowed Aggregation Semantics

Sort order: Assume a total order < for the domains of all attributes. For simplic-

ity, we only consider sorting in ascending order. The extension for supporting both

ascending and descending order is straightforward. For any two tuples t and t0 with

schema (A1, . . . , An) and sort attributes O = (Ai1 , . . . , Aim) we define:

t <O t0 , 9j 2 {1, . . . ,m} :

8k 2 {1, . . . , j � 1} : t.Aik
= t0.Aik

^ t0.Aij
< t.Aij

The less-than or equals comparison operatorO generalizes this definition in the usual

way. Note that SQL sorting (ORDER BY) and some window bounds (ROWS BETWEEN ...)

may be non-deterministic. For instance, consider a relation R with schema (A,B)

with two rows t1 = (1, 1) and t2 = (1, 2) each with multiplicity 1; Sorting this relation

on attribute A (the tuples are indistinguishable on this attribute), can return the

tuples in either order. Without loss of generality, we ensure a fully deterministic
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semantics (up to tuple equivalence) by extending the ordering on attributes O, using

the remaining attributes of the relation as a tiebreaker: The total order t <total

O
t0 for

tuples from a relation R is defined as t <O,Sch(R)�O t0 (assuming some arbitrary order

of the attributes in Sch(R)).

Example 20 (Sorting). Consider the relation R shown on the left below. The multi-

plicity from N assigned to each tuple is shown on the right. The result of sorting the

relation on attribute A using our deterministic semantics and storing the sort posi-

tions in column pos is shown below on the right. Note the order of tuples t1 = (3, 15)

and t2 = (1, 1) is made deterministic by t2 <total

A
t1, because t2.B < t1.B. Note also

that the two copies of t2 are each assigned a di↵erent position.

Table 5.3. ex. 20

A B N

3 15 1

1 1 2

A B pos N

1 1 0 1

1 1 1 1

3 15 4 1

We first introduce operators for windowed aggregation, because sorting can be

defined as a special case of windowed aggregation.

5.6.1 Windowed Aggregation. A windowed aggregate is defined by an ag-

gregate function, a sort order (ORDER BY), and a window bound specification. A

window boundary is relative to the defining tuple, by the order-by attribute value

(RANGE BETWEEN...), or by position (ROWS BETWEEN). In the interest of space, we will

limit our discussion to row-based windows, as range-based windows are strictly sim-

pler. A window includes every tuple within a specified interval of the defining tuple.

Windowed aggregation extends each input tuple with the aggregate value computed
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over the tuple’s window. If a PARTITION BY clause is present, then window boundaries

are evaluated within a tuple’s partition. In SQL, a single query may define a separate

window for each aggregate function (SQL’s OVER clause). This can be modeled by

applying multiple window operators in sequence.

Example 21 (Row-Based Windows). Consider the bag relation below and consider

the windowed aggregation sum(B) sorting on A with bounds [�2, 0] (including the

two preceding tuples and the tuple itself). The window for the first duplicate of t1 =

(a, 5, 3) contains tuple t1 with multiplicity 1, the window for the second duplicate

of t1 contains t1 with multiplicity 2 and so on. Because each duplicate of t1 ends

up in a di↵erent window, there are three result tuples produced for t1, each with a

di↵erent sum(B) value. Furthermore, tuples t2 = (b, 3, 1) and t3 = (b, 3, 4) have the

same position in the sort order, demonstrating the need to use <total

O
to avoid non-

determinism in what their windows are. We have t2 <total

O
t3 and, thus, the window

for t2 contains t2 with multiplicity 1 and t1 with multiplicity 2 while the window for

t3 contains t1, t2 and t3 each with multiplicity 1.

Table 5.4. ex. 21

A B C N

a 5 3 3

b 3 1 1

b 3 4 1

A B C sum(B) N

a 5 3 5 1

a 5 3 10 1

a 5 3 15 1

b 3 1 13 1

b 3 4 11 1

The semantics of the row-based windowed aggregation operator ! is shown in

Fig. 5.3. The parameters of ! are partition-by attributes G, order-by attributes O,

an aggregate function f(A) with A ✓ Sch(R), and an interval [l, u]. For simplicity,
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we hide some arguments (G,O,l,u) in the definitions and assume they passed to in-

termediate definitions where needed. The operator outputs a relation with schema

Sch(R) �X.

The heavy lifting occurs in the definition of relation R(R), which “explodes”

relation R, adding an attribute i to replace each tuple of multiplicity n with n distinct

tuples. R(R) computes the windowed aggregate over the window defined for the pair

(t, i), denoted as WR,t,i(t0). To construct this window, we define the multiplicity of

tuple t0 in the partition for tuple t (denoted as PR,t(t0)), the range of sort positions the

tuple t covers ( cover(R, t)), and the range of positions in its window (bounds(R, t, i)).

The multiplicity of tuple t0 in the window for the ith duplicate of t is the size of the

overlap between the bounds bounds(R, t, i), and the cover of t0.
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⌦[l,u]
f(A)!X; G; O(R)(t) =

8
>><

>>:

R(t0) if t = t0 � f(⇡A(W
groups

G,O,l,u,R,t0))

0 otherwise

W
groups

G,O,l,u,R,t
(t0) =

8
>>>>>><

>>>>>>:

R(t0) if (rank(PR,G,t, O, t)

�rank(PR,G,t, O, t0)) 2 [l, u]

0 otherwise

rank(R,O, t) = |{ t0.O | R(t0) > 0 ^ t0 <O t }|

![l,u]
f(A)!X; G; O(R)(t) = ⇡Sch(R),X(R(R))

R(R)(t) =

8
>>>>>><

>>>>>>:

1 if t = t0 � f(⇡A(WR,t0,i)) � i

^i 2 [0, R(t0)� 1]

0 otherwise

PR,t(t
0) =

8
>><

>>:

R(t0) if t0.G = t.G

0 otherwise

WR,t,i(t
0) = | cover(PR,t, t

0) \ bounds(PR,t, t, i) |

pos(R, t, i) = i+
X

t0<total

O
t

R(t0)

cover(R, t) = [pos(R, t, 0), pos(R, t, R(t)� 1)]

bounds(R, t, i) = [pos(R, t, i) + l, pos(R, t, i) + u]

Figure 5.3. Windowed Aggregation
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5.6.2 Sort Operator. We now define a sort operator sortO!⌧ (R) which extends

each row of R with an attribute ⌧ that stores the position of this row in R according to

<total

O
. This operator is just “syntactic sugar” as it can be expressed using windowed

aggregation.

Definition 35 (Sort Operator). Consider a relation R with schema (A1, . . . , An),

list of attributes O = (B1, . . . , Bm) where each Bi is in Sch(R). The sort operator

sortO!⌧ (R) returns a relation with schema (A1, . . . , An, ⌧) as defined below.

sortO!⌧ (R) = ⇡Sch(R),⌧�1!⌧ (!
[�1,0]
count(1)!⌧ ; ;; O(R))

Top-k queries can be expressed using the sort operator followed by a selection.

For instance, the SQL query shown below can be written as ⇡A,B(�r3(sortA!r(R))).

SELECT A,B FROM R ORDER BY A LIMIT 3;

5.7 AU-DB Sorting and Top-k Semantics

We now develop a bound-preserving semantics for sorting and top-k queries

over AU-DBs. Recall that each tuple in an AU-DB is annotated with a triple of

multiplicities and that each (range-annotated) value is likewise a triple. Elements of

a range-annotated value c = [c1/c2/c3] or multiplicity triple (n1, n2, n3) are accessed

as: c# = c1, csg = c2, and c" = c3. Both the uncertainty of a tuple’s multiplicity and

the uncertainty of the values of order-by attributes creates uncertainty in a tuple’s

position in the sort order. The earlier, because it determines how many duplicates

of a tuple appear in the sort order which a↵ects the position of tuples which may be

larger wrt. to the sort order and the latter because it a↵ects which tuples are smaller

than a tuple wrt. the sort order. As mentioned before, a top-k query is a selection

over the result of a sort operator which checks that the sort position of a tuple is less

than or equal to k.
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Comparison of Uncertain Values: Before introducing sorting over AU-DBs, we

first discuss the evaluation of <O over tuples with uncertain values (recall that <total

O
is

defined in terms of <O). A Boolean expression over range-annotated values evaluates

to a bounding triple (using the order ? < > where ? denotes false and > denotes

true). Recall that the result of an evaluation of an expression e is denoted as JeK.

For instance, J[1/1/3] < [2/2/2]K=[?/>/>], because the expression may evaluate to

false (e.g., if the first value is 3 and the second values is 2), evaluates to true in the

selected-guess world, and may evaluate to true (if the 1st value is 1 and the 2nd value

is 2). The extension of < to comparison of tuples on attributes O using <O is shown

below. For example, consider tuples t1 = ([1/1/3], [a/a/a]) and t2 = ([2/2/2], [b/b/b])

over schema R(A,B). We have t1 <A,B t2 = [?/>/>], because t1 could be ordered

before t2 (if t1.A is 1), is ordered before t2 in the selected-guess world (1 < 2), and

may be ordered before t2 (if A is 3).

Jt <O t0K# = 9i 2 {1, . . . , n} : 8j 2 {1, . . . , i� 1} :

Jt.Aj = t0.AjK# ^ Jt.Ai < t0.AiK#

Jt <O t0Ksg = 9i 2 {1, . . . , n} : 8j 2 {1, . . . , i� 1} :

Jt.Aj = t0.AjKsg ^ Jt.Ai < t0.AiKsg

Jt <O t0K" = 9i 2 {1, . . . , n} : 8j 2 {1, . . . , i� 1} :

Jt.Aj = t0.AjK" ^ Jt.Ai < t0.AiK"

To simplify notation, we will use t <O t0 instead of Jt <O t0K.

Tuple Rank and Position: To define windowed aggregation and sorting over AU-

DBs, we generalize pos using the uncertain version of <O. The lowest possible position

of the first duplicate of a tuple t in an AU-DB relation R is the total multiplicity

of tuples t0 that certainly exist (R(t0)# > 0) and are certainly smaller than t (i.e.,

Jt0 <O tK# = >). The selected-guess position of a tuple is the position of the tuple in
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the selected-guess world, and the greatest possible position of t is the total multiplicity

of tuples that possibly exist (R(t0)" > 0) and possibly precede t (i.e., Jt0 <O tK" = >).

The sort position of the ith duplicate (with the first duplicate being 0) is computed

by adding i to the position bounds of the first duplicate.

pos(R, O, t, i)# = i+
P

(t0<Ot)# R(t0)# (5.25)

pos(R, O, t, i)sg = i+
P

(t0<Ot)sg R(t0)sg (5.26)

pos(R, O, t, i)" = i+
P

(t0<Ot)" R(t0)" (5.27)

5.7.1 AU-DB Sorting Semantics. To define AU-DB sorting, we split the possible

duplicates of a tuple and extend the resulting tuples with a range-annotated value

denoting the tuple’s (possible) positions in the sort order. The certain multiplicity of

the ith duplicate of a tuple t in the result is either 1 for duplicates that are guaranteed

to exist (i < R(t)#) and 0 otherwise. The selected-guess multiplicity is 1 for duplicates

that do not certainly exist (in some possible world there may be less than i duplicates

of the tuple), but are in the selected-guess world (the selected-guess world has i or

more duplicates of the tuple). Finally, the possible multiplicity is always 1.

Definition 36 (AU-DB Sorting Operator). Let R be an AU-DB relation and O ✓

Sch(R). The result of applying the sort operator sortO!⌧ to R is defined in Fig. 5.4

Every tuple in the result of sorting is constructed by extending an input tuple

t0 with the range of positions pos(R, O, t0, i) it may occupy wrt. the sort order. The

definition decomposes t into a base tuple t0, and a position triple for each duplicate of

t inR. We annotate all certain duplicates as certain (1, 1, 1), remaining selected-guess

(but uncertain) duplicates as uncertain (0, 1, 1) and non-selected guess duplicates as

possible (0, 0, 1).

Example 22 (AU-DB Sorting). Consider the AU-DB relation R shown on the left

below with certain, selected guess and possible multiplicities from N3 assigned to each
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sortO!⌧ (R)(t) =
8
>>>>>>>>>><

>>>>>>>>>>:

(1, 1, 1) if t = t0 � pos(R, O, t0, i) ^ i 2
⇥
0,R(t0)#

�

(0, 1, 1) if t = t0 � pos(R, O, t0, i) ^ i 2
⇥
R(t0)#,R(t0)sg

�

(0, 0, 1) if t = t0 � pos(R, O, t0, i) ^ i 2
⇥
R(t0)sg,R(t0)"

�

(0, 0, 0) otherwise

Figure 5.4. Range-annotated sort operator semantics.

tuple. For values or multiplicities that are certain, we write only the certain value

instead of the triple. The result of sorting the relation on attributes A,B using AU-

DB sorting semantics and storing the sort positions in column pos (sortA,B!pos(R))

is shown below on the right. Observe how the 1th input tuple t1 = (1, [1/1/3]) was

split into two result tuples occupying adjacent sort positions. The 3rd input tuple

t3 = ([1/1/2], 2) could be the 1th in sort order (if it’s A value is 1 and the B values

of the duplicates of t1 are equal to 3) or be at the 3rd position if two duplicates of t1

exist and either A is 2 or the B values of t1 are all < 3.

Table 5.5. ex. 22

A B N3

1 [1/1/3] (1,1,2)

[2/3/3] 15 (0,1,1)

[1/1/2] 2 (1,1,1)

A B pos N3

1 [1/1/3] [0/0/1] (1,1,1)

1 [1/1/3] [1/1/2] (0,0,1)

[1/1/2] 2 [0/1/2] (1,1,1)

[2/3/3] 15 [2/2/3] (0,1,1)

5.7.2 Bound Preservation. We now prove that our semantics for the sorting

operator on AU-DB relations is bound preserving, i.e., given an AU-DBR that bounds
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an incomplete bag database R, the result of a sort operator sortO!⌧ applied to R

bounds the result of sortO!⌧ evaluated over R.

Theorem 15 (Bound Preservation of Sorting). Given an AU-DB relation R and

incomplete bag relation R such that R @ R, and O ✓ Sch(R). We have:

sortO!⌧ (R) @ sortO!⌧ (R)

Proof: Since R @ R, for every possible world R 2 R, there has to exist a tuple

matching T MR based on which this property holds. We will show that based on

T MR we can generate a tuple matching for Rres = sortO!⌧ (R) and sortO!⌧ (R).

The existence of such a tuple matching for every sortO!⌧ (R) 2 sortO!⌧ (R) implies

that sortO!⌧ (R) @ sortO!⌧ (R). WLOG consider tuple t 2 R and output tuples

tres = t � pos(R, O, t, i).

We first show that split the tuple t preserves tuple multiplicities. Applying

the definitions from Fig. 5.4,

R(t)# =
X

i

Rres(t � pos(R, O, t, i))#

R(t)sg =
X

i

Rres(t � pos(R, O, t, i))sg

R(t)" =
X

i

Rres(t � pos(R, O, t, i))"

Thus, the split preserves upper and lower multiplicity bounds.

Then we propose a tuple matching T Mres that maps each split tuple to a spe-

cific deterministic tuple. Let St = {t1, . . . , tn} 2 R be the only tuples such that

T MR(t, ti) > 0 and let us assume that ti O tj if i < j which we can ensure by

sorting these tuples based on O. Recall that both AU-DB sorting and deterministic

sorting splits each tuple t (t) into individual tuples ti (tik).

Let us denote ni the total multiplicity of tuples orders before ti, i.e., ni =
P

j<i
St(tj).
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Note that ni is the relative sort position of the first duplicate of tj wrt. the first du-

plicate of t1(t11). Then in the result tuple matching we will define

T Mres(t � pos(R, O, t, ni + k), ti � pos(R,O, ti, k)) = 1

for all k < R(ti).

Because of the definitaiton of ranged comparison that utilizes range-based scalar

expression semantics which is bound preserving we know that if t v t and t0 v t0

then (t0 <O t) (t0 <O t)#. First we use the definition of tuple matching. Because

only part of R(t0) may be matched against t we have T MR(t0, t0)  R(t0)

pos(R, O, t, 0)# =
X

(t0<Ot)#

R(t0)#



X

(t0<Ot)#

T MR(t
0, t0)



X

t0:t0<Ot1

R(t0) = pos(R,O, t1, 0)

this is only for first tuple matched against t. For ti we know that

pos(R,O, ti, k) = ni + k + pos(R,O, t1, 0) +
X

t00�Ot1^t00<Oti^t00 /2St

R(t00)

The position of k-th duplicate of ti is constructed by adding number of matched

preceding tuples to the position of the first matched tuple ti, and we also need to add

all tuples that are not matched to t but is in preceding of ti.

For t we know that

pos(R, O, t, ni + k)# = ni + k+pos(R, O, t, 0)#

 ni + k + pos(R,O, t1, 0)

 ni + k + pos(R,O, t1, 0) +
X

t00�Ot1^t00<Oti^t00 /2St

R(t00)

= pos(R,O, ti, k)
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Thus, pos(R, O, t, ni + k) lower bounds pos(R,O, ti, k).

In an analog way, we have

pos(R, O, t, 0)" =
X

(t0<Ot)"

R(t0)"

�

X

(t0<Ot)"

T MR(t
0, t0)

�

X

t0:t0<Otn

R(t0) = pos(R,O, tn, 0) +
X

t00�Ot1^t00<Otn^t00 /2St

R(t00)

Following with

pos(R, O, t, ni + k)" = ni + k+pos(R, O, t, 0)"

� ni + k + pos(R,O, tn, 0) +
X

t00�Ot1^t00<Otn^t00 /2St

R(t00)

� ni + k + pos(R,O, t1, 0) +
X

t00�Ot1^t00<Oti^t00 /2St

R(t00)

= pos(R,O, ti, k)

Thus, pos(R,O, ti, k) v pos(R, O, t, ni + k). Also since ti v t, T Mres is valid.

5.8 AU-DB Windowed Aggregation

We now introduce a bound preserving semantics for windowed aggregation

over AU-DBs. We have to account for three types of uncertainty: (i) uncertain

partition membership if a tuple may not exist (R(t)# = 0) or has uncertain partition

attribute values; (ii) uncertain window membership if a tuple’s partition membership,

position, or multiplicity are uncertain; and (iii) uncertain aggregation results from

either preceding type of uncertainty, or if we are aggregating over uncertain values.

We compute the windowed aggregation result for each input tuple in multiple steps:

(i) we first use AU-DB sorting to split each input tuple into tuples whose multiplicities

are at most one. This is necessary, because the aggregation function result may di↵er

among the duplicates of a tuple (as is already the case for deterministic windowed
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aggregation); (ii) we then compute for each tuple t an AU-DB relation Pt(R) storing

the tuples that certainly and possibly belong to the partition for that tuple; (iii) we

then compute an AU-DB relation WR,t encoding which tuples certainly and possibly

belong to the tuple’s window; (iv) since row-based windows contain a fixed number

of tuples, we then determine from the tuples that possibly belong to the window, the

subset that together with the tuples that certainly belong to the window (these tuples

will be in the window in every possible world) minimizes / maximizes the aggregation

function result. This then enables us to bound the aggregation result for each input

tuple from below and above. For instance, for a row-based window [�2, 0], we know

that the window for a tuple t will never contain more than 3 tuples. If we know that

two tuples certainly belong to the window, then at most one of the possible tuples

can be part of the window.

5.8.1 Windowed Aggregation Semantics. As before, we omit windowed aggre-

gation parameters (G,O,l,u,f ,A) from the arguments of intermediate constructs and

assume they are passed along where needed.

Partitions We start by defining AU-DB relation Pt(R) which encodes the

multiplicity with which a tuple t0 belongs to the partition for t based on partition-

by attributes G. This is achieved using selection, comparing a tuple’s values in G

with the values of t.G on equality. AU-DB selection sets the certain, selected-guess,

possible multiplicity of a tuple to 0 if the tuple possibly, in the selected-guess world,

or certainly does not fulfill the selection condition.

Pt(R) = J�G=t.G(R)K

Certain and Possible Windows: We need to be able to reason about which tuples

(and with which multiplicity) belong certainly to the window for a tuple and which

tuples (with which multiplicity) could possibly belong to a window. For a tuple t, we

model the window’s tuples as an AU-DB relation WR,t where a tuple’s lower bound
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multiplicity encodes the number of duplicates of the tuple that are certainty in the

window, the selected-guess multiplicity encodes the multiplicity of the tuple in the

selected-guess world, and the upper bound encodes the largest possible multiplicity

with which the tuple may occur in the window minus the certain multiplicity. In the

remainder of this section we omit the definition of the select-guess, because it can be

computed using the deterministic semantics for windowed aggregation. We formally

define WR,t in Fig. 5.6. Recall that in the first step we used sort to split the duplicates

of each tuple into tuples with multiplicity upper bounds of 1. Thus, the windows we

are constructing here are for tuples instead of for individual duplicates of a tuple. A

tuple t0 is guaranteed to belong to the window for of a tuple t with a multiplicity

of n = R(t0)# (the number of duplicates of the tuple that certainly exist) if the

tuple certainly belongs to the partition for t and all possible positions that these n

duplicates of the tuple occupy in the sort order are guaranteed to be contained in the

smallest possible interval of sort positions contained in the bounds of the window for t.

Tuple t0 possibly belongs to the window of t if any of its possible positions falls within

the interval of all possible positions of t. As an example consider Fig. 5.5 which shows

the sort positions that certainly (red) and possibly (green) belong to tuple t’s window

(window bounds [-1,4]). For any window [l, u], sort positions certainly covered by the

window start from latest possible starting position for t’s window which is t.⌧ " + l

(6 + (�1) = 5 in our example) and end at the earliest possible upper bound for the

window which is t.⌧ " + u (4 + 4 = 8 in our example). Furthermore, Fig. 5.5 shows

the membership of three tuples in the window. Tuple t1 does certainly not belong

to the window, because none of its possible sort positions are in the window’s set

of possible sort positions, t2 does certainly belong to the window, because all of its

possible sort positions are in the set of positions certainly in the window. Finally, t3

possibly belongs to the window, because some of its sort positions are in the set of

positions possibly covered by the window.
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0 1 2 3 4 5 6 7 8 9 10 11 12

t

possible window

certain window

not in window

t1

certainly in

t2

possibly in

t3

Figure 5.5. Possible and certain window membership of tuples in window of t based
on their possible sort positions for window spec [-1,4].

WR,t(t
0)# =

8
>>>>>><

>>>>>>:

Pt(R)(t0)# if [pos(Pt(R), O, t0, 0)#, pos(Pt(R), O, t0, 0)"] ✓

[pos(Pt(R), O, t, 0)" + l, pos(Pt(R), O, t, 0)# + u]

0 otherwise

WR,t(t
0)" =

8
>>>>>><

>>>>>>:

Pt(R)(t0)" �WR,t,i(t0)# if ([pos(Pt(R), O, t0, 0)#, pos(Pt(R), O, t0, 0)"]

\[pos(Pt(R), O, t, 0)# + l, pos(Pt(R), O, t, 0)" + u]) 6= ;

0 otherwise

WR,t(t
0)sg =

8
>>>>>><

>>>>>>:

Pt(R)(t0)sg if pos(Pt(R), O, t0, 0)sg ✓

[pos(Pt(R), O, t, 0)sg + l, pos(Pt(R), O, t, 0)sg + u]

0 otherwise

Figure 5.6. Certain and possible windows for row-based windowed aggregation over
AU-DBs

Combining and Filtering Certain and Possible Windows: As mentioned

above, row-based windows contain a fixed maximal number of tuples based on their

bounds. We use size([l, u]) to denote the size of a window with bounds [l, u], i.e.,

size([l, u]) = (u � l) + 1. This limit on the number of tuples in a window should be

taken into account when computing bounds on the result of an aggregation function.

For that, we combine the tuples certainly in the window (say there are m such tuples)
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with a selected bag of up to size([l, u])�m rows possibly in the window that minimizes

(for the lower aggregation result bound) or maximizes (for the upper aggregation re-

sult bound) the aggregation function result for an input tuple. Let us use possn(R, t)

to denote size([l, u])�m:

possn(R, t) = size([l, u])�
X

t0

WR,t(t
0)#

Which bag of up to possn(R, t) tuples minimizes / maximizes the aggregation result

depends on what aggregation function is applied. For sum, the up to possn(R, t)

rows with the smallest negative values are included in the lower bound and the up to

possn(R, t) rows with the greatest positive values for the upper bound. For count

no additional row are included for the lower bound and up to possn(R) rows for the

upper bound.

For each tuple t, we define AU-DB relation RWR,t where each tuple’s low-

er/upper bound multiplicities encode the multiplicity of this tuple contributing to the

lower and upper bound aggregation result, respectively. We only show the definition

for sum, the definitions for other aggregation functions are similar. In the definition,

we make use R# and R":

R#(t) = R(t)# R"(t) = R(t)"

Note that R# and R" are bags (N-relations) over range-annotated tuples. Fur-

thermore, we define min-k(R, t, A) (andmax-k(R, t, A)) that are computed by restrict-

ing WR,t to the tuples with the smallest negative values (largest positive values) as

lower (upper) bounds on attribute A that could contribute to the aggregation, keep-

ing tuples with a total multiplicity of up to possn(R, t). Note that the deterministic

conditions / expressions in the definition of min-k(R, t, A) (and max-k(R, t, A)) are

well-defined, because single values are extracted from all range-annotated values. For
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max (resp., min) and similar idempotent aggregates, it su�ces to know the greatest

(resp., least) value possibly in the window.

RWR,t(t
0)# = WR,t(t

0)# +min-k(R, t, A)(t0)

RWR,t(t
0)" = WR,t(t

0)# +max-k(R, t, A)(t0)

RWR,t(t
0)sg = WR,t(t

0)sg

min-k(R, t, A) = �⌧<possn(R,t)(sortA#!⌧ (�A#<0(WR,t
")))

max-k(R, t, A) = �⌧<possn(R,t)(sort�A"!⌧ (�A">0(WR,t
")))

Windowed Aggregation: Using the filtered combined windows we are ready to de-

fine row-based windowed aggregation over AU-DBs. To compute aggregation results,

we utilize the operation ~f defined in [40] for aggregation function f that combines

the range-annotated aggregation attribute value of a tuple with the tuple’s multiplic-

ity bounds. For instance, for sum, ~sum is multiplication, e.g., if a tuple with A

value [10/20/30] has multiplicity (1, 2, 3) it contributes [10/40/90] to the sum. Here,
L

denotes the application of the aggregation function over a set of elements (e.g.,
P

for sum). Note that, as explained above, the purpose of expand(R) is to split a

tuple with n possible duplicates into n tuples with a multiplicity of 1. Furthermore,

note that the bounds on the aggregation result may be the same for the ith and jth

duplicate of a tuple. To deal with that we apply a final projection to merge such

duplicate result tuples.

Definition 37 (Row-based Windowed Aggregation). Let R be an AU-DB relation.
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We define window operator ![l,u]
f(A)!X; G; O as:

![l,u]
f(A)!X; G; O(R)(t) = ⇡Sch(R),X(R(R))

R(R)(t � aggres(t)) = expand(R)(t)

aggres(t) =
M

t0

t0.A~f RWexpand(R),t(t
0)

expand(R) = ⇡Sch(R),⌧id(sortSch(R)!⌧id
(R))

Example 23 (AU-DB Windowed Aggregation). Consider the AU-DB relation R

shown below and query ![�1,0]
sum(C)!SumA; A; B(R), i.e., windowed aggregation partitioning

by A, ordering on B, and computing sum(C) over windows including 1 preceding and

the current row. For convenience we show an identifier for each tuple on the left. As

mentioned above, we first expand each tuple with a possible multiplicity larger then

one using sorting. Consider tuple t3. Both t1 and t2 may belong to the same partition

as t3 as their A value ranges overlap. There is no tuple that certainly belongs to the

same partition as t3. Thus, only tuple t3 itself will certainly belong to the window.

To compute the bounds on the aggregation result we first determine which tuples (in

the expansion created through sorting) may belong to the window for t3. These are

the two tuples corresponding to the duplicates of t1, because these tuples may belong

to the partition for t3 and their possible sort positions ([0/0/1] and [1/1/2]) overlap

with the sort positions possibly covered by the window for t3 ([0/1/2]). Since the size

of the window is 2 tuples, the bounds on the sum are computed using the lower / upper

bound on the C value of t3 ([2/4/5]) and no additional tuple from the possible window

(because the C value of t1 is positive) for the lower bound and the largest possible C

value of one copy (we can only fit one additional tuple into the window) of t1 (7) for

the upper bound. Thus, we get the aggregation result [2/11/12] as shown below.

5.8.2 Bound Preservation. We now prove this semantics for group-based and

row-based windowed aggregation over AU-DBs to be bound preserving.
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Table 5.6. Ex. 23

A B C N3

t1 1 [1/1/3] 7 (1,1,2)

t2 [2/3/3] 15 4 (0,1,1)

t3 [1/1/2] 2 [2/4/5] 1

A B C SumC N3

r1 1 [1/1/3] 7 [7/7/14] 1

r2 1 [1/1/3] 7 [7/7/14] (0,0,1)

r3 [1/1/2] 2 [2/4/5] [2/11/12] 1

r4 [2/3/3] 15 4 [4/4/9] (0,1,1)

Theorem 16 (Bound Preservation for Windowed Aggregation). Given an AU-DB

relation R and incomplete bag relation R such that R @ R, and O ✓ Sch(R). For

any row-based windowed aggregation ![l,u]
f(A)!X; G; O, we have:

![l,u]
f(A)!X; G; O(R) @ ![l,u]

f(A)!X; G; O(R)

Proof: For simplicity, we denote Ro and Ro as the input incomplete bag relation

and input AU-DB relation s.t. Ro @ Ro. We use R and R as the output of expand()

s.t. R := expand(prelo) and R := expand(Ro). By Thm. 10 with selection bounding

proven and Thm. 15 with sort bounding proven, we have R @ R. WLOG, since

expand(R) return relation with multiplicity of 1s, we use t 2 R and t 2 R 2 R s.t.

T MR(t, t) = 1. By Thm. 10, we have Pt(R) @ Pt(R), so there exist valid tuple

matching T MP bounds the output of Pt(R) and Pt(R).

For WR,t computing uncertain window for t and WR,t computing deterministic win-

dow for t, we first recast the definition of the AU-DB window for R and the window
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for t as a selection query. Define conditions,

✓ := pos(Pt(R), O, t0, 0) ✓

[pos(Pt(R), O, t, 0) + l, pos(Pt(R), O, t, 0) + u]

✓" := ([pos(Pt(R), O, t0, 0)#,pos(Pt(R), O, t0, 0)"]

\ [pos(Pt(R), O, t, 0)# + l, pos(Pt(R), O, t, 0)" + u]) 6= ;

✓# := [pos(Pt(R), O, t0, 0)#,pos(Pt(R), O, t0, 0)"] ✓

[pos(Pt(R), O, t, 0)" + l, pos(Pt(R), O, t, 0)# + u]

By rule of uncertain scalar evaluation, ✓ v [✓#,✓"], so deterministic window candidate

condition ✓ bounded by ✓# and ✓". By Thm. 8, we have

WR,t(t
0)# =Pt(R)(t0)# ·K ✓#

=�✓(Pt(R))(t0)#

So WR,t
# lower bounds WR,t and there exists valid tuple matching T MW .

analog to lower bound,

WR,t(t
0)" +WR,t(t

0)" =Pt(R)(t0)" ·K ✓#

=�✓(Pt(R))(t0)#

So WR,t(t0)" + WR,t(t0)" upper bounds WR,t. Put di↵erently, WR,t
" upper bounds

WR,t �WR,t
#

Define possible window matched tuples PWR,t(t0) = WR,t(t0) �
P

t0 T MW(t0, t0), by

definition of tuple matching, 8t0 :
P

t0 T MW(t0, t0) � WR,t
#(t0) we get WR,t �WR,t

#

upper bounds PWR,t, so WR,t
" upper bounds PWR,t

For t, defined by Sec. 5.6.1, we know that

aggres(t) =
M

t0

t0.A⌦f WR,t(t
0)
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For t, substituting based on Def. 37 we get

aggres(t)# =

 
M

t0

t0.A~f RWR,t(t
0)

!
#

Since
L

is point-wise for min, max and sum,

=
M

t0

(t0.A~f RWR,t(t
0))#

=
M

t0

min(t0.A# ⌦f RWR,t(t
0)#,t0.A" ⌦f RWR,t(t

0)#,

t0.A# ⌦f RWR,t(t
0)", t0.A" ⌦f RWR,t(t

0)")

Since RWR,t
# is constructed to minimize t0.A,

=
M

t0

t0.A# ⌦f RWR,t(t
0)#

By definition of RWR,t(t0)#,

=
M

t0

t0.A# ⌦f (WR,t(t
0)# +min-k(R, t, A)(t0))

By semimodule law Equation (5.10),

=
M

t0

t0.A# ⌦f WR,t(t
0)# +f

M

t0

t0.A# ⌦f min-k(R, t, A)(t0)

Since t0 v t0 and WR,t
# lower bounds WR,t,



M

t0

t0.A⌦f

X

t0

T MW(t0, t) +f

M

t0

t0.A# ⌦f min-k(R, t, A)(t0)

By using k = possn(R, t), we denote the deterministic top-k operation as

min-k(R, t, A)(t0) = minkA#(WR,t
")(t0) and we get

=
M

t0

t0.A⌦f

X

t0

T MW(t0, t) +f

M

t0

t0.A# ⌦f minkA#(WR,t
")(t0)

Since t0 v t and WR,t
" upper bounds PWR,t,



M

t0

t0.A⌦f

X

t0

T MW(t0, t) +f

M

t0

t0.A⌦f minkA(PWR,t)(t)
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trivially,



M

t0

t0.A⌦f

X

t0

T MW(t0, t) +f

M

t0

t0.A⌦f PWR,t(t
0)

=
M

t0

t0.A⌦f

 
X

t0

T MW(t0, t) +WR,t(t
0)�

X

t0

T MW(t0, t)

!

=
M

t0

t0.A⌦f WR,t(t
0) = aggres(t)

So aggres(t) lower bounds aggres(t).

aggres(t) upper bounds aggres(t) can be proven in analog way.

Given that t v t and aggres(t) v aggres(t), we get

T Mres(t � aggres(t), t � aggres(t)) = T MR(t, t)

As we made no assumptions about t and t apart from T MR(t, t) = 1, this implies

that T Mres is a tuple matching and, thus, this concludes the proof.

5.9 Implementation

In this section we discuss about the implementation of our AU-DB model as

a middleware running on top of conventional database systems. For that we define

an encoding of NAU -relations as classical bag semantics relations implemented as a

function Enc which maps a NAU -database to a bag semantics database. We use

Dec to denote the inverse of Enc. Using the encoding we apply query rewriting

to propagate annotations and implement NAU -relational query semantics over the

encoding. Our frontend rewriting engine receives a query Q over an NAU -annotated

database D and rewrites this into a query rewr(Q) that evaluated over Enc(D)

returns the encoding of Q(D). That is, we will show that:

Q(D) = Dec(QmergeEnc(D))

5.9.1 Relational encoding of AU-DBs. We now define Enc for a single NAU -

relation R. Enc(D) is then defined as the database generated by applying Enc to
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each relation R 2 D. We use Ā to denote a set of attributes. We use Sch(R) to

denote the schema of input relation $. The schema of Enc(R) for an NAU -relation

R with schema Sch(R) = (a1, . . . , an) is

Sch(Enc(R)) = (Ā, Ā", Ā#, row#, row, row")

where Ā = {A1
sg, . . . ,An

sg
},

Ā" = {A1
", . . . , An

"
}, Ā# = {A1

#, . . . , An
#
}

Example 24. The schema of Enc(R) for AU-DB relation R(A,B) is (A,B,A#, B#

, A", B", row#, row, row").

For each tuple t with R(t) 6= 0NAU
, there will be one tuple t = enc(t,R(t))

in Enc(R) where enc() is a function that maps tuples from R and their annotations

to the corresponding tuple from Enc(R). Attributes row#, row, and row" are used

to store R(t):

enc(t, k).row# = k#

enc(t, k).row = ksg

enc(t, k).row" = k"

For each attribute Ai, the three attributes Ai
#, Ai

sg, and Ai
" are used to store

the range-annotated value t.Ai:

enc(t, k).Ai
# = t.Ai

#

enc(t, k).Ai
sg = t.Ai

sg

enc(t, k).Ai
" = t.Ai

"

In addition we define a function dec() which takes a tuple in the encoding

and returns the corresponding range-annotated tuple t. Given a tuple t with schema
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Sch(Enc(R)) = (Ā, Ā", Ā#, row#, row, row") where R is a NAU -relation R, dec()

returns a tuple with schema Sch(R) = (Ā) such that for all Ai 2 Sch(R):

dec(t).Ai = [t.Ai
#/t.Ai

sg/t.Ai
"]

Furthermore, we define a function rowdec(t) which extracts the row annota-

tion encoded by a tuple t in the encoding:

rowdec(t) = (t.row#, t.rowsg, t.row")

Having defined the schema and tuple-level translation, we define Enc and its inverse

Dec below.

Definition 38 (Relational Encoding). Let R be a NAU -relation with schema (A1, . . . ,

An) and let R = Enc(R). Furthermore, let t be a tuple with schema Sch(R) and t

be a tuple with schema Sch(R).

Enc(R)(t) :=

8
>><

>>:

1 if 9t : t = enc(t) ^R(t) > 0NAU

0 otherwise

Dec(R)(t) :=
X

t:dec(t)=t

rowdec(t) · (R(t), R(t), R(t))

5.9.2 Rewriting. We now define the rewriting rewr(·). We assume that for

each input relation R of a query, Enc(R) has been materialized as a relation REnc.

We will discuss how to create AU-DBs in Sec. 5.11. These techniques enable AU-

DBs to be generated as part of the rewritten query in addition to supporting reading

from a materialized input table. We call two tuples in the relational encoding value

equivalent if they are equal after projecting away the row annotation attributes (row#,

rowsg, and row"). Note that Enc does never produce an output where two tuples are
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value-equivalent. To ensure that intermediate results are valid encodings, we have to

sum up the row annotations of value-equivalent tuples which requires aggregation for

operators like projection and union. Observe that we only need to ensure that the

final result of a rewritten query is a valid encoding. Thus, we can allow for valid-

equivalent tuples as long as we ensure that they are merged in the final result. In the

following let Q1 be a query with result schema Ā = (A1, . . . , An) and Q2 be a query

with schema B̄ = (B1, . . . , Bm). We use e ! A in generalized projections to denote

that the projection onto expression e renaming the result to A, e.g., ⇡A+B!C,D!E has

schema (C,E). We will use Enc(t) to refer to the deterministic tuple in Enc(R)

that encodes the AU-DB tuple t and its annotation R(t).

Merge Annotations: After rewriting a Q using the rewriting scheme rewr(·)

shown below, we merge the annotation of value-equivalent tuples to generate the

final encoding. Given rewr(Q), we return a rewritten query Qmerge to realize this:

Qmerge := �Ā,Ā#,Ā",ec,esg ,ep(rewr(Q))

ec := sum(row#)! row#

esg := sum(rowsg)! rowsg

ep := sum(row")! row"

Table Access: Each access to a table R is rewritten into an access to Enc(R) which

is materialized as REnc.

rewr(R) := REnc

Selection: For a selection we only filter out tuples Enc(t) which are guaranteed to

not fulfill the selection condition ✓, i.e., where ✓(t)" = ?. Given an expression e,

we use e" (e#, and esg) to denote an expression that if applied to Enc(t) for range-

annotated tuple t returns JeK'̃t
" (JeK'̃t

#, JeK'̃t
sg), i.e., the upper (lower, SG) result of

evaluating e over the t using range-annotated expression semantics (Def. 15). Recall
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that '̃t denotes the range-annotated valuation that assigns tuple t’s attribute values

to the variables of expression e. We will use '̃Enc(t) to denote the valuation that

contains three variables A#, Asg, A" for each variable A in '̃ and assigns these variables

to values from Enc(t) as follows:

'̃Enc(t)(A
#) = Enc(t).A# = '̃t(A)

#

'̃Enc(t)(A
sg) = Enc(t).Asg = '̃t(A)

sg

'̃Enc(t)(A
") = Enc(t).A" = '̃t(A)

"

Note that the expression semantics of Def. 15 only uses deterministic expression eval-

uation and it is always possible to generate deterministic expressions e#, esg, and e".

For instance, for a condition e := A  B, we would generate e" := A"  B#. For

instance, consider a tuple t = ([1/1/1], [0/1/2]) with R(t) = (1, 1, 1). This tuple

would be encoded in Enc(R) as (Asg : 1, Bsg : 1, A# : 1, B# : 0, A" : 1, B" : 1, row# :

1, rowsg : 1, row" : 1). We get Je"K'̃Enc(t)
= 1  0 = ?. In the result of selection,

the annotation of tuples is determined based on their annotation in the input and

whether they certainly or in the SG world fulfill the selection conditions (see Def. 26).

rewr(�✓(Q1)) := ⇡Ā,Ā",Ā#,ec,esg ,row"(�✓"(rewr(Q1)))

ec := (if ✓# then 1 else 0) ⇤ row# ! row#

esg := (if ✓sg then 1 else 0) ⇤ rowsg
! rowsg

Projection: For a generalized projection ⇡U(R) with U := e1 ! A1, . . . , ek ! Ak,

we rewrite each projection expression ei into three expressions ei#, eisg, and ei" as

explained for selection above. Then let U# = e1# ! A1
#, . . . , ek# ! Ak

# and let U sg

and U" be defined analog.

rewr(⇡U(Q1)) = ⇡Usg ,U",U#,row#,rowsg ,row"(rewr(Q1))

Cross Product: Recall that ·NAU
is defined as pointwise multiplication. Thus, for
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crossproduct we have to multiply the bounds of row annotations of input tuples.

rewr(Q1 ⇥Q2) := ⇡Ā,B̄,Ā#,B̄#Ā",B̄",ec,esg ,ep(Qprod)

Qprod := rewr(Q1)⇥ rewr(Q2)

ec := Q1.row
#
·Q2.row

#
! row#

esg := Q1.row
sg
·Q2.row

sg
! rowsg

ep := Q1.row
"
·Q2.row

"
! row"

Union: A union is rewritten as the union of its rewritten inputs.

rewr(Q1 [Q2) := rewr(Q1) [ rewr(Q2)

Set Di↵erence: For set di↵erence we need to develop a rewrite that implements

the combiner operator  which merges all tuples with the same values in the SGW.

This rewrite is shown below. To calculate the lower bound of the range-bounded

annotation for a tuple in the result of a set di↵erence operator we have to determine

for each tuple t from the left input the set of all tuples t0 from the right input whose

values overlap with t, i.e., where t ' t0. These are tuples that may be equal to t

in some possible world. To calculate the lower bound we have to assume that all

these tuples are equal to t and appear with the maximum possible multiplicity. That

is, we have to subtract from the lower annotation bound of t the sum of the upper

annotation bounds of these tuples. For that we join the inputs on a condition ✓join

shown below that checks whether t ' t0 holds by checking that [t.A#, t.A"] overlaps

with [t0.B#, t0.B"] for each attribute A of the left input and the corresponding attribute

B of the right input. The AU-DB-annotation of a tuple is then computed by grouping

on the SG values of the LHS, summing up the upper bounds of tuples from the RHS
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and then subtract them from the lower bound of the LHS tuple’s annotation. Below

QSumRight implements this step. To calculate the upper bound of a tuple’s annotation

we only subtract the lower bound annotations of tuples from the RHS if the tuples

are guaranteed to be equal to the LHS in all possible worlds. That is the case if both

the LHS and RHS tuple’s attribute values are all certain (the lower bound is equal to

the upper bound) and the tuples are equal. This is checking using condition ✓c shown

below. Using a conditional expression epv we only sum up the lower bounds of the

annotation of RHS tuples fulfilling ✓c. Finally, to calculate the multiplicity of a tuple

in the SGW, we sum of the SG-annotations of RHS which are equal to the LHS tuple

wrt. the tuples’ SG-values. Finally, since this can result in negative multiplicities.
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rewr(Q1 �Q2) := �row">0(⇡Ā,Ā#,Ā",ec,esg ,ep(Qsumright))

ec := max(row# � rrow#, 0)! row#

esg := max(rowsg
� rrowsg, 0)! rowsg

ep := max(row" � rrow", 0)! row"

Qsumright := �Ā,Ā",Ā#,row#,rowsg ,row",esc,essg ,esp(Qpreagg)

esc := sum(rrow#)! rrow#

essg := sum(rrowsg)! rrowsg

esp := sum(rrow")! rrow"

Qpreagg := ⇡Ā,Ā",Ā#,Q1.row
#,Q1.row

sg ,Q1.row
",ecv ,esg ,epv(Qjoin)

ecv := Q2.row
"
! rrow#

esgv := if ✓sg thenQ2.row
sg else 0! rrowsg

✓sg :=
^

A2Ā,B2B̄

Asg = Bsg

epv := if ✓c thenQ2.row
# else 0! rrow"

✓c :=
^

A2Ā,B2B̄

A# = A" ^ A" = B# ^B# = B"

Qjoin := rewr( (Q1)) t ✓join
rewr(Q2)

✓join :=
^

i2{1,...,n}

Ai
"
� Bi

#
^Bi

"
� Ai

#

 (Q): The SG combiner merges all tuples with the same values in the SGW by

summing up their annotations and by merging their range-annotated values. We can
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implement this in relational algebra using aggregation.

rewr( (Q)) := �Ā,Uc,Up,ec,esg ,ep
(rewr(Q))

Uc := min(A1
#)! A1

#, . . . ,min(An
#)! An

#

Up := max(A1
")! A1

", . . . ,max(An
")! An

"

ec := sum(row#)! row#

esg := sum(rowsg)! rowsg

ep := sum(row")! row"

Aggregation: Our rewrite for aggregation support max, min, sum, and count

directly. For avg, we calculate sum and count and then calculate avg(A) =

if count(⇤) = 0 then 0.0 else sum(A)
count(⇤) using projection (not shown here). In the rewrite,

we first determine output groups and ranged-bounded values for the group-by at-

tributes of each of this output. This is achieved by grouping the input tuples based

on the group-by SG values and calculating the minimum/maximum bounds of group-

by values (query Qgbounds). Each such output is then joined with the aggregation’s

input to match all inputs with an output that could contribute to the groups repre-

sented by this output. For that we have to check output’s group-by bounds overlap

with the input’s group-by bound (query Qjoin). Afterwards, we determine the bounds

on the number of groups represented by each output and prepare expressions that

calculate bounds for aggregation function results. These expression (lba, sba, and

uba) are specific to the aggregation function f and are explained below. Finally, we

use aggregation to calculate aggregation function result bounds and row annotations.

Recall that Ā denotes the attributes from relation R.

rewr(�G,f(A)(R)) := �Gsg ,G",G#,eaggbounds
(Qproj)
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eaggbounds :=f(Asg), f(A"), f(A#)

max(row#)! row#,

max(rowsg)! rowsg,

sum(row")! row"

Qproj := ⇡Gsg ,G",G#,lba,sga,uba,ec,esg ,ep(Qjoin)

ec := if ✓c then 1 else 0! row#

✓c :=
^

Ai2G

Ai
" = Bi

"
^ = Ai

# = Bi
#
^ Ai

# = Ai
"

esg := if ✓sg then 1 else 0! rowsg

✓sg :=
^

Ai2G

Ai
sg = Bi

sg

ep := if ✓sg then row" else 0! row"

Qjoin := Qgbounds t ✓join
⇢erename

(rewr(R))

✓join :=
^

Ai2G

Ai
"
� Bi

#
^ Bi

"
� Ai

#

erename := A1
#
! B1

#, . . . , An
#
! Bn

#, . . . , An
"
! Bn

"

Qgbounds := �Gsg ,egbounds
(rewr(R))

egbounds := eA1
bound

, . . . , eAk

bound
(for G = (A1, . . . , Ak))

eA
bound

:= min(A#)! A#,max(A")! A"

The expressions that calculate bounds for aggregation function results (lba,

sga, uba) are shown below. These expressions make use of expressions lbaf , sgaf ,

and ubaf that are specific to the aggregation function f . We use expression egc shown

below to determine whether a tuple certainly belongs to a particular group, i.e., its

group-by values are certain and its lower bound multiplicity is larger than zero. If a
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tuple’s group membership is uncertain, then we need account for the case where the

tuple does not contribute to the aggregation function result. For that we calculate

the minimum/maximum of 0M and lbaf/ubaf .

lba := if egc then lbaf elsemin(0M , lbaf )! A#

sga := sgaf ! Asg

uba := if egc thenubaf elsemax(0M , lbaf )! A"

egc := ✓c ^ row# > 0

For sum, we need to treat positive and negative numbers di↵erently by multiply-

ing them either with row# or ubagg(row) to return the smallest/greatest possible

aggregation function result.

lbasum := if A# < 0 thenA# · row" elseA# · row#

sgasum := if
^

Ai2G

Ai
sg = Bi

sg thenAsg
· rowsg else 0

ubasum := if A" < 0 thenA" · row# elseA" · row"

The neutral element of MIN is 1 which is larger than any other value. Recall that

m⇤MIN k is the identify on m except when k = 0 where it returns1. Thus, the lowest

possible value can be achieved if k 6= 0. Since row#  row", if row" > 0 thenA# else1

is a valid lower bound. Analog, if row# > 0 thenA" else1 is an upper bound.

lbamin := if row" > 0 thenA# else1

sgamin := if
^

Ai2G

Ai
sg = Bi

sg thenA · rowsg else1

ubamin := if row# > 0 thenA" else1

The neutral element of MAX is �1 which is smaller than any other value.

m⇤MIN k is the identify on m except when k = 0 where it returns1. Thus, the lowest



155

possible value can be achieved if k = 0. Thus, if t = 0 then�1 elseA# is a valid

lower bound. Analog, if row# > 0 thenA" else1 is an upper bound.

lbamax := if row# > 0 thenA# else�1

sgamax := if
^

Ai2G

Ai
sg = Bi

sg thenAsg
· rowsg else�1

ubamax := if row" > 0 thenA" else�1

Sorting: The query rewrite rule for our ordering operator creates two copies

of the input relation: Qlower containing the lower bounds of the sort attributes, and

Qupper with the upper bounds. These tuples represent endpoints of value ranges for

O, and so we refer to the tuples of the former as start tuples, and the latter as end

tuples. The lower bound on the tuple’s position wrt. <total

O
is the number of tuples

that certainly precede it: For a given start tuple and t.# = row, this is the total

certain multiplicity (t.##) of end tuples that appear before it. The upper bound is

computed similarly from the total possible multiplicity (t.#") of start tuples that

precede an end tuple. Qbounds computes these values for each start and end tuple

using windowed aggregation to find all end tuple / start tuples that precede a point

and then sum up their certain / possible multiplicity. Note that we use windowed

aggregation with more than one aggregation function here which can be expressed

as two windowed aggregation operators in our formalism. The resulting start tuples

store lower bounds (resp., upper bounds for end tuples). The final rewrite is obtained

by merging the start and end tuples back together using a group-by aggregate. The

selected-guess position, not shown above, is computed analogously using a second

window specification as part of Qbounds.
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rewr(sortO!⌧ (Q)) := �Sch(rewr(Q)),epos(Qbounds)

epos := sum(pos#)! ⌧ #, sum(possg)! ⌧ sg, sum(pos")! ⌧ "

Qbounds := ![�1,0]
e#!pos#,esg!possg ,e"!pos"; ;; pt(Qlower [Qupper [Qsg)

e# := if isend = 0 then sum(isend · t.##) else 0

esg := if isend = �1 then sum(t.#sg) else 0

e" := if isend = 1 then sum((1� isend) · t.#") else 0

Qlower := ⇡Sch(rewr(Q)),O#!pt,0!isend(rewr(Q))

Qsg := ⇡Sch(rewr(Q)),Osg!pt,�1!isend(rewr(Q))

Qupper := ⇡Sch(rewr(Q)),O"!pt,1!isend(rewr(Q))

Windowed Aggregation: The ranged windowed aggregation query rewriting rule is

shown below. The method uses a range overlap self-join on the partition-by attributes

to link partition-definition tuple from Q1 with potential members of the group from

Q2; The result is denoted Qjoin. The relation Qrank is defined in a manner analogous

to the sorting rewrite, assigning each tuple to a position within its partition. Qwindow

builds the window, first filtering out all tuples that certainly do not belong to the

window, and then Qcert labels tuples with whether they definitely belong to the win-

dow. Next Qout computes the windowed aggregate, and then the final rewritten query

includes a join with a computation of the selected-guess result.

rewr(![l,u]
sum(A)!X; G; O(Q)) := ⇡Sch(Qaggbnds),X(

Qaggbnds onid1=id !
[l,u]
sum(A)!X; G; O(Q))
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Qaggbnds := �Sch(rewr(Q)); sum(elb)!X#,sum(eub)!X"(Qinwindow)

elb := if pos# < l + u ^ (iscert _ A# < 0)

then (if A# < 0 thenA# · t.#2
" elseA# · t.#2

#) else 0

eub := if pos" < l + u ^ (iscert _ A" > 0)

then (if A" > 0 thenA" · t.#2
" elseA" · t.#2

#) else 0

Qinwindow := �pos#<l+u _ pos"<l+u(Qaggupper)

Qaggupper :=!
[�1,0]
count(⇤)!pos"; id1; iscert,A"(Qagglower)

Qagglower :=!
[�1,0]
count(⇤)!pos#; id1; iscert,A#(Qmarkcert)

Qmarkcert := ⇡Sch(Qwinposs),eiscert!iscert(Qwinposs)

eiscert := eiscertp ^ eiscertw

eiscertp := Q1.G
# = Q1.G

" = Q2.G
# = Q2.G

"

eiscertw := ⌧ # >= selfpos" � l ^ ⌧ " <= selfpos# + u

Qwinposs := �eispossw (Qwithselfpos)

eispossw := selfpos# � l  ⌧ " ^ selfpos" + u � ⌧ #

Qwithselfpos := Qpos onid1=id Qselfpos

Qselfpos := ⇡id1!id,⌧#!selfpos#,⌧"!selfpos"(�id1=id2(Qpos))
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Qpos := �Sch(Qbnds),epos(Qbnds)

epos := sum(pos#)! ⌧ #, sum(pos")! ⌧ "

Qbnds := !ec!pos#,ep!pos"; id1; pt(Qendpoints)

ec := if isend = 1 then sum(isend · t.#2
#) else 0

ep := if isend = 1 then sum((1� isend) · t.#2
") else 0

Qendpoints := Qpos# [Qpos"

Qpos# := ⇡Sch(Qpart),O#!pt,0!isend(Qpart)

Qpos" := ⇡Sch(Qpart),O"!pt,1!isend(Qpart)

Qpart := ⇢{B1 B|B2Sch(rewr(Q))}(rewr(Q))

on✓join
⇢{B2 B|B2Sch(rewr(Q))}(rewr(Q))

✓join := Q1.G
#
 Q2.G

"
^Q1.G

"
� Q2.G

#

5.9.3 Correctness. To demonstrate that our encoding and rewrites correctly im-

plement AU-DB query semantics, we have to show that (i) the encoding is invertible,

i.e., that there exists a mapping Dec such that Dec(Enc(D)) = D, and (ii) that

the rewrite correctly simulates AU-DB query semantics, i.e., rewr(Q)(Enc(D)) =

Enc(Q(D)).

Theorem 17 (Rewrite Correctness). Let D be a NAU -database, Q be a RA
agg query,

then

Dec(Enc(D)) = D (Enc is invertible)

Qmerge(Enc(D)) = Enc(Q(D)) (rewr(·) is correct)

Proof:

Enc is invertible: Observe that by construction there exists a 1-to-1 mapping between

the tuples in R and Enc(R). A tuple t and its annotation R(t) can be trivially recon-
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structed from the corresponding tuple t in Enc(R) by setting t.A = [t.A#/t.Asg/t.A"]

for each attribute A of R and then setting R(t) = (t.row#, t.rowsg, t.row").

rewr(·) is correct: We prove the claim by induction over the structure of a query.

Since we have proven that Dec(Enc(D)) = D, we prove the correctness of rewr(·)

by showing that Dec(Qmerge(Enc(D))) = Q(D). We will we make use of this fact

in the following.

Base case: Table access Q := R:: rewr(R) is the identify on Enc(R). Thus,

rewr(R) does not contain value-equivalent tuples and Qmerge is the identity on

rewr(R) and the claim holds.

Induction: Assume that the claim holds for queries Q1 and Q2 modulo merging

of value-equivalent tuples. We have to show that the claim holds modulo merg-

ing of value-equivalent tuples for each algebra operator applied to Q1 (or Q1 and

Q2 for binary operators). From this follows then that the claim holds for Qmerge

which merges such tuples. Consider an input database D. In the following let

R1 = Q1(D) and R2 = Q2(D). Similarly, let R1 = rewr(Q1)(Enc(D)) and

R2 = rewr(Q2)(Enc(D)).

Projection Q := ⇡U(Q1): Recall that ⇡U(Q1) is rewritten into

⇡U,U#,U",row#,rowsg ,row"(rewr(Q1))

. Let U 0 = (U,U#, U") and Uall = (U,U#, U", row#, rowsg, row"). The annotation of

a tuple t in the result of Q is the sum of annotations of all input tuples u projected

onto t:

⇡U(Q1)(t) =
X

u:u.U=t

Q1(u)

Let {u1, . . . ,um} be the sets of tuples for which ui.U = t. Since, ui.U = uj.A, for any

i, j 2 {1, . . . ,m} it follows that enc(ui,R1(ui)).U 0 = enc(uj,R1(uj)).U 0 and in turn
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that dec(enc(ui).U 0) = t. Note that, enc(ui,R1(ui)).Uall 6= enc(uj,R1(uj)).Uall if

R1(ui) 6= R1(uj). Based on the induction hypothesis, each tuple ui is encoded in R1

as one or more value-equivalent tuples. Let t1, . . . , tl be the distinct tuples in the set

{t | i 2 9i 2 {1, . . . ,m} : R1(ui).Uall}. We use ui1 , . . . ,umi
to denote the tuples for

which R1(uij).Uall = ti. Furthermore, for any such tuple ti, let uij1
, . . . , uioj

be the

value-equivalent tuples that are projected onto ti. Then,

Dec(rewr(Q)(D))(t)

=
X

i2{1,...,l}

rowdec(ti) · rewr(Q)(D)(ti)

The definition of Enc ensures that every tuple enc(uij) is annotated with 1. Given

the definition of projection, ti is annotated with the sum of annotations of all tuples

enc(ui). That is, ti is annotated with
Pmj

j=1 1 = mj.

=
X

i2{1,...,l}

rowdec(ti) · umi

=
X

i2{1,...,l}

X

j2{1,...,mi}

rowdec(ti)

rewr(⇡U(Q1)) does retain the row annotation attributes of input tuples unmodified.

Thus, we have:

=
X

i2{1,...,l}

X

j2{1,...,mi}

rowdec(enc(ui))

Since we assume that claim holds for Q1, we know that

=
X

i={1,...,m}

rowdec(enc(ui))

=
X

i={1,...,m}

R1(enc(ui)) = Q(D)(t)

We have proven that for any tuple t, we have

Dec(rewr(Q)(D))(t) = Q(D)(t)
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which implies that Dec(rewr(Q)(D)) = Q(D).

Selection Q := �✓(Q1): Consider a tuple t such that Q(D)(t)" > 0, i.e., tuples that

may exists in the result of the selection. Selection over NAU -relations calculates

the annotation of a result tuple t by multiplying its annotation in the input with

the bounds of the result of the selection condition evaluated over t mapped from a

range annotated Boolean value to a NAU -value where > is mapped to 1 and ? to

0. rewr(Q) uses a triple of deterministic expressions to compute the elements of

✓(t) individually over t = enc(t,R1(t)). Thus, rowdec(t) = Q(D)(t) and the claim

holds.

Union Q := Q1 [Q2: Consider a tuple t such that either R1(t) > 0 or R2(t) > 0.

Let T be the set of tuples that are value-equivalent to t. Based on the induction

hypothesis we know that R1(t) =
P

t2T rowdec(t)·(R1(t), R1(t), R1(t)) and R2(t) =
P

t2T rowdec(t) · (R2(t), R2(t), R2(t)). Recall that rewr(Q1 [Q2) = rewr(Q1) [

rewr(Q2). Based on the definition of union (semiring addition), we know that for

any t 2 T , it holds that (R1 [R2)(t) = R1(t) +R2(t). Thus,

Dec(R)(t) =
X

t:Dec(t)=t

(rowdec(t) · (R1(t), R1(t), R1(t)))

+ (rowdec(t) · (R2(t), R2(t), R2(t))))

=
X

t:Dec(t)=t

rowdec(t) · (R1(t), R1(t), R1(t))

+
X

t:Dec(t)=t

rowdec(t) · (R2(t), R2(t), R2(t))

= R1(t) +R2(t)

= Q(D)(t)

Cross Product Q := Q1 ⇥Q2: Consider a tuple t that is the result of joining tuples
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t1 from the result of Q1 and t2 from the result of Q2. The annotation of a result

tuple t of Q in NAU relations are computed by multiplying the annotations of the

input tuples t1 and t2 which are joined to form t. Based on the induction hypothesis

we know that R1(t) =
P

t2T dec(t) · (R1(t), R1(t), R1(t)) and R2(t) =
P

t2T dec(t) ·

(R2(t), R2(t), R2(t)). Recall that rewr(Q1 ⇥Q2) = rewr(Q1) ⇥ rewr(Q2). Using

the fact that multiplication distributes over addition and that semiring operations

are commutative and associativity we get:

Dec(R)(t) =
X

t1,t2:dec(t1)=t1^dec(t2)=t2

((rowdec(t1) · (R1(t1), R1(t1), R1(t1)))

· (rowdec(t2) · (R2(t2), R2(t2), R2(t2))))

In the following let ni denote rowdec(ti) · (Ri(ti), Ri(ti), Ri(ti)) for i 2 {1, 2}.

=
X

t1,t2:dec(t1)=t1^dec(t2)=t2

(n1 · n2)

=

0

@
X

t1:dec(t1)=t1

n1

1

A ·

0

@
X

t2:dec(t2)=t2

n2

1

A

= R1(t1) +R2(t2)

= Q(D)(t)

SG Combiner Q :=  (Q1): Recall that  merges the attribute bounds of tuples that

agree on their SG values and sums their annotations. rewr( (Q1)) groups input

tuples on their SG values. Each group contains all tuples that agree with each other on

SG attribute values. Then the minimum (maximum) over attributes storing attribute

bounds is computed to calculate the value of attributes storing lower (upper) bounds

for attributes. The values of attributes storing tuple annotations are computed by

summing up the values of these attributes for each group.
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Except Q := Q1 �Q2: Recall the definition of set di↵erence over KAU -relations:

(R1 �R2)(t)
# :=  (R1)(t)

#
�K

X

t't0
R2(t

0)"

(R1 �R2)(t)
sg :=  (R1)(t)

sg
�K

X

tsg=t0sg

R2(t
0)sg

(R1 �R2)(t)
" :=  (R1)(t)

"
�K

X

t⌘t0
R2(t

0)#

Note that t ' t0 if the bounds of all attributes of t and t0 overlap, i.e., the tuples may

represent the same tuple in some world. Furthermore, t ⌘ t0 if these tuples are equal

and are certain (t.A# = t.A" for all attributes A). Obviously, t ⌘ t0 ) t ' t0. Since

the rewrite for  was proven to be correct above, we only need to prove that tuple

annotations are calculated according to the definition repeated above. The first step

of rewr(Q) joins the results of rewr( (Q1)) with rewr(Q2) based on overlap of

their attribute bounds. Note that in the result of rewr( (Q1)) each tuple t from

 (Q1) is encoded as a single tuple t. However, in R2 (the result of rewr(Q2)),

each tuple t2 from R2 may be encoded as multiple value equivalent tuples. The

annotations of these tuples multiplied with the their row annotation attributes sum

up to the annotation R2(t2):

R2(t) =
X

t2:dec(t2)=t2

rowdec(t2) · (R2(t2), R2(t2), R2(t2))

For each such tuple ti let ti,1, . . . , ti,ni
be the set of these value-equivalent

tuples. Thus, the join will pair t with all such tuples for each tuple t2 for which

t ' t0. After the join, the row annotation attributes of each RHS tuple t0 paired

with a tuple t is modified as follows: the lower bound is replaced with the upper

bound (expression ecv); the SG row annotation is retained unless t and t0 do not

agree on their SG attribute values (in this case the lower bound is set to 0); and

the upper bound is set to the lower bound if t and t0 are equal on all attributes and

are certain (otherwise the upper bound is set to 0). Afterwards, tuples are grouped
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based on their LHS values and the RHS row annotations are summed up. As shown

above in the proof for cross product, the fact the one tuple t is encoded as multiple

value-equivalent tuples is unproblematic for joins. The net e↵ect is that for each

LHS tuple t corresponding to a tuple t there exists one tuple text in the result of the

aggregation that (i) agrees with t on all attribute values and for which (ii) attribute

rrow# stores
P

t0:t't0 R2(t0)", attribute rrowsg stores
P

t0:tsg=t0sg R2(t0)sg, and finally

attribute rrow" stores
P

t⌘t0 R2(t0)#. In a last, step projection is used to calculate

the annotation of t in the result corresponding to and selection is applied to remove

tuples which certainly do not exist (their upper bound row annotation is 0).

Aggregation Q := �G,f(A)(Q1): To demonstrate that the rewrite rule for aggregation is

correct, we need to show that (i) tuples are grouped according to the default grouping

strategy (Def. 30; (ii) that group-by bounds for each output tuple are calculated as

defined in Def. 31; (iii) that aggregation function result bounds are computed following

Def. 32); and (iv) that the multiplicity bounds for each output are correct ( Def. 33

and ( Def. 34).

Consider Qgbounds that is part of the rewrite for aggregation. This query groups

the input on their SG group-by values and then calculates the group-by bounds for

each group. Each group created in this way corresponds to one output group produced

by the default grouping strategy (recall that this strategy defines one output group

SG group-by value that exists in the input. Thus, (i) holds.

Note that according to Def. 30, the group-by attribute bounds for an output

are determined as the minimum (maximum) value of the lower (upper) bound on a

group-by attribute across all tuples that have the same SG group-by values as the

output. This set of tuples corresponds exactly to one group in Qgbounds. Since, Qbounds

computes group-by attribute bounds as the minimum (maximum) of the bounds of

the input tuples belonging to a group, (ii) also holds.
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The next step in the rewritten query is Qjoin which pairs every tuple from

Qgbounds with all input tuples that overlap in their group-by bounds with the output

tuple’s group-by bounds. Note that this is precisely the set g(g) for output group g as

iterated over in Def. 32 to calculate aggregation function result bounds. Recall that to

calculate the lower bound of for an aggregation function result ti.f(A)# by summing

up (in the aggregation monoid M) for each tuple in g(g) either the minimum of 0M

and (R(t) ⇤NAU ,M t.A)# if ug(G,R, t) which is the case when either some group-by

attributes of t are uncertain or if the tuple may not exit (R(t)# = 0). Otherwise,

(R(t) ⇤NAU ,M t.A)# is used instead. Expressions lba, sga, and uba used in the rewritten

query implement this logic. Furthermore, it is trivial to see that expressions lbaf ,

sgaf , and ubaf implement the semantics of ⇤NAU ,M . Thus, the computation of the

lower bound in the rewritten query correctly reflects the computation in NAU . Note

that each input tuple t of the aggregation may be encoded as multiple value-equivalent

tuples in the encoding. However, this is not a problem, according to 11 if ~k =

~k1 +NAU

~k2, then ~k ~M ~m = ~k1 ~M ~m +MI

~k2 ~M ~m. Thus, (iii) holds for lower

bounds. The prove for upper bounds is symmetric. Finally, for the multiplicity

bounds of tuples all input tuples that agree with an output on their SG group-by

values are considered by the default grouping strategy. For the upper bound the

bound bound on the multiplicity of these inputs is summed up. For the lower bound,

the result of summing up the lower bound multiplicities for all tuples with certain

group-by values (only these tuples are guaranteed to below to a group) is passed

to �N which returns 1 if the sum is non-zero and 0 otherwise. The SG and upper

bound multiplicities computed in the same way except that all tuples are considered

(and �N is not used for the upper bound). In the rewritten query this is achieved

by conditionally replacing the multiplicity bounds of tuples that are not part of the

sum to 0 using a condition ✓c for the lower bound and ✓SG for the upper bound

and SG multiplicities. �N is implemented by replacing non-zero multiplicities with
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1 and using aggregation function max instead of sum to combine the multiplicities

of input tuples. Since the same multiplicity bounds are calculated by the rewritten

query as for the query under NAU semantics, (iv) holds. From (i) to (iv) follows that

the aggregation rewrite is correct.

5.9.4 Optimizations for Joins. One potential performance bottleneck of query

evaluation over AU-DBs is that joins may degenerate into cross products if the bounds

of join attribute values are loose. As shown in the example below, in the worst case,

each tuple from the LHS input may join with every tuple from the RHS leading to

a join result whose size is quadratic in the input size. Even if most join attribute

values are certain, the DBMS is likely to chose a nested loop join since we join on

inequalities to test for overlap of join attribute bounds leading to O(n2) runtime for

the join.
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A N3

[1/1/2] (2,2,3)

[1/2/2] (1,1,2)

(a) AU-DB relation R

C N3

[1/3/3] (1,1,1)

[1/2/2] (1,2,2)

(b) AU-DB relation S

A C N3

[1/2/2] [1/2/2] (1,2,4)

(c) SGW result of R t A=CS

A C N3

[1/1/2] [1/3/3] (0,0,3)

[1/1/2] [1/2/2] (0,0,6)

[1/2/2] [1/3/3] (0,0,2)

[1/2/2] [1/2/2] (1,2,4)

(d) AU-DB result of R t A=CS

Figure 5.7. Join rewriting without optimization
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A N3

[1/1/1] (0,2,2)

[2/2/2] (0,1,1)

(a) splitsg(R)

C N3

[3/3/3] (0,1,1)

[2/2/2] (0,2,2)

(b) splitsg(S)

A N3

[1/1/2] (0,0,3)

[1/2/2] (0,0,2)

(c) split"(R)

C N3

[1/3/3] (0,0,1)

[1/2/2] (0,0,2)

(d) split"(S)

A N3

[1/1/2] (0,0,5)

(e) CprA,1(split"(R))

C N3

[1/2/3] (0,0,3)

(f) CprC,1(split"(S))

A C N3

[2/2/2] [2/2/2] (0,2,2)

[1/1/2] [1/2/3] (0,0,15)

(g) opt(R t A=CS)

Figure 5.8. Join rewriting with optimization
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Example 25. Figure 5.7 shows an example of joining two AU-DB relations R onA=C

S. The SGW result consists of a single tuple. However, the AU-DB result is a cross

product of the two input tables since join attribute bounds of all tuples from R overlap

with the join attribute bounds of all tuples from S.

In order to reduce the running time of joins, we introduce an optimized version

of the rewrite rule for join. This optimization trades accuracy for performance by

compressing the overestimation of possible answers encoded by the input relations

of the join. We introduce an operator called split that splits the input relation R

into two parts: splitsg(R) encodes the SGW removing all attribute-level uncertainty

and split"(R) encodes the over estimation of possible worlds encoded by R. We

will show that for any incomplete N-relation R that is bounded by a NAU -relation

R, R is also bound by splitsg(R) [ split"(R). We define these two operations

below. For each tuple, t, splitsg(R) contains a corresponding tuple t0 from which

all attribute uncertainty has been removed by setting t0.A# = t0.Asg = t0.A" = t.Asg.

The annotation of such a tuple t0 is determined as follows.: splitsg(R)(t0)sg = R(t)sg,

splitsg(R)(t)" = Rsg(t), i.e., the overestimation of possible annotations is removed

and splitsg(R)(t)# = R(t)# if the tuple’s attribute values are all uncertain and to 0

otherwise. split"(R) retains the tuples from R, keep the R(t)" as the upper bound

of a tuple’s annotation, and sets split"(R)(t)# = split"(R)(t)sg = 0. Consider a

AU-DB relation R with schema Ā = (A1, . . . , An). Let cert(t) denote the tuple

derived from t by making all attribute values certain, i.e., replacing each attribute

value [c1/c2/c3] with [c2/c2/c2].

splitsg(R)(t)# :=
X

t0:cert(t0)=t

8
>><

>>:

R(t0)# if
V

i2{1,...,n} t
0.Ai

# = t0.Ai
"

0 otherwise

splitsg(R0)(t)sg = splitsg(R)(t)" :=
X

t0:cert(t0)=t

R(t)sg
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split"(R)(t)# := 0 split"(R)(t)sg := 0 split"(R)(t)" := R(t)"

We rewrite the two split operators as shown below.

rewr(splitsg(R)) = ⇡eA,ec!row#,rowsg ,rowsg!row")(�rowsg>0(R))

eA = A1
sg
! A1

#, A1
sg
! A1

sg, A1
sg
! A1

", . . . ,

ec = if
^

i2{1,...,n}

Ai
# = Ai

" then row# else 0

rewr(split"(R)) = ⇡A#,A,A",0!row#,0!rowsg ,row"(R)

Based on the following lemma, we can split any AU-DB relation R without loosing

its bounding properties while preserving the SGW encoded by R.

Lemma 13 (Split preserves bounds). Let R be a NAU -relation that bounds an in-

complete N-relation R, then splitsg(R) [ split"(R) also bounds R. Furthermore,

Rsg = splitsg(R) [ split"(R)sg.

Proof: We first show that Rsg = splitsg(R) [ split"(R)sg. Since, the SG annota-

tions of split"(R) are zero and splitsg(R)sg = Rsg by definition, the claim holds.

Let Rsplit = splitsg(R) [ split"(R). To demonstrate that the split operator pre-

serves bounds, we have to show that for any possible world $2 R we can extend a

tuple matching T M based on which R bounds$ to a tuple matching T Msplit based

on which Rsplit bounds $. Consider a tuple t such that R(t) 6= 0. We distinguish

two cases. If
V

i2{1,...,n} t.Ai
# = t.Ai

", i.e., the tuple’s attribute values are certain then

Rsplit(t) = splitsg(R)(t) + split"(R)(t) =

(R(t)#,
X

t0:cert(t0)=t

R(t0)sg,
X

t0:cert(t0)=t

R(t0)sg +R(t)")

. Thus, for every tuple t we can set T Msplit(t, t) = T M(t, t) and wrt. t the tuple

matching T Msplit is fulfilling the requirements for being a tuple matching based on
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which Rspli bounds$ since its annotation include the bounds of R(t). Otherwise, at

least one value of t is uncertain and Rsplit(t) = split"(R)(R) = (0, 0,R(t)"). Thus,

we can safely set T Msplit(t, t) = T M(t, t) and T Msplit is a tuple matching based on

which Rsplit bounds $.

To improve the performance of joins, we split both input relations of the join.

We then employ another new operator CprA,n that compresses the output of split"

into a relation with n tuples by grouping the input tuples into n buckets based on

their A values. For that we split the range of A values appearing in the input into

n buckets containing roughly the same number of values each. All tuples from a

bucket are aggregated into a single result tuple by merging their attribute bounds

and summing up their annotations. Let tb denote the tuple constructed for bucket b

in this fashion. Let B = {b1, . . . , bn} be the set of buckets for CprA,n(R).

CprA,n(R)(t) =

8
>><

>>:

(0, 0,
P

t02b R(t0)") if 9b 2 B : t = tb

0 otherwise

We rewrite the Cpr operator as shown below. Assume that the bucket bi

covers the interval [li, ui] from the domain of A.

rewr(CprA,n(R)) = ⇡
Ā#,Āsg ,Ā",0!row#,0!rowsg ,row"(Qmerge)

Qmerge := �B,emerge,sum(row")!row"(R)

emerge = min(A1
#)! A1

#,min(A1
sg)! A1

sg,max(A1
")! A1

", . . .

ebucketize = if A" � l1 ^ A#  u1 then 1 else (if . . .

Note that Cpr does not preserve the SGW encoded by its input. This is not

problematic, because we only apply Cpr to the output of split" for which the SG

annotation of each tuple is zero anyways.
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Lemma 14 (Cpr preserves bounds). Let R be a NAU -relation that bounds an incom-

plete N-relation R, n 2 N, and A 2 Sch(R), then CprA,n(R) also bounds R.

Proof: Let $ be one possible world of R. Let T M be a tuple matching based on

which R bounds$. Furthermore, let tr denote the result tuple produced for a bucket

b. We construct a tuple matching T MCpr which bounds R by setting for all buckets

b and tuple t from $:

T MCpr(tb, t) =
X

t2b

T M(t, t)

Since by definition CprA,n(R)(tb) =
P

t2b R(t) and since t v t ) t v tb for all

t 2 b (because the attribute bounds of tb are defined to cover the attribute bounds of

all tuples from bucket b), we have that T MCpr is a tuple matching based on which

CprA,n(R) bounds $.

Our optimized rewrite for join first splits both inputs of the join. We join

split" and splitsg separately and then union the result. For a join with condition ✓,

let ✓sg denote the result of replacing references to an attribute A with Asg. Note that

for splitsg since all attribute values are certain, we can apply ✓sg instead of having to

apply range-anntotated expression evaluation. Thus, the join over splitsg will result

only in minimal overhead compared to a regular join. Since split"(R) t split"(S)

may potentially produce a large number of results, we apply Cpr to the inputs to

bound the size of the join result. Thus, we control the worst case join result size

by setting the parameter n of Cpr. In principle we can compress on any attribute

of the input relations. However, it is typically better to choose attributes that are

referenced in ✓, e.g., for a condition A = B if we compress on A respective B using

n buckets with the same bucket boundaries for A and B, then the join result will

contain at most n results since each tuple from CprA,n(R) will join at most with one

tuple from CprB,n(S). Let A (B) denote an attribute from Q1 (Q2) that appears in

✓, preferably in an equality comparison. The optimized rewrite for join opt(·) using
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A and B is defined below.

opt(Q1 t ✓Q2) := Qsg [Qpos

Qsg := ⇡Ā,B̄,Ā#,B̄#Ā",B̄",ec,esg ,ep(

rewr(splitsg(Q1)) t ✓sgrewr(splitsg(Q2)))

Qpos := rewr(CprA,n(split
"(Q1)) t ✓CprB,n(split

"(Q2)))

ec := Q1.row
#
·Q2.row

#
! row#

esg := Q1.row
sg
·Q2.row

sg
! rowsg

ep := Q1.row
"
·Q2.row

"
! row"

Lemma 15 (The optimized rewrite preserves bounds). The optimized join rewrite is

correct, i.e., for any NAU -database and query Q := Q1 t ✓Q2, let QoptMerge be query

Qmerge, but using opt(·) instead of rewr(·) for joins. Then,

Dec(Qmerge(Enc(D))) �I Dec(QoptMerge(Enc(D)))

Proof: Based on Lem. 13 and Lem. 14 we know that the split and compression

operators preserve bounds. As mentioned above, all tuples are attribute-level certain

in the result of splitsg. Thus,

rewr(splitsg(R)) t ✓sgrewr(splitsg(S)))

and

rewr(splitsg(R) t ✓split
sg(S))

are equivalent. Since the rewrite for union is returning of the rewritten inputs we

know that opt(Q1 t ✓Q2) is equivalent to rewr(Qsg0 [Qpos0) where Qsg0 and Qpos0

are defined as shown below.
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rewr(Qsg0 [Qpos0)

Qsg0 := splitsg(Q1) t ✓sgsplit
sg(Q2)

Qpos0 := CprA,n(split
"(Q1)) t ✓CprB,n(split

"(Q2))

Using the fact that join distributes over union, we can rewrite Qsg0[Qpos0 into:

(splitsg(Q1) [ split"(Q1)) t ✓(split
sg(Q2) [ split"(Q2))

Since replacingQ with splitsg(Q)[split"(Q) preserves bounds, it follows that opt(·)

is correct.

Example 26. Fig. 5.8 shows the result of joining the two tables from Fig. 5.7 using

the optimized rewrite. By sacrificing accuracy, the number of result tuples can be

reduced by limiting the number of output tuples.

5.9.5 Optimization for Aggregation. Similar to the optimization for joins, the

self-join used in the rewrite for aggregation to determine which tuples could possibly

belong to a group may also degenerate into a cross product if the attribute-level

bounds are loose, resulting in a potential performance bottleneck. We now introduce

an optimized version of the rewrite rule for aggregation. This optimization improves

over the naive aggregation rewrite in two aspects: (i) we piggy-back the computation

of SG aggregation function results on the computation of output groups (Qgbounds)

and (ii) we use the compression operator used in the optimize join rewrite to compress

the RHS of subquery Qjoin from the naive aggregation rewrite.
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opt(�G,f(A)(R)) := �0f(Asg)0,Gsg ,G",G#,eaggbounds
(Qproj)

eaggbounds := f(A"), f(A#),

max(row#)! row#,

max(rowsg)! rowsg,

sum(row2")! row"

Qproj := ⇡0f(Asg)0,Gsg ,G",G#,lba,uba,row#,rowsg ,row2"(Qjoin)

Qjoin := Qgbounds t ✓join
CprA,n(⇢erename

(rewr(R)))

✓join :=
^

Ai2G

Ai
"
� Bi

#
^Bi

"
� Ai

#

erename := A1 ! B1, . . . , An ! Bn, row ! row2

Qgbounds := �Gsg ,egbounds,max(ec)!row#,max(rowsg)!rowsg(rewr(R))

ec := if ✓c ^ row# > 0 then 1 else 0

✓c :=
^

Ai2G

Ai
" = Bi

"
^ = Ai

# = Bi
#
^ Ai

# = Ai
"

egbounds := eA1
bound

, . . . , eAk

bound
, sga (for G = (A1, . . . , Ak))

eA
bound

:= max(A")! A",min(A#)! A#

As mentioned above, the main goal of the optimization is to decrease the

number of input tuples for the join operation. Note how in the optimized rewrite

shown above, a compression operator is applied on the RHS input of the join which

limits the number of tuples that need to be matched to the output groups produced

by the LHS. Because we still need to produce the correct SG aggregation results

for each output group, we now need to perform this when calculating output groups

in the LHS since compression may group multiple SG groups into one tuple in the
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compressed RHS which makes it impossible to compute the precise SG aggregation

function results from the RHS. There are also some minor additional modifications

like pre-computing the certain/selected guess tuple multiplicities.

Lemma 16 (The optimized rewrite preserves bounds). The optimized aggregation

rewrite is correct, i.e., for any NAU -database and query Q := �G,f(A)(Q1), let QoptMerge

be query Qmerge, but using opt(·) instead of rewr(·) for aggregation. Then

Dec(Qmerge(Enc(D))) �I Dec(QoptMerge(Enc(D)))

Proof: We already proved that the naive aggregation rewrite preserves bounds

(Thm. 13). The optimized rewrite computes BestGuess() results in the LHS of

the join. However, this does not a↵ect the computed values. We also apply the

compression operator to compress the RHS. As shown in Lem. 14, this operator pre-

serves bounds. Consider two tuples tleft and tright from the LHS and RHS of the

naive rewrite that are joined by Qjoin. In the optimized rewrite, tright may have been

merged with multiple other tuples into a compressed tuple tcompressed. By definition

of Cpr, the attribute bounds of tcompress include the attribute bounds of tright. Since

the join condition of Qjoin is the same in the naive and optimized versions of the

aggregation rewrite, we know that tleft joins with tcompress. Using the fact Cpr is

bound preserving it follows that the aggregation function result bounds computed by

the optimized aggregation rewrite have to include the bounds produced by the naive

rewrite. The group-by bounds are computed in the same way in both cases and,

thus, both rewrite compute the same group-by bounds for each result tuple. Thus, it

follows that the optimized aggregation rewriting is correct.

5.10 Native Algorithms

We now introduce optimized algorithms for ranking and windowed aggregation

over AU-DBs that are more e�cient than their SQL counterparts presented in Sec. 5.9.
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Through a connected heap data structure, these algorithms leverage the fact that lower

and upper position bounds are typically close approximations of one another to avoid

performing multiple passes over the data. We assume a physical encoding of an AU-

DB relation R as a classical relation [40] where each range-annotated value of an

attribute A is stored as three attributes A#, Asg, and A". In this encoding, attributes

t.##, t.#sg, and t.#" store the tuple’s multiplicity bounds.

5.10.1 Non-deterministic Sort, Top-k. Algorithm 1 sorts an input AU-DB R.

The algorithm assigns to each tuple its position ⌧ given as lower and upper bounds:

t.⌧ #, t.⌧ ", respectively. 10 Given a parameter k, the algorithm can also be used

to find the top-k elements; otherwise we set k = |R| (the maximal possible size of

the input relation). Algorithm 1 (Fig. 5.9) takes as input the relational encoding of

an AU-DB relation R sorted on O#, the lower-bound of the sort order attributes.

Recall from Equation (5.25) that to determine a lower bound on the sort position of

a tuple t we have to sum up the smallest multiplicity of tuples s that are certainly

sorted before t, i.e., where s.O" <total

O
t.O#. Since s.O# <total

O
s.O" holds for any tuple,

we know that these tuples are visited by Algorithm 1 before t. We store tuples in

a min-heap todo sorted on O" and maintain a variable rank# to store the current

lower bound. For every incoming tuple t, we first determine all tuples s from todo

certainly preceding t (s.O" < t.O#) and update rank# with their multiplicity. Since t

is the first tuple certainly ranked after any such tuple s and all tuples following t will

also certainly ranked after s, we can now determine the upper bound on s’s position.

Based on Equation (5.27) this is the sum of the maximal multiplicity of all tuples

that may precede s. These are all tuples u such that s.O" � u.O#, i.e., all tuples we

have processed so far. We store the sum of the maximal multiplicity of these tuples

in a variable rank" which is updated for every incoming tuple. We use a function

10The selected guess position ⌧ sg is trivially obtained using an additional heap,
and omitted here for clarity.
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completed

τ↑ < r

unprocessed

τ↓ > r
τ↓=r

active
Figure 5.9. The lifecycle of tuples in Algorithm 1

emit to compute s’s upper bound sort position, adapt s.## (for a top-k query, s may

not exist in the result if its position may be larger than k), add s to the result, and

adapt rank# (all tuples processed in the following are certainly ranked higher than

s). Function split splits a tuple with t.# > 1 into multiple tuples as required by

Def. 36. If we are only interested in the top-k results, then we can stop processing the

input once rank# is larger than k, because all following tuples will be certainly not

in the top-k. Once all inputs have been processed, the heap may still contain tuples

whose relative sort position wrt. to each other is uncertain. We flush these tuples at

the end.

Algorithm 2 defines function split(t) which split multiplicities of range tuple

t into multiplicity of ones using the semantics in Fig. 5.4.

Complexity Analysis: Let n = |R|. The algorithm requires O(n · log n) to sort the

input. It then processes the data in one-pass. For each tuple, we compare t.O" in

O(1) with the root of the heap and insert the tuple into the heap in O(log |heap|).

Tuples are removed from the heap just once in O(log |heap|). In the worst-case, if the

sort positions of all tuples may be less than k, then the heap will contain all n tuples

at the end before flushing. Thus, |heap| is bound n and we get O(n · log n) as the

worst-case runtime complexity for our algorithm requiring O(n) memory. However,

in practice, heap sizes are typically much smaller.

5.10.2 Connected Heaps. In our algorithm for windowed aggregation that we will

present in Sec. 5.10.3, we need to maintain the tuples possibly in a window ordered

increasingly on ⌧ " (for fast eviction), sorted on A# to compute min-k(R, t, A), and
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Input: R (sorted on O
#), k 2 N (or k = |R"|)

1 todo minheap(O") ; rank#  0 ; rank"  0 ; res ;

2 for t 2 R do

3 while todo.peek().O" < t.O# do // emit tuples

4 emit(todo.pop())

5 if rank# > k then // tuples certainly out of top-k?

6 return res

7 t.⌧#  rank# // set position lower bound

8 todo.insert(t) // insert into todo heap

9 rank" += t.#" // update position upper bound

10 while not todo.isEmpty() do // flush remaining tuples

11 emit(todo.pop())

12 return res

13 def emit(s)

14 s.⌧"  min(k, rank") // position upper bound capped at k

15 if rank" > k then // s may not be in result if s.⌧" > k

16 s.##  0

17 res res [ split({s})

18 rank# += s.## // update position lower bound

Algorithm 1: Non-deterministic sort (top-k) on attributes O

sorted decreasingly on A" to compute max-k(R, t, A). We could use separate heaps

to access the smallest element(s) wrt. to any of these orders e�ciently. However,

if a tuple needs to be deleted, the tuple will likely not be the root element in all

heaps which means we have to remove non-root elements from some heaps which is

ine�cient (linear in the heap size). Of course it would be possible to utilize other

data structures that maintain order such as balanced binary trees. However, such

data structures do not achieve the O(1) lookup performance for the smallest element

that heaps provide. Furthermore, trees are typically are not as e�cient in practice
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1 Function split(t):

2 for i 2 [1, t.t.#"] do

3 ti = copy(t) ;

4 ti.t.#sg = t.t.#sg
< i : 1?0 ;

5 ti.t.#" = 1 ;

6 ti.t.## = t.t.## < i : 1?0 ;

7 ti.⌧
"+ = i ;

8 ti.⌧
#+ = i ;

9 return ti ;

Algorithm 2: Split bag tuple

as heaps which can be implemented as arrays. Instead, we introduce a simple, yet

e↵ective, data structure we refer to as a connected heap.

A connected heap is comprised of H heaps which store pointers to a shared set

of records. Each heap has its own sort order. A record stored in a connected heap

consists of a tuple (the payload) and H backwards pointers that point to the nodes

of the individual heaps storing this tuple. These backward pointers enable e�cient

deletion (O(H · log n)) of a tuple from all heaps when it is popped as the root of one of

the component heaps. When a tuple is inserted into a connected heap, it is inserted

into each component heap in O(log n) in the usual way with the exception that the

backwards pointers are populated.

Preliminary experiments: To measure the impact of the backpointers in connected

heaps on performance, we did a preliminary experimental comparison with using a set

of independent heaps. Without the backlinks, removing an non-root element from a

heap is linear in the size of the heap in the worst-case, because it may require a search

over the whole heap to find the position of such an element. Afterwards, the element

can be deleted and the heap property can be restored in O(log n). Using the backlinks,

finding the positions of an element in other heaps is O(1) and so popping the root
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element of one heap and removing it from all other heaps is in O((log n)·m) where n is

the size of the largest heap and m is the number of heaps. The table below shows the

execution times in milliseconds using connected heaps (back pointers) versus classical

unconnected heaps ( linear search). This experiment was run on a database with 50k

tuples and 1%-5% uncertainty (amount of tuples that are uncertain) varying the size

of the ranges for the attribute we are aggregating over. The main factor distinguishing

linear search performance from back pointers is the heap size which for our windowed

aggregation algorithm is a↵ected by attribute range size, percentage of tuples which

have uncertain order-by and data size. Even though in this experiment the amount of

uncertain data and database size are quite low, we already see 25% up to a factor of

⇠ 10 improvement. For larger databases or larger percentage of uncertain data, the

sizes of heaps will increase and, thus, we will see even more significant performance

improvements.

Table 5.7. Back pointer performance

Uncert Range Connected heaps Unconnected heaps

(Back pointers)(ms) (Linear search)(ms)

1% 2000 1979.272 3479.042

1% 15000 2045.162 6676.732

1% 30000 2103.974 9646.330

5% 2000 1976.651 4078.487

5% 15000 2149.990 15186.657

5% 30000 2191.823 22866.713

Deletion from a connected heap: When a node is popped from one of the compo-

nent heaps the nodes of the other heaps storing the tuple are identified in O(H) using

the backwards pointers. Like in standard deletion of nodes from a heap, a deleted

node is replaced with the right-most node at the leaf level. Standard sift-down and
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sift-up are then used to restore the heap property in O(log n). Recall that the heap

property for a min-heap requires that for each node in the heap its value is larger than

the value of its parent. Insertion of a new node v into a heap places the new element

at the next free position at the leaf level. This may violate the heap property. The

heap property can be restored in O(log n) using sift-up (repeatedly replacing a node

with its parent). To delete the root of a heap, we replace the root with the right-most

child. This may violate the heap property if the new root is larger than one of its

children. The heap property can be restored in O(log n) steps using sift-down, i.e.,

replacing a node that is larger than a child with the smaller of its children. For a

connected heap, deletion may cause a node to be deleted that is currently not the

root of the heap. Like in standard heaps, we replace the node v to be deleted with

the right-most node vl from the leaf level. This may violate the heap property (every

child is larger than its parent) in two possible ways: either vl is smaller than the

parent of v or vl is larger than one of the children of v. Note that it is not possible for

both cases to occur at the same time, because the heap was valid before and, thus,

if vl is larger than a child of v, then it has to be larger than the parent of v. If vl

is smaller than the parent of v, then it has to be smaller than all other nodes in the

subtree rooted at v. We can restore the heap property by sifting up vl. Now consider

the case where vl is larger than one of the children of v and let vc denote that child

(or the smaller child if vl is larger than both children). Note that the subtree rooted

at v was a valid heap. Thus, replacing v with vl is replacing the root element of

this subheap and the heap property for the subheap can be restored using sift-down.

Since vl is larger than the parent of v this restores the heap property for the whole

heap.

Example 27 (Connected heap). Consider the connected heap shown below on the

left storing tuples t1 = (1, 3), t2 = (2, 6), t3 = (3, 2), and t4 = (4, 1). Heap h1 (h2) is

sorted on the first (second) attribute. Calling pop() on h1 removes t1 from h1. Using
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the backwards pointer from t1 to the corresponding node in h2 (shown in red), we also

remove t1 from h2. The node pointing to t1 from h2 is replaced with the right most

leaf node of h2 (pointing to t2). In this case the heap property is not violated and,

thus, no sift-down / up is required.

1h1

2

4

3

1 3t1
2 6t2
3 2t3
4 1t4

1h2

2

6

3

Result of h1.pop()

2h1

4 3

2 6t2
3 2t3
4 1t4

1h2

2 6

Figure 5.10. ex. 27

5.10.3 Ranged Windowed Aggregation. Without loss of generality, we focus

on window specifications with only a ROWS PRECEDING clause; a FOLLOWING clause can

be simulated by o↵setting the window, i.e., a window bound of [�N, 0]. Algorithm 3

uses a function compBounds to compute the bounds on the aggregation function result

based on the certain and possible content of a window. We discuss the code for these

functions below for aggregation functions min, max, and sum (count uses the same

algorithm as sum using [1/1/1] instead of the values of an attribute A). Algorithm 3

follows a sweeping pattern similar to Algorithm 1 to compute the windowed aggregate

in a single pass over the data which has been preprocessed by applying sortO!⌧ (R)

and then has been sorted on ⌧ #. The algorithm uses a minheap openw which is sorted

on ⌧ " to store tuples for which have not seen yet all tuples that could belong to their

window. Additionally, the algorithm maintains the following data structures: cert is

a map from a sort position i to a tree storing tuples t that certainly exist and for which

t.⌧ # = i sorted on ⌧ ". This data structure is used to determine which tuples certainly

belong to the window of a tuple; (poss, pagg#, pagg") is a connected minheap where

poss, pagg#, and pagg" are sorted on ⌧ ", A#, �A", respectively. This connected heap
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stores tuples possibly in a window. The di↵erent sort orders are needed to compute

bounds on the aggregation function result for a window e�ciently (we will expand on

this later). Finally, we maintain a watermark c-rank# for the lower bound position

of the certain part of windows.

0 1 2 3 4 5 6 7 8 9

sposs

cert
t1

t2
cert[2]

t3
cert[3] t4c-rank#

Figure 5.11. Example state for Algorithm 3, N=5, c-rank#=2.



185

Input: f , X,O, N , A, sortO!⌧ (R) sorted on ⌧
#

1 openw minheap(⌧") // tuples with open windows

2 cert Map(int,Tree(⌧")) // certain window members by pos.

3 (poss, pagg#, pagg") connected-minheap(⌧", A#, A")

4 c-rank#  0 // watermark for certain window

5 res ;

6 for t 2 R do

7 openw .insert(t)

8 if t.## > 0 then // insert into potential certain window

9 cert[t.⌧#].insert(t)

10 while openw .peek().⌧" < t.⌧# do // close windows

11 s openw .pop()

12 while c-rank# < s.⌧" �N do // evict certain win.

13 cert[c-rank#] = null

14 c-rank# ++

15 s.X compBounds (f, s, cert , poss ) // compute agg.

16 while poss .peek.⌧" < s.⌧# �N do // evict poss. win.

17 poss .pop()

18 res res [ {s}

19 poss .insert(t) // insert into poss. win.

Algorithm 3: Aggregate f(A)! X, sort on O, N precedings
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1 def compBounds(f, t, cert, poss) // compute bounds on sum(A)

2 if f = sum then

3 return computeSumBounds(t,cert, poss)

4 if f = min then

5 return computeMinBounds(t,cert, poss)

6 if f = max then

7 return computeMaxBounds(t,cert, poss)

8 if f = count then

9 return computeCountBounds(t,cert, poss)

10 if f = avg then

11 return computeMinBounds(t,cert, poss)

Algorithm 4: Computing bounds for f(A)! X for tuple t
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1 def ComputeSumBounds(t, cert , poss ) // compute bounds on sum(A)

2 n N � 1; X#  t.A"; X"  t.A" // pos. and bounds

3 for x 2 [t.⌧" �N, t.⌧#] do

4 for s 2 cert [x] do

5 if s.⌧"  t.⌧# then // belongs to cert. window of s

6 X
"+ = s.A"; X#+ = s.A#

7 n��

8 else break ;

9 lb poss copy(pagg#); ub poss copy(pagg")

10 nlb  n; nub  n // max. num. of tuples possibly in win.

11 while nlb > 0 ^ ¬lb poss.isEmpty() do // compute X
#

12 s lb poss.pop()

13 if s.A# < 0 then // only values < 0 contribute to X
#

14 X
#+ = s.A#

15 nlb ��

16 else break ;

17 while nub > 0 ^ ¬ub poss.isEmpty() do // compute X
"

18 s ub poss.pop()

19 if s.A" > 0 then // only values > 0 contribute to X
"

20 X
"+ = s.A"

21 nub ��

22 else break ;

23 return [X#, X"]

Algorithm 5: Computing bounds for sum(A)! X for tuple t



188

1 def computeMinBounds(t, cert , poss ) // compute bounds on min(A)

2 n N � 1; X#  t.A"; X"  t.A" // pos. and bounds

3 for x 2 [t.⌧" �N, t.⌧#] do

4 if cert [x] then // min of certain lower-bound

5 X
"
 x

6 break

7 X
# = pagg#.peek().A# // min of possible lower-bound

8 return [X#, X"]

Algorithm 6: Computing bounds for min(A)! X for tuple t
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Algorithm 3 first inserts each incoming tuple into openw (Line 7). If the

tuple certainly exists, it is inserted into the tree of certain tuples whose lower bound

position is t.⌧ #. Note that each of these trees is sorted on ⌧ " which will be relevant

later. Next the algorithm determines for which tuples from openw, their windows

have been fully observed. These are all tuples s which are certainly ordered before

the tuple t we are processing in this iteration (s.⌧ " < t.⌧ #). To see why this is the

case, first observe that (i) we are processing input tuples in increasing order of ⌧ #

and (ii) tuples are “finalized” by computing the aggregation bounds in monotonically

increasing order of ⌧ ". Given that we are using a window bound [�N, 0], all tuples s

that could possibly belong to the window of a tuple t have to have s.⌧ #  t.⌧ ". Based

on these observations, once we processed a tuple t with t.⌧ # > s.⌧ " for a tuple s in

openw, we know that no tuples that we will process in the future can belong to the

window for s. In Line 11 we iteratively pop such tuples from openw. For each such

tuple s we evict tuples from cert and update the high watermark c-rank# (Line 12).

Recall that for a tuple u to certainly belong to the window for s we have to have

s.⌧ " �N � t.⌧ #. Thus, we update c-rank# to s.⌧ " �N and evict from cert all trees

storing tuples for sort positions smaller than s.⌧ " �N . Afterwards, we compute the

bounds on the aggregation result for s using cert and poss (we will describe this step

in more detail in the following). Finally, we evict tuples from poss (and, thus, also

pagg# and pagg") which cannot belong to any windows we will close in the future.

These are tuples which are certainly ordered before the lowest possible position in

the window of s, i.e., tuples u with u.⌧ " < s.s# � N (see Fig. 5.5). Evicting tuples

from poss based on the tuple for which we are currently computing the aggregation

result bounds is safe because we are emitting tuples in increasing order of ⌧ ", i.e., for

all tuples u emitted after s we have u.⌧ " > s.⌧ ". Fig. 5.11 shows an example state for

the algorithm when tuple s is about to be emitted. Tuples fully included in the red

region (t2 and t3) are currently in cert[i] for sort positions certainly in the window
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for s. Tuples with sort position ranges overlapping with the green region are in the

possible window (these tuples are stored in poss). Tuples like t4 with upper-bound

position higher than s will be popped and processed after s. Once all input tuples

have been processed, we have to close the windows for all tuples remaining in openw.

This process is the same as emitting tuples before we have processed all inputs and,

thus, is omitted from Algorithm 3.

Algorithm 3 uses function compBounds to compute the bounds on the aggrega-

tion function result for a tuple t using cert, pagg# and pagg" following the definition

from Sec. 5.8.1. First, we fetch all tuples that are certainly in the window from cert

based on the sort positions that certainly belong to the window for t ([t.⌧ " - N, t.⌧ #])

and aggregate their A bounds. Afterwards, we use pagg# and pagg" to e�ciently

fetch up possn(R, t) tuples possibly in the window for t to calculate the final bounds

based on max-k and min-k.

Complexity Analysis: Algorithm 3 first sorts the input in O(n log n) time using

Algorithm 1 followed by a deterministic sort on ⌧ #. Each tuple is inserted into openw,

poss, and cert at most once and poped from openw exactly once. The size of the

heaps the algorithm maintains is certainly less than n at all times. To compute the

aggregation function bounds, we have to look at the certain tuples in cert[i] for at

most size([N, 0]) = N+1 sort positions i and at most N+1 tuples from poss that can

be accessed using the connected heaps in O(N · log n). Thus, the overall worst-case

runtime of the algorithm is O(N · n · log n).

5.11 Creating AU-DBs

In this section we discuss how to translate data represented in incomplete and

probabilistic data models into AU-DBs such that the generated AU-DB bounds the

input uncertain database. Furthermore, we enable the user to specify bounds for an
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expression. This enables integration of AU-DBs with Lenses [6, 51] to generate AU-

DBs that encode the uncertainty introduced by data cleaning and curation heuristics.

5.11.1 tuple-independent database. A tuple-independent database (TI-DB)

D is a database where each tuple t is marked as optional or not. The incomplete

database represented by a TI-DB D is the set of instances that include all non-

optional tuples and some subset of the optional tuples. That is, the existence of a

tuple t is independent of the existence of any other tuple t0. In the probabilistic version

of TI-DBs each tuple is associated with its marginal probability. The probability of

a possible world is then the product of the probability of all tuples included in the

world multiplied by the product of 1 � P (t) for all tuples from D that are not part

of the possible world. We define a translation function transAUDB

TI-DB for TI-DBs that

returns a AU-DB relation with certain attribute values. We extend this function to

databases in the obvious way. A tuple’s lower multiplicity bound is 1 if the tuples

is not certain (marked as optional or its probability is less than 1). That is, like for

UA-DBs, transAUDB

TI-DB encodes exactly the certain answers of the TI-DB and the SG

world is selected as the world that contains all tuples whose marginal probability is

larger than or equal to 0.5. Note that this is indeed one of possible worlds that have

the highest probability among all worlds encoded by the TI-DB. Let TTI(t) denote

the range-annotated tuple which encodes the certain tuple t and D be a probabilistic

TI-relation. We define:

8A 2 Sch(R) : TTI(t).A
# = TTI(t).A

" = TTI(t).A
sg = t.A

Using this definition, we define transAUDB

TI-DB for probabilistic TI-DBs as shown

below.
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transAUDB

TI-DB (R)(TTI(t))
# :=

8
>><

>>:

1 ifP (t) = 1

0 otherwise

transAUDB

TI-DB (R)(TTI(t))
sg :=

8
>><

>>:

1 ifP (t) � 0.5

0 otherwise

transAUDB

TI-DB (R)(TTI(t))
" :=

8
>><

>>:

1 ifP (t) > 0

0 otherwise

Theorem 18 (transAUDB

TI-DB is bound preserving). Given a probabilistic TI-DB D,

transAUDB

TI-DB (D) is a bound for D.

Proof: By definition of the translation function transAUDB

TI-DB , all attribute-values are

certain. Thus, with exception of the upper bound on a tuple’s multiplicity (1 is a

trivial upper bound on the multiplicity of any tuple in an TI-DB), the claim follows

from [16][Theorem 2] which proved the lower bounding property of this translation.

Thus, the result of transAUDB

TI-DB trivially bounds R. We omit the proof for incomplete

TI-DBs since it is analog.

5.11.2 x-DBs. An x-DB [17], records for each tuple a number of alternatives.

Such alternatives are encoded as so-called x-tuples. An x-tuple ⌧ is simply a set of

tuples {t1, . . . , tn} with a label indicating whether the x-tuple is optional. We use

|⌧ | to denote the number of alternatives of x-tuple ⌧ . x-relations are sets of such

x-tuples and x-databases are sets of x-relations. A possible world of an x-relation $

is a deterministic relation that is generated by selecting at most one alternative t 2 ⌧

for every x-tuple ⌧ from $ if ⌧ is optional, or exactly one if it is not optional. That

is, each x-tuple is assumed to be independent of the others, and its alternatives are
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assumed to be disjoint (hence the name block-independent incomplete database). The

probabilistic version of x-DBs (also called a block-independent database [17]) assigns

each alternative a probability such that P (⌧) =
P

t2⌧ P (t)  1. Thus, a probabilistic

x-tuple is optional if P (⌧) < 1. For an x-tuple ⌧ = {t1, . . . , tn}, we use pickMax(⌧)

to denote the alternative of ⌧ with the highest probability among all alternatives,

picking the first alternative if there are multiple such alternatives. For instance, for

⌧ = {t1, t2} with P (t1) = 0.5 and P (t2) = 0.5 we get pickMax(⌧) = t1.

We now define a translation function transAUDB

x-DB that maps x-dbs into AU-

DBs. In the result of this translation each x-tuple from the input is encoded as a

single range-annotated tuple whose attribute bounds include the attribute values of

all alternatives of the x-tuple. For the SG values of a tuple we choose the alternative

with the highest probability. We use TX(⌧) to denote a range-annotated tuple that

we construct as shown below such that it bounds all alternatives for x-tuple ⌧ . For

any A 2 Sch(⌧) we define:

TX(⌧).A
# = min

t2⌧
t.A

TX(⌧).A
sg = pickMax(⌧).A

TX(⌧).A
" = max

t2⌧
t.A

X-tuples in an x-relation are certain if P (⌧), i.e., if some alternative of ⌧ exists

in every possible world. For the incomplete version of x-dbs, a tuple is certain if it is

not optional. We set the lower multiplicity bound for such tuples to 1. The lower mul-

tiplicity bound for all other tuples is set to 0. Any alternative of an x-tuple is possible.

This alternative pickMax(⌧) is part of the SGW if (1 � P (⌧))  P (pickMax(⌧)),

i.e., it is more likely that pickMax(⌧) exists than that no alternative of the x-tuple

exists. The multiplicity upper bound for any TX(t) is 1 and its lower bound is 1 i↵ the
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x-tuple is not optional (one of the alternatives of the x-tuple exists in every world).

As mentionIn probabilistic x-DBs we check that P (⌧) = 1. We the show version of

transAUDB

x-DB for probabilistic x-DBs below.

transAUDB

x-DB (R)(⌧)# =

8
>><

>>:

1 ifP (⌧) = 1

0 otherwise

transAUDB

x-DB (R)(⌧)sg =

8
>><

>>:

1 if (1� P (⌧))  P (pickMax(⌧))

0 otherwise

transAUDB

x-DB (R)(⌧)" =

8
>><

>>:

1 ifP (⌧) > 0

0 otherwise

Theorem 19 (transAUDB

x-DB preserves bounds). Given an x-table D, transAUDB

x-DB (D)

bounds D.

Proof: Trivially, TX(⌧) bounds all alternatives of ⌧ by construction. Each possible

world contains at most one alternative per x-tuple (exactly one if the x-tuple is

certain). Thus, TX(⌧)" = 1 is an upper bound on the multiplicity of any x-tuple’s

alternative in every world. The lower bound multiplicity TX(⌧)# is 1 if P (⌧) = 1 and

0 otherwise. Thus, TX(⌧)# a lower bound the multiplicity of an alternative of the

x-tuple in every world. Since x-tuples are assumed to be independent of each other

and each possible world contains at most one alternative of an x-tuple, the probability

of a possible world D of an x-table R is calculated as
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Thus, the SG world is indeed the world with the highest probability of the

x-DB, because it contains the highest probability alternative for each x-tuple (or no

alternative if this is the highest probability option).

5.11.3 C-tables. In contrast to the proof of Thm. 9, we now consider C-

tables [12] where variables from the set ⌃ of variable symbols can also be used as

attributes values, i.e., tuples over D [ ⌃. Recall from the proof of Thm. 9 that an

C-table [12] R = ($,�,�) is a relation$ paired with (i) a global condition � which

is also a logical condition over ⌃ and (ii) a function � that assigns to each tuple t 2$

a logical condition over ⌃. Given a valuation µ that assigns to each variable from ⌃

a value, the global condition and all local conditions evaluate to either > or ?. The

incomplete database represented by a generalized C-table R is the set of all relations

$ such that there exists a valuation µ for which µ(�) is true and$= {µ(t) | µ(�(t))},

i.e., $ contains all tuples for which the local condition evaluates to true where each

variable in the tuple is replaced based on µ.

Since determining whether a tuple in a c-table is certain is coNP-complete11,

we settle for a transformation that creates lower and upper bounds for both attribute-

values and multiplicities that are not tight. Using a constraint solver, we can deter-

mine (i) whether the local condition �(t) of a tuple is a tautology (the tuple exists in

every world) and (ii) lower and upper bounds on the value of a tuple’s attribute. For

instance, for the lower bound we have to solve the following optimization problem:

11Determining the certain answers to a query over a Codd-table is coNP-
complete [11, 94]. Since, the result of any first order query over a Codd-table can
be encoded as a C-table and evaluating a query in this fashion is in PTIME, it follows
that determining whether a tuple is certain in a C-table cannot be in PTIME, because
otherwise we could use this to compute the certain answers to a query in PTIME by
evaluating it in over a C-table encoding the input Codd-table and then calculating
the certain tuples of the resulting C-table.
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Minimize:

µ(t.A)

Subject to:

�(µ(t))

8x 2 ⌃ : µ(x) 2 D

We use min(t.A) and max(t.A) to denote the results of these optimization problems.

While solving constraints is not in PTIME, this can be acceptable if the size of formulas

used in local conditions is relatively small. If that is not the case, we can trade

tightness of bounds for performance and fall back to a simpler method, e.g., in worst

case the minimum and maximum values of D are safe bounds and the bounds for a

constant value is the constant itself. To select a SGW, we have to find a valuation µ

such that the global condition holds. In general, this may be computationally hard.

For C-tables without global conditions, any valuation would do. Let µSG denote the

valuation we select. To define our transformation, we again first define a function

TC that maps tuples and their local conditions to range-annotated tuples. For all

A 2 Sch(t), this function is defined as:

T (t).A# := min(t.A)

T (t).Asg := µSG(t.A)

T (t).A" := max(t.A)

Now to determine the multiplicity bounds of tuples we have to reason about

whether a local condition is a tautology and whether it is satisfiable. This can again

be checked using constraint solvers. We can fall back to a PTIME method that can

only detect certain types of tautologies, e.g., if the local condition is a conjunction
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of inequalities. Note that even the first version does not guarantee tight bounds,

because it (i) ignores global conditions and (ii) does not take into account that the

set of tuples encoded by two tuples from the input C-table may overlap (e.g., a

tuple may be certain even though no local condition is a tautology). We define

predicate isTautology( ) that evaluates to true if  is a tautology (potentially

using the optimization as described above). Similarly, isSatisfiable( ) is true if  

is satisfiable. Using these predicates we define the multiplicity bounds generated by

transAUDB

C-table as shown below.

transAUDB

C-table(R)(TC(t,�(t)))
# :=

8
>><

>>:

1 if isTautology( )

0 otherwise

transAUDB

C-table(R)(TC(t,�(t)))
sg :=

8
>><

>>:

1 ifµSG(�(t))

0 otherwise

transAUDB

C-table(R)(TC(t,�(t)))
" :=

8
>><

>>:

1 if isSatisfiable( )

0 otherwise

Theorem 20 (transAUDB

C-table is bound preserving). Given an incomplete database D

encoded as C-tables, transAUDB

C-table(D) bounds D.

Proof: Based on the definition of C-tables, any tuple whose local condition is a

tautology exists in every possible world. Furthermore, if the local condition of a

tuple is satisfiable then it may exist in some world (only if the global condition for the

valuation that satisfies the local condition evaluates to true). Finally, by construction

the tuples of the AU-DB created by transAUDB

C-table for a C-table R bound the possible

values of the tuples of R across all possible worlds. By construction µSG is a possible

world of R. Thus, transAUDB

C-table(R) bounds R.
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The probabilistic version of C-tables [55] associates each variable with a prob-

ability distribution over its possible values. Variables are considered independent of

each other. The probability of a variable assignment µ is then the product of all

probabilities P (x = µ(x)) for each x 2 ⌃. The probability of a possible world is the

sum of the probabilities of all valuations that produce this world. Our translation

scheme can be adapted to the probabilistic version of C-tables by picking the SG by

selecting the highest probability assignment for each variable x to approximate the

world with the highest probability. For probabilistic C-tables with global conditions,

finding a possible world may again be computationally hard.

5.11.4 Lenses. Lenses as presented in [6, 41, 51] are a principled method for

exposing the uncertainty in the result of data cleaning, curation and integration

methods as incomplete data. For instance, when repairing primary key violations by

picking one tuple t for each set of tuples with the same key, the choice of t is typically

made based on some heuristic. However, all other possible picks cannot be ruled out

in general. A lens applies such a cleaning heuristic to select on possible repair as a

SGW and then encodes the space of possible repairs for a method as an incomplete

database. Technically, this is achieved using the so-called variable-generating algebra

which allows queries to introduce uncertainty in the form of random variables. The

result are Virtual C-tables which generalize C-tables by allowing symbolic expressions

as attribute values. In our primary key repair example, for a key k and the set of

tuples T = {t | t.K = k} which have this key value (K are the key attributes),

random variables are introduced for each attribute A such that |{t.A | t 2 T}| > 1,

i.e., the attribute’s value depends on the choice of repair for k. The possible value for

such a variable xk,A are then all values that appear in T : xk,A 2 {t.A | t 2 T}. This

operation can be implemented in the variable-generating algebra as a query that uses

aggregation grouping on the key attributes K, to check for each non-key attribute

and key value k whether there is more than one tuple with this key value. If this is
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the case, then the value of each attribute is replaced with a variable if there is more

than one value for this attribute in a group.

Example 28 (Cleaning with Lenses). Consider repairing the key of a relation R(A,B)

with key A. In systems like Mimir [6] and Vizier [41, 51] that support lenses, vari-

ables are introduced by queries while their distribution is specified separately. Here

we assume that the construct V ar(name) creates a new random variables with name

name. Using this construct, we can generate a Virtual C-table that encodes all possi-

ble repairs using the query shown below. We first count the number of distinct values

of attribute B for each key (subquery keys). Then in the outer query we replace each

B value with a variable if there is more than one possible value. Note that a full

solution also requires us to separately specify the possible values for these variables.

However, we omit this here.

SELECT A,

CASE WHEN numB > 1

THEN Var(tid || ’B’)

ELSE theB

END AS B

FROM (SELECT A,

count(DISTINCT B) AS numB ,

min(B) AS theB

FROM R

GROUP BY A) keys

To support AU-DBs as an approximation of Virtual C-tables created by Lenses

(and thus to support tracking of a wide range of cleaning and curation operations), we

can either develop a transformation for Virtual C-tables or define a construct similar

to the one for Virtual C-tables used in the example above to allow uncertainty to
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be introduced as part of a query. We opted for the second option, since it would

allow new Lenses to be implemented directly in AU-DBs without the need for an

excursion to Virtual C-tables for which evaluation of certain operators (e.g., joins) is

expensive. Towards that goal we introduce a construct MakeUncertain(e#, esg, e")

which takes three expressions e#, esg, e" that calculate a SG value, and an lower

an upper bound for a value. We require that this construct can only be applied to

AU-DBs, assumed to have been created using one of our transformations explained

above. For deterministic inputs we produce a dummy transformation transAUDB

certain that

assumes that all tuples and attribute values are certain.

Example 29. Reconsider the key repair task from Ex. 28. We can create a AU-

DB bounding the space of repairs using the query shown below. Here we select the

minimum B value for each group as the SG value for attribute B.

SELECT A,

CASE WHEN numB > 1

THEN

ELSE MakeUncertain(minB ,minB ,maxB)

END AS B

FROM (SELECT A,

count(DISTINCT B) AS numB ,

min(B) AS minB ,

max(B) AS maxB

FROM transAUDB
certain(R)

GROUP BY A) keys
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CHAPTER 6

EXPERIMENTS

We compare UA-DBs and AU-DBs (AU-DB) implemented on Postgres against

(1) Det: Deterministic SGQP; (2) Libkin: An under-approximation of certain an-

swers [35, 47]; (3) UA-DB: An under-approximation of certain answers combined with

SGQP [16]; (4) MayBMS: MayBMS used to compute all possible answers12; (5) MCDB: Da-

tabase sampling (10 samples) in the spirit of MCDB [59] to over-approximate certain

answers; (6) Trio: A probabilistic DB with bounds for aggregation [17]; and (7) Symb:

An SMT solver (Z3) calculating aggregation result bounds based on the symbolic rep-

resentation from [23]. All experiments are run on a 2⇥6 core AMD Opteron 4238

CPUs, 128GB RAM, 4⇥1TB 7.2K HDs (RAID 5). Against these mentioned ap-

proaches, we use synthetic data set PDBench for general performance testing. We

use parameterized synthetic dataset for micro benchmarks by adjusting factors that

a↵ecting performance like uncertainty percentage and uncertainty range. We per-

formed both time and quality measurements for real queries over real world datasets

that get uncertainty from resolving data quality issues. We report the average of 10

runs.

6.1 PDBench

For a general performance comparison over both of our approaches, we use

PDBench [96], a modified TPC-H data generator [97] that creates an x-DB (block-

independent database) with attribute-level uncertainty by replacing random attributes

with multiple randomly selected possible alternatives. We directly run MayBMS queries

12Times listed for MayBMS and MCDB include only computing possible answers
and not computing probabilities.
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Figure 6.1. PDbench Queries

(without probability computations) on its native columnar data representation. For

MCDB, we approximate tuple bundles with 10 samples. We apply Libkin on a database

with labeled nulls for uncertain attributes using the optimized rewriting from [47].

We run Det on one randomly selected world — this world is also used as the SGW for

UA-DB and AU-DB. We construct an AU-DB instance by annotating each cell in this

world with the minimum and maximum possible values for this cell across all worlds.

For UA-DB we mark all tuples with at least one uncertain value as uncertain.

PDBench Queries: To evaluate the overhead of UA-DBs and AU-DBs compare to

other incomplete database approaches, we use the queries of PDBench (simple SPJ

queries). With a scale factor 1 (SF1) database (⇠1GB per world), we evaluate scala-

bility relative to the amount of uncertainty. Using PDBench, we vary the percentage

of uncertain cells: 2%, 5%, 10% and 30%. Each uncertain cell has up to 8 possible

values picked uniformly at random over the whole domain, resulting in large ranges,

a worst-case scenario for AU-DBs and a best-case scenario for MayBMS. As Fig. 6.1a

shows, our approach has constant overhead (a factor of ⇠ 5), resulting from the many

possible tuples created by joins on attributes with ranges across the entire domain.

To evaluate scalability, we use 100MB, 1GB, and 10GB datasets (SF 0.1, 1, and 10)

and fix the uncertainty percentage (2%). As evident from Fig. 6.1b, UA-DBs and AU-

DBs scale linearly in the SF for such queries where UA-DBs have nearly no overhead

comparing with Det.
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6.2 UA-DB experiments

Certain Answers over C-tables: As an example of a more complex incomplete

data model, we evaluate the performance of UA-DBs against computing certain an-

swers over C-tables. We create a synthetic table with 8 attributes. For each tuple we

randomly chose half of its attributes to be variables and the other half to be floating

point constants. We construct random queries by assembling a number of randomly

chosen self-joins, projections, or selections. We measure query execution time using

UA-DBs. The exact certain answers for a query over the C-tables are computed by

instrumenting the query to calculate a local condition for every result tuple and run-

ning the Z3 constraint solver (https://github.com/Z3Prover/z3) over the resulting

boolean expression. An answer is certain i↵ its local condition is a tautology. Each

local condition’s complexity of depends on how tuples are combined by the query.

Joins combine tuple conditions by conjunction, while projections and unions combine

matching result tuples by disjunction. Selection extends the local condition on rows

where the selection predicate accesses a variable-valued attribute. Each selection op-

erator further increases complexity for each conjunction, disjunction or arithmetic

operation. Sec. 6.2 shows the average runtime per result tuple for both C-tables and

UA-DBs averaged over all randomly generated queries. The x-axis is the number

of operators (i.e., selection, projection or join) in the source query. Overhead for

C-tables increases super-linearly in query complexity from about 27⇥ to over 40⇥.

6.2.1 UA-DB real world datasets. We use multiple real world datasets. from

https://github.com/Z3Prover/z3
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Table 6.1. Real World Datasets

Dataset Rows Cols UAttr URow URL

Building Violations 1.3M 35 0.82% 12.8% https://data.cityofchicago.org/Buildings/

Building-Violations/22u3-xenr

Shootings in Bu↵alo 2.9K 21 0.24% 2.1% http://projects.buffalonews.com/charts/

shootings/index.html

Business Licenses 63K 25 1.39% 14.0% https://data.cityofchicago.org/Community-

Economic-Development/Business-Licenses-

Current-Active/uupf-x98q

Chicago Crime 6.6M 17 0.21% 0.9% https://data.cityofchicago.org/Public-

Safety/Crimes-2001-to-present/ijzp-q8t2

Contracts 94K 13 1.50% 19.2% https://data.cityofchicago.org/

Administration-Finance/Contracts/rsxa-ify5

Food Inspections 169K 16 0.34% 4.6% https://data.cityofchicago.org/Health-Human-

Services/Food-Inspections/4ijn-s7e5

Gra�ti Removal 985K 15 0.09% 0.8% https://data.cityofchicago.org/Service-

Requests/311-Service-Requests-Graffiti-

Removal/hec5-y4x5

Building Permits 198K 19 0.42% 5.3% https://https://www.kaggle.com/aparnashastry/

building-permit-applications-data/data

Public Library Survy 9.2K 99 1.19% 14.2% https://www.imls.gov/research-evaluation/

data-collection/public-libraries-survey/

explore-pls-data/pls-data

a wide variety of domains to evaluate how our approach performs for real world

data. We use SparkML to impute missing values in the datasets, treating alternative

imputations as a source of uncertainty. The resulting dataset, represented as an x-

DB, was converted to a UA-DB using transUADB

x-DB (Sec. 4.5), which marks all tuples

with at least one uncertain attribute as uncertain. Table 6.1 shows basic statistics

for the cleaned datasets and URLs for the original datasets: the #rows, #attributes,

the percentage of attribute values that are uncertain (Uattr), and the percentage of

rows marked as uncertain by our exact approximation (Urow).

https://data.cityofchicago.org/Buildings/Building-Violations/22u3-xenr
https://data.cityofchicago.org/Buildings/Building-Violations/22u3-xenr
http://projects.buffalonews.com/charts/shootings/index.html
http://projects.buffalonews.com/charts/shootings/index.html
https://data.cityofchicago.org/Community-Economic-Development/Business-Licenses-Current-Active/uupf-x98q
https://data.cityofchicago.org/Community-Economic-Development/Business-Licenses-Current-Active/uupf-x98q
https://data.cityofchicago.org/Community-Economic-Development/Business-Licenses-Current-Active/uupf-x98q
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/Administration-Finance/Contracts/rsxa-ify5
https://data.cityofchicago.org/Administration-Finance/Contracts/rsxa-ify5
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5
https://data.cityofchicago.org/Service-Requests/311-Service-Requests-Graffiti-Removal/hec5-y4x5
https://data.cityofchicago.org/Service-Requests/311-Service-Requests-Graffiti-Removal/hec5-y4x5
https://data.cityofchicago.org/Service-Requests/311-Service-Requests-Graffiti-Removal/hec5-y4x5
https://https://www.kaggle.com/aparnashastry/building-permit-applications-data/data
https://https://www.kaggle.com/aparnashastry/building-permit-applications-data/data
https://www.imls.gov/research-evaluation/data-collection/public-libraries-survey/explore-pls-data/pls-data
https://www.imls.gov/research-evaluation/data-collection/public-libraries-survey/explore-pls-data/pls-data
https://www.imls.gov/research-evaluation/data-collection/public-libraries-survey/explore-pls-data/pls-data
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Table 6.2. Real Query Results

Q1 Q2 Q3 Q4 Q5

Overhead 2.28% 1.81% 1.32% 2.88% 3.51%

Error Rate 0.55% 0.37% 0% 0.92% 0.29%

Incompleteness: To measure the false negative rate (fraction of answers that are

misclassified as uncertain) of our approach, we use queries that project on a randomly

chosen set of attributes. The rationale for this is that projecting an uncertain tuple

onto a subset of its attributes that are certain causes the tuple to produce a certain

answer. This is the primary situation in which UA-DBs mis-classify results, so this

experiment represents a worst case scenario for UA-DBs. We evaluate queries which

project on a randomly chosen set of attributes and measure the false negative rate

(FNR). Fig. 6.3a to Fig. 6.3i show the distribution of the FNR (min, 25-percentile,

median, 75-percentile, max) for queries with a fixed number of projection attributes.

As expected, the FNR decreases as the number of projection attributes grows, but is

low in general (less than 20% in the worst cases).For most datasets, the median FNR

is below 5% when at least half of the attributes are involved in the projection. Note

that selection and join do not produce any “new” false negative results (see proof of

Theorem 6 in Appendix 4.8). This shows that for real world datasets with correlated

errors, the FNR is typically low.

6.2.2 UA-DB Real Queries. We next evaluate the e↵ectiveness of our approach

on five queries over the real world datasets (the SQL code and descriptions of these

queries are shown below). Most of our real world datasets are from open data portals

that associate analyses (e.g., visualizations) with datasets. Test queries are reverse

engineered from these analyses. We measure the performance overhead and false neg-

ative rate of UA-DBs. Performance overhead is measured as the slowdown relative to

deterministic query processing. As Table 6.2 shows, our approach introduces a slight

(less than 4%) overhead for these queries. The worst case (4%) is Q5, which involves
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Figure 6.3. Measuring incompleteness as the fraction of certain answers that were
misclassified as uncertain

a join operator. All other queries, which contain only selections and projections have

under 3% overhead. In each case, we saw a 1% false negative rate or lower. Notably,

Q3 returns no misclassified results due to its small result size.

Probabilistic databases: We next compare the performance and accuracy of UA-

DBs against MayBMS. For this experiment, we use a BI-DB (an x-DB with proba-

bilities), varying the number of alternatives for each block and use three queries QP1,

QP2 and QP3 of varying complexity described in [93]. For MayBMS, we treat tuples

with probability p � 1 as certain13. Table 6.3 shows both runtime and error rate

for both systems, with 2, 5, 10, or 20 alternatives. For MayBMS we show the result

for exact probability computation and for approximation using the scheme from [57]

with an error bound of 0.3 (shown in parentheses). Note that query processing in a

UA-DB is independent of the number of possible worlds. Only a single alternative

13MayBMS may report prob. > 1 due to rounding/approximation errors.
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Table 6.3. Probabilistic database

UADB MB-02 MB-05 MB-10 MB-20

QP1

time (ms) 3.1 4.0 (4.1) 22.7 (22.3) 308.5 (305.6) 4.8k (4.7k)

error 0% 0% (0%) 0% (0%) 0% (0%) 0% (0%)

QP2

time (ms) 4.4 6.8 (6.8) 28.4 (28.5) 374.5 (367.0) 8.8k (7.0k)

error 1.6% 0% (0%) 0%( 0%) 0% (0.5%) 0.5% (1.1%)

QP3

time (ms) 7.6 54.0 (20.3) 17.0k (10.8k) 289.7k (118.6k) 3.5m (1.1m)

error 3.0% 0% (0.1%) 0.1% (0.1%) 0.2% (0.3%) 0.6% (1.1%)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  5  10  15  20  25

M
e

a
n

 e
rr

o
r 

ra
te

Number of projection attributes

buffalo
foodins
permits

Figure 6.4. Bag semantics - mislabelings

is used for each block. We observe that MayBMS’s results include both false posi-

tives and false negatives. Because results are computed by summing floating point

numbers, even MayBMS’ exact probability computations exhibits a small amount of

rounding error that is more noticeable for larger number of alternatives (e.g., MB-20).

Although approximating probabilities can improve performance especially for com-

plex queries, MayBMS is still orders of magnitude slower than UA-DBs. QP3 includes

a self-join which further slows MayBMS down due to the increase in possible worlds

and expression complexity.

Beyond Set Semantics: In this experiment we evaluate the FNR of our approach

using bag semantics (semiring N) and the access control semiring A [34]. For the

bag semantics experiment we evaluate projections under bag semantics over some of

the real world datasets from Table 6.1. The results for this experiment are shown

in Fig. 6.4. Observe that the FNR is similar to the set semantics case. The access

control semiring annotates each tuple with an access control level (one of 0 - “nobody
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can access the data’, T is “top secret”, S is “secret”, C is “confidential”, and P is

“public”) to determine what clearance-level is necessary to view the tuple. Addition

(multiplication) is max (min) according to the following order over the elements

0 < T < S < C < P. For this experiment, we emulate a scenario where private

information in a dataset is heuristically detected and secured with an A annotation.

Using 5 real world datasets from Table 6.1, we randomly assigned access control

labels to each tuple, and then created multiple instances with 1%, 2%, 5%, and 10%

of misclassified tuples. We evaluated random projection queries over these datasets

and measured the amount of misclassified query results weighted by the distance

between the certain annotation and the approximations, e.g., the distance of C and

T is 2
5 = 0.4. In Fig. 6.5, we vary the number of projection attributes and show

the distribution of the amount of misclassified query results over 9 randomly selected

projection queries for 5 datasets. The FNR increases when the input error rate is

increased, but is quite low in most cases.

6.2.3 Query Descriptions. Q1: This query is expressed over the Chicago crime

dataset. The query returns all crime ids and case numbers for all thefts, domestic bat-

teries, and criminal damages. Here, attribute IUCR (Illinois Uniform Crime Reporting

code) is a system for specifying crime types.

SELECT id , case_number ,

CASE IUCR
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WHEN 0820 then ’Theft’

WHEN 0486 then ’Domestic Battery ’

WHEN 1320 then ’Criminal Damage ’

END AS crime_type

FROM Q

WHERE IUCR =0820 OR IUCR =0486 OR IUCR =1320

Q2: Find all crime ids, case numbers, longitudes and latitudes of crimes within a

retangular area containing Chicago WaterTower.

SELECT id , case_number , Longitude , Latitude

FROM crime

WHERE Longitude BETWEEN -87.674 AND -87.619

AND Latitude BETWEEN 41.892 AND 41.903

Q3: This is a query over the gra�ti dataset. Q3 returns all street addresses and zip

codes for gra�ti removal requests that are currently open.

SELECT Street_Address , ZIP_Code , status

FROM graffiti

WHERE status=’Open’

Q4: Find all dates, addresses and zip codes of food inspections of restaurants that

passed, but were identified as “high risk”.

SELECT Inspection_Date , address , zip

FROM foodinspections

WHERE results = ’Pass w/ Conditions ’

AND risk = ’Risk 1 (High)’
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Q5: For each crime id, case numbers, and IUCRs of crimes, find all status, service

request numbers and community areas from gra�ti removal requests where both take

place in district 8 and the gra�ti removal request’s location is within 100 coordinate

units of the crime’s location.

SELECT c.ID ,

c.Case_Number ,

c.IUCR ,

g.status ,

g.Service_Request_Number ,

g.Community_Area

FROM

(SELECT * FROM graffiti

WHERE police_district = 8) g,

(SELECT * FROM crime

WHERE district = ’008’) c

WHERE c.X_Coordinate < g.X_Coordinate + 100

AND c.X_Coordinate > g.X_Coordinate - 100

AND c.Y_Coordinate < g.Y Coordinate + 100

AND c.Y_Coordinate > g.Y_Coordinate - 100

MayBMS-QP1: Find probability for a randomly chosen tuple.

SELECT conf()

FROM buffalo

WHERE index =1;

MayBMS-QP2: Find probability for shooting in each district for a random range of
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incidence.

SELECT *

FROM

(SELECT "District_shooting",

index ,

conf()

FROM bp20

GROUP BY "District_shooting",index) x

WHERE index <2000

AND index >650

AND "District_shooting "=’BD’;

MayBMS-QP3: Find probabilities for all incidences that happened in the same

district with same type of shooting for a random incident.

SELECT xind , yind ,p

FROM

(SELECT y.index AS yind ,

x.index AS xind ,

x." District_shooting" AS xds ,

y." District_shooting" AS yds ,

x." Type_shooting" AS xts ,

y." Type_shooting" AS yts ,

conf() AS p

FROM bp20 y, bp20 x

GROUP BY y.index ,

x.index ,

y." District_shooting",
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x." District_shooting",

x." Type_shooting",

y." Type_shooting ") z

WHERE xds=yds

AND xts=yts

AND xind =692;

6.2.4 Utility of Query Answers. We claimed that SGQP and, thus also UA-

DBs, have better utility than certain answers, as additional, useful possible answers

are included in the result. The next experiment supports this claim quantitatively by

contrasting the under-approximation of Libkin with UA-DBs evaluating two meth-

ods for extracting a best-guess world. To start, we create an incomplete database

for which we have the ground truth (i.e., a “correct” possible world). This world

(denoted as Dground) is created by processing a source dataset to remove all rows with

nulls. We next use Dground to create an incomplete database D by replacing a random

set of attribute values with nulls, varying the fraction of attributes replaced from 0%

(deterministic input), to 50%. Then, we derive a best guess world Dclean from D by

either using a standard missing value imputation algorithm (we refer to this method

as BGQP) or randomly pick a replacement value (random-guess query processing or

RGQP). We evaluate queries over D and Dclean using Libkin and UA-DBs respec-

tively, and compare the result with the ground truth Dground. Fig. 6.6 shows both

precision (fraction of results in Dground) and recall (fraction of Dground in the results)

as we vary the level of uncertainty. Libkin’s method always under-approximates,

guaranteeing 100% precision. However, recall is much lower than for UA-DBs and

drops rapidly when the amount of uncertainty is increased. In contrast, the precision

and recall achieved by UA-DBs remains between 80-90% for BGQP, even when half

of all attribute values are uncertain. This supports our conjecture that certain an-

swers are less similar to actual answers than answers obtained over a selected-guess
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Figure 6.6. Utility - varying the amount of uncertainty

world. Compared with BGQP, RGQP is less accurate and less complete, but still has

a higher recall than Libkin.

6.3 AU-DB experiments

TPC-H queries: We now evaluate actual TPC-H queries on PDBench data for AU-

DBs. These queries contain aggregation with uncertain group-by attributes (only

supported by AU-DB and MCDB). Results are shown in Table 6.4. For most queries,

AU-DB has an overhead factor of between 3-7 over Det. This overhead is mainly due to

additional columns and scalar expressions. Compared to MCDB, AU-DB is up to 570%

faster, while producing hard bounds instead of an estimation.

Simple Aggregation: We use a simple aggregation query with certain group-by

attributes on an SF0.1 instance to compare against a wider range of approaches,

varying the number of aggregation operators (#agg-ops). For systems that do not

support subqueries like Trio, operator outputs are materialized as tables. In this

experiment, Trio produces incorrect answers, as its representation of aggregation

results (bounds) is not closed under queries; We are only interested in its performance.

Fig. 6.7 shows the runtime of our technique compared to Trio which is significantly

slower, and Symb (only competitive for low #agg-ops values).

6.3.1 AU-DB Micro-benchmarks. We use a synthetic table with 100 attributes

with uniform random values to evaluate the performance and accuracy of our ap-

proach.
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Table 6.4. TPC-H query performance (runtime in sec)

Queries 2%/SF0.1 2%/SF1 5%/SF1 10%/SF1 30%/SF1

Q1
AU-DB 1.607 15.636 15.746 15.811 16.021

Det 0.560 1.833 1.884 1.882 1.883

MCDB 5.152 19.107 18.938 19.063 19.279

Q3
AU-DB 0.713 7.830 8.170 8.530 7.972

Det 0.394 1.017 1.058 1.092 1.175

MCDB 4.112 11.138 11.222 10.936 11.454

Q5
AU-DB 0.846 8.877 8.803 8.839 8.925

Det 0.247 0.999 1.012 1.123 1.117

MCDB 2.599 10.152 10.981 11.527 11.909

Q7
AU-DB 0.791 7.484 7.537 7.303 7.259

Det 0.145 0.977 0.985 0.989 1.044

MCDB 1.472 10.123 10.277 10.749 10.900

Q10
AU-DB 0.745 7.377 7.283 7.715 8.012

Det 0.263 1.024 0.993 1.004 1.015

MCDB 2.691 10.743 10.937 11.826 11.697

Varying number of group-by attributes: We use an sum aggregation with 1

to 99 group-by attributes on a table with 35k rows and 5% uncertainty. Our imple-

mentation applies an aggregate analog of the join optimization: possible groups are

compressed before being joined with the output groups. This improves performance

when there are fewer result groups. As Fig. 6.8a shows, overhead over Det is up to a

factor of 6 to 7.

Varying number of aggregates: Using a similar query and dataset, and 1 group-

by attribute, we vary the number of aggregation functions from 1 to 99. As Fig. 6.8b
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Figure 6.7. Simple aggregation over TPC-H data

shows, the overhead of our approach compared to Det varies between a factor of 5 to

6.

Compression Trade-o↵ for Aggregation: We evaluate the tradeo↵s between

tightness and compression for aggregation using sum aggregation with group-by.

Fig. 6.8d shows the runtime overhead of our approach over Det when increasing the

number of tuples in the compressed pre-aggregation result. The input table has 10%

uncertainty and 10k rows. For tightness we calculate tight bounds for the aggregation

function results for each possible group (a group that exists in at least one world).

We then measure for each such group the relative size of our approximate bounds

compared to the maximally tight bounds and report the average of this number.

Attribute Bound Size: Next, we vary the average size of attribute-level bounds

(same query as above). We generate tables with 35k rows each and 5% uncertainty,

varying the range of uncertain attribute values from 0% to 100% of the attribute’s

domain. We measure runtime, varying the number of tuples in the compressed result

(CT) for the pre-aggregation step. For more aggressive compression (Fig. 6.8c), the

runtime of our approach is only slightly a↵ected by the size of attribute-level bounds.

We also measure how the size of attribute ranges a↵ects precision. We generate x-

DBs with 2%, 3%, and 5% of uncertain tuples (10 alternatives per uncertain tuple)

varying attribute ranges from 1% to 10% of the entire value domain. We create an

AU-DB from the x-DB. Fig. 6.10a and 6.10b show the percentage of over-grouping
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for AU-DB (increase in group size, because of over-estimation of possible group-by

attribute values) and relative factor of aggregation result range over-estimation. The

range over-estimation grows faster than over-grouping, as it is a↵ected by uncertainty

in aggregation function inputs as well as the over-grouping.

Join Optimizations: Next, we evaluate the impact of our join optimization. Fig. 6.9a
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Table 6.5. Join query performance (runtime in sec)

Comp. Size 1 join 2 joins 3 joins 4 joins

4
3% 0.004 0.006 0.009 0.015

10% 0.004 0.007 0.010 0.015

16
3% 0.005 0.008 0.012 0.017

10% 0.005 0.009 0.012 0.017

64
3% 0.009 0.027 0.47 0.069

10% 0.009 0.029 0.049 0.070

256
3% 0.036 0.308 0.627 0.969

10% 0.043 0.337 0.660 1.019

No 3% 0.216 1.351 6.269 29.639

Comp. 10% 0.213 2.565 29.379 333.695
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shows the runtime for a single equi-join (log-scale) varying the size of both input re-

lations from 5k to 20k rows containing 3% uncertain values ranging over 2% of the

value domain. The optimized version is between ⇠ 1 and ⇠ 2 orders of magnitude

faster depending on the compression rate (i.e., CT). As a simple accuracy measure,

Fig. 6.9a shows the number of possible tuples in the join result. Next, we join tables

of 4k rows with 3% or 10% uncertainty and vary the number of joins (1 to 4 chained

equality joins, i.e., no overlap of join attributes between joins). As shown in Table 6.5,

joins without optimization are up to 4 orders of magnitude more expensive, because

of the nested loop joins that are needed for interval-overlap joins and resulting large

result relations.

6.3.2 AU-DB Real World Data. For this experiment, we repaired key viola-

tions for real world datasets (references shown in Table 6.6). To repair key violations,

we group tuples by their key attributes so that each group represents all possibilities

of a single tuple with the corresponding key value. For each group, we randomly

pick one tuple for the SGW and use all tuples in the group to determine its attribute

bounds as the minimum (maximum) value within the group. Table 6.6 shows for

each dataset the percentage of tuples with uncertain values and for all such tuples

the average number of possibilities. We generated SPJ (SPJ) and simple aggrega-

tion queries with group-by (GB) for each of these datasets (query types are shown

in Table 6.6, see [43] for additional details). Table 6.6 shows the runtime for these

queries comparing AU-DB with MCDB, Trio and UA-DB. AU-DB is significantly faster

than Trio and consistently outperforms MCDB. As a comparison point and to calcu-

late our quality metrics, for each query we calculated the precise set of certain and

possible tuples and exact bounds for attribute-level uncertainty in the query result.

We execute those queries in each system and report the recall of certain and possi-

ble tuples it returns versus the exact result. Note that for possible tuple recall, we

report two metrics. The first ignores attribute-level uncertainty. Possible tuples are
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grouped by their key (or group-by values for aggregation queries) and we measure

the percentage of returned groups (a group is “covered” if at least one possible tuple

from the group is returned). The second metric just measures the percentage of all

possible tuples (without grouping) that are returned. We also measure the tightness

of attribute-level bounds for certain rows by measuring for each tuple the average size

of its attribute-level bounds relative to exact bounds. Table 6.6 shows the minimum

and maximum of this metric across all certain result tuples. Since MCDB relies on

samples, it (i) may not return all possible tuples and (ii) calculating bounds for at-

tributes values from the sample, we get bounds that may not cover all possible values.

Furthermore, MCDB cannot distinguish between certain and possible tuples. For Trio

the bounds on aggregation results are tight, but Trio does not support uncertainty

in group-by attributes (no result is returned for a group with uncertain group-by val-

ues). As shown in Table 6.6, our attribute-level bounds are close to the tight bounds

produced by Trio for most of the certain result tuples. MCDB does not return all pos-

sible aggregation result values (the ones not covered by the samples). Furthermore,

we never miss possible tuples like both Trio and MCDB, and seldomly report a cer-

tain tuple as uncertain, while MCDB cannot distinguish certain from possible. UA-DB

has performance close to conventional (SGQP) query processing and outperforms all

other methods. However, UA-DBs provide no attribute level uncertainty and only

contain tuples from the SGW and, thus, miss most possible tuples. Furthermore,

aggregates over UA-DBs will not return any certain answers, as doing so requires

having a bound on all possible input tuples for the aggregate and often additionally

requires attribute-level uncertainty (the group exists certainly in the result, but the

aggregation function result for this group is uncertain). For aggregates over UA-DBs,

the range of the attribute bounds is significantly a↵ected by the attribute domain

and the aggregation functions used. Qn,2 and Qc,2 use max and count, which return

a relatively small over-estimation of the actual bounds. Qh,2 uses sum, where the
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larger domain for the attribute over which we are aggregating over, and the combined

e↵ect of over-grouping and over-estimation of possible attribute values results in a

larger over-estimation.

The real world queries are listed below with brief explanation of what the

queries are doing:

Qn1:

SELECT title , release_year , director

FROM netflix

WHERE release_year < ’2017’;

Select all shows with year earlier than 2017.

Qn2:

SELECT director , MAX(release_year)

FROM netflix

GROUP BY director;

What is the year of the most current show for each director.

Qc1:

SELECT date , block , District

FROM crimes

WHERE Primary_Type=’HOMICIDE ’ AND Arrest=’False ’;

What is the date, block and district of all HOMICIDE crimes that are not arrested.

Qc2:

SELECT year , count (*)

FROM crimes



221

GROUP BY year;

Count the number of crimes for each year.

Qh1:

SELECT Facility_Name , Measure_Name , score

FROM healthcare_c

WHERE state != ’TX’

AND state !=’CA’

AND measure_id=’HAI_1_SIR ’;

What is the facility name, measure name and score for all records that measuring

HAI 1 SIR except state TX and CA?

Qh2:

SELECT sum(score)

FROM healthcare_c

GROUP BY Facility_Name;

What is the total score for each facility?

Detailed configurations for each microbench test is listed in figure 6.7. A brief

data description is listed in Table 6.8.

6.4 Sorting and windowed aggregation experiments

Compared Algorithms: We compare against several baselines: MCDB10 and MCDB20

are MCDB with 10 and 20 sampled worlds, respectively. For MCDB, we treat the

highest and lowest possible value across all samples as the upper and lower bounds

and compare against the tight bounds produced by the other algorithms (since com-

puting optimal bounds is often intractable). Given a exact bound [c, d], we define the
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recall of a bound [a, b] as min(b,d)�max(a,c)
d�c and the accuracy of [a, b] as max(b,d)�min(a,c)

min(b,d)�max(a,c) .

The recall/accuracy for a relation is then the average recall/accuracy of all tuples.

PT-k [38] only supports sorting and returns all answers with a probability larger than

a user-provided threshold of being among the top-k answers. By setting the threshold

to 1 (0) we can use this approach to compute all certain (possible) answers. Symb

represents aggregation results, rank of tuples, and window membership as symbolic

expressions which compactly encode the incomplete database produced by possible

world semantics using the model from [101] for representing aggregation results and a

representation similar to [84] to encode uncertainty in the rank of tuples. We use an

SMT solver (Z3 [102]) to compute tight bounds on the possible ranks / aggregation

results for tuples. Rewr is a rewrite-based approach we implemented uses self-unions

for sorting queries and self-joins for windowed aggregation queries. Imp is the native

implementation of our algorithms in Postgres.

6.4.1 Microbenchmarks on Synthetic Data. To evaluate how specific char-

acteristics of the data a↵ect our system’s performance and accuracy, we generated

synthetic data consisting of a single table with 2 attributes for sorting and 3 attributes

for windowed aggregation. Attribute values are uniform randomly distributed. Ex-

cept where noted, we default to 50k rows and 5% uncertainty with a maximum 1k

attribute range on uncertain values.

6.4.1.1 Sorting and Top-k Queries. Scaling Data Size: Fig. 6.13 shows the

runtime of sorting, varying the dataset size. Since Symb and PT-k perform significantly

worse, we only include these methods for smaller datasets (Fig. 6.13a). MCDB and

our techniques significantly outperform Symb and PT-k (⇠2+ OOM). Rewr is roughly

on par with MCDB20 while Imp outperforms MCDB10. Given their poor performance

and their lack of support for windowed aggregation, we exclude Symb and PT-k from

the remaining microbenchmarks.
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Varying k, Ranges, and Rate: Table 6.9 shows runtime of top-k (k is specified)

and sorting queries (k is not specified) when varying (i) the number of tuples returned

(k), (ii) the size of the ranges of uncertain order-by attributes (range), and (iii) the

fraction of tuples with uncertain order-by attributes. Imp is the fastest method,

with an overhead of deterministic query processing between 3.5 (top-k) and 10 (full

sorting). Rewr has higher overhead over Det than MCDB. Notably, the performance

of MCDB and Rewr is independent of all three varied parameters. Uncertainty and

range have small impact on the performance of Imp while computing top-k results is

significantly faster than full sorting when k is small.
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Figure 6.11. Sorting microbenchmarks - approximation quality

Accuracy: Fig. 6.11 shows the error of the bounds generated by Imp (Rewr produces

identical outputs) and MCDB. Recall that Imp is guaranteed to over-approximate the

correct bounds, while MCDB is guaranteed to under-approximate the bounds, because

it does not compute all possible results. We measure the size of the bounds relative to

the size of the correct bound (as computed by Symb and PT-k), and then take the av-

erage over all normalized bound sizes. In all cases our approach produces bounds that

are closer to the exact bounds than MCDB (⇠30% over-approximation versus ⇠70%

under-approximation in the worst case). We further note that an over-approximation

of possible answers is often preferable to an under-approximation because no possible

results will be missed.
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Figure 6.12. Window microbenchmarks - approximation quality
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Figure 6.13. Sorting performance varying dataset size

6.4.1.2 Windowed Aggregation. Scaling Data Size: Fig. 6.14 shows the run-

time of windowed aggregation when varying dataset size. We compare two variants of

our rewrite-based approach which uses a range overlap join to determine which tuples

could possibly belong to a window. Rewr(Index) uses a range index supported by

Postgres. We show index creation time and query time separately. We exclude Symb,

because for more than 1k tuples, Z3 exceeds the maximal allowable call stack depth

and crashes. The performance of Imp is roughly on par with MCDB10. Rewr(Index)

is almost as fast as MCDB20, but is 5 ⇥ slower than Imp.

Varying window spec, Ranges, and Rate: Table 6.10 shows the runtime of win-

dowed aggregation varying the value ranges of uncertain attribute (on all columns),

percentage of uncertain tuples, and window size. For Imp (Table 6.10a) we use a
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Figure 6.14. Windowed aggregation performance varying dataset size

query without partition-by. We also compare runtime of our rewriting based ap-

proach (Table 6.10b) using both partition-by and order-by on 8k rows. Imp exhibits

similar runtime to MCDB10 and outperforms MCDB20. Doubling the window size have

only a slight impact (about 10%) on our implementation performance. Rewr is slower

than MCDB by several magnitudes due to the range-overlap join. Our techniques are

not significantly a↵ected by the range and uncertainty rate.

6.4.2 Sorting and Top-k on Real World Datasets. We evaluate our ap-

proach on real datasets (Iceberg [103], Chicago crime data [99], and Medicare provider

data [100]) using realistic sorting and windowed aggregation queries. To prepare the

datasets, we perform data cleaning methods (entity resolution and missing value im-

putation) that output a AU-DB encoding of the space of possible repairs. Table 6.11

shows the performance of real queries on these datasets reporting basic statistics

(uncertainty and #rows).

We use the following queries.

iceberg:

Find top 3 sizes of ice-bergs mostly observed.

SELECT size ,count (*) AS ct FROM iceberg

GROUP BY size
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ORDER BY ct DESC LIMIT 3;

Window: For each day, find rolling sum of number of icebergs observed on that day

and following 3 days.

SELECT date , sum(number) OVER (ORDER BY date

BETWEEN CURRENT ROW AND 3 FOLLOWING) AS r_sum

FROM iceberg;

Crimes:

Rank: Find top three days with most incidents of crimes.

SELECT date , count (*) AS ct

FROM crimes GROUP BY date

ORDER BY ct DESC LIMIT 3;

Window: For each crime in 2016, find the earliest year among the crime itself and

nearest crime at north and south of it.

SELECT rid , min(year) OVER

(ORDER BY latitude BETWEEN

1 PRECEDING AND 1 FOLLOWING) AS min_year

FROM crimes WHERE year=’2016’;

healthcare:

Rank: Find top 5 facility with highest score on MRSA Bacteremia.

SELECT facility_id ,facility_name ,score FROM healthcare

WHERE measure_name = ’MRSA Bacteremia ’

ORDER BY score LIMIT 5;

Window: get in-line rank of facility on MRSA Bacteremia scores.
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SELECT facility_id ,facility_name ,count (*) OVER

(ORDER BY score DESC) AS rank

FROM healthcare

WHERE measure_name = ’MRSA Bacteremia ’;

For sorting and top-k queries that contain aggregation which is common in

real use-cases, we only measure the performance of the sorting/top-k part over pre-

aggregated data (see [40] for an evaluation of the performance of aggregation over

AU-DBs). In general, our approach (Imp) is faster than MCDB20. Symb and PT-k

are significantly more expensive. Table 6.12 shows the approximation quality for our

approach and MCDB. Our approach has precision close to 100% except for sorting on

the Iceberg dataset which has a larger fraction of uncertain tuples and wider ranges of

uncertain attribute values due to the pre-aggregation. MCDB has lower recall on Iceberg

and Healthcare sorting queries since these two datasets have more uncertain tuples

(10 times more than the Crimes dataset). Table 6.13 shows the approximation quality

of our approach and MCDB for windowed aggregation queries. We measured both the

approximation quality of grouping of tuples to windows and for the aggregation result

values. For Crimes and Iceberg, the aggregation accuracy is a↵ected by the partition-

by/order-by attribute accuracy and the uncertainty of the aggregation attribute itself.

The healthcare query computes a count, i.e., there is no uncertainty in the aggregation

attribute and approximation quality is similar to the one for sorting. Overall, we

provide good approximation quality at a significantly lower cost than the two exact

competitors.
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Table 6.6. Real world data - performance and accuracy

Datasets Time cert. attr. bounds pos.tup. pos.tup.

& Queries (sec) tup. min max by id by val

N
et
fl
ix

[9
8]

(1
.9
%
,
2.
1)

AU-DB 0.011 100% 1 1 100% 100%

Qn,1 Trio 0.900 100% 1 1 100% 100%

SPJ MCDB 0.049 N.A. 1 1 99.6% 98.5%

UA-DB 0.006 100% N.A. N.A. 99.1% 97.3%

AU-DB 0.082 100% 1 4 100% 100%

Qn,2 Trio 1.700 100% 1 1 98.8% 98.0%

GB MCDB 0.118 N.A. 1 1 99.9% 97.9%

UA-DB 0.009 0% N.A. N.A. 99.3% 95.7%

C
ri
m
es

[9
9]

(0
.1
%
,
3.
2)

AU-DB 1.58 100% 1 1 100% 100%

Qc,1 Trio 59.0 100% 1 1 100% 100%

SPJ MCDB 6.91 N.A. 0.6 1 99.9% 92.1%

UA-DB 0.63 100% N.A. N.A. 99.9% 87.5%

AU-DB 2.09 100% 1 1.01 100% 100%

Qc,2 Trio 103.1 100% 1 1 100% 100%

GB MCDB 5.24 N.A. 0.99 0 100% ⇠ 0%

UA-DB 0.47 0% N.A. N.A. 100% ⇠ 0%

H
ea

lt
h
ca

re
[1
00
]

(1
.0
%
,
2.
7)

AU-DB 0.179 99.5% 1 1 100% 100%

Qh,1 Trio 20.6 100% 1 1 100% 100%

SPJ MCDB 0.501 N.A. 0.4 1 99.9% 87.6%

UA-DB 0.042 98.2% N.A. N.A. 99.3% 65.4%

AU-DB 0.859 100% 1 45 100% 100%

Qh,2 Trio 29.2 100% 1 1 100% 100%

GB MCDB 2.31 N.A. 0.78 1 100% ⇠ 0%

UA-DB 0.235 0% N.A. N.A. 100% ⇠ 0%
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Table 6.7. Microbenchmark Configurations

(a) Configurations

Test #Rows Domain Range Uncert.% CT

Groupby 35k [1,100] 5 5% 25

Aggregation 35k [1,100] 5 5% 25

Range 35k [1,100k] 5k-100k 10% 22,5,8,9

Compression 10k [1,10k] 20 2% 21⇠16

Join 5k-20k [1,1k] 15 3% non,22,5,8,10

Multi-join 4k [1,4k] 300 3%,10% non,22,4,6,8

(b) Queries

Test Query

Groupby SELECT SUM(a0) FROM t GROUP BY [...]

Aggregation SELECT [...] FROM t GROUP BY a0

Range SELECT a0,SUM(a1) FROM t GROUP BY a0

Compression SELECT a0,SUM(a1) FROM t GROUP BY a0

Join SELECT * FROM t1 JOIN t2 ON t1.a0 = t2.a0

Multi-join ... (t1 JOIN t2 ON t1.a1 = t2.a0) JOIN t3 on t2.a1=t3.a0 ...

Table 6.8. Data Descriptions

Dataset #columns #rows source

Netflix 12 > 6K https://www.kaggle.com/shivamb/netflix-shows

Crimes 22 > 1.4M https://www.kaggle.com/currie32/crimes-in-chicago

Healthcare 15 > 171K https://data.medicare.gov/data/hospital-compare

https://www.kaggle.com/shivamb/netflix-shows
https://www.kaggle.com/currie32/crimes-in-chicago
https://data.medicare.gov/data/hospital-compare
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Table 6.9. Sorting and Top-K Microbenchmarks - Performance

Configurations Det Imp Rewr MCDB10 MCDB20

r=1k,u=5% 31.5ms 233.1ms 786.7ms 310.1ms 639.3ms

r=10k,u=5% 30.9ms 286.1ms 792.6ms 314.3ms 621.2ms

r=1k,u=20% 31.8ms 266.3ms 794.9ms 325.8ms 651.2ms

r=1k,u=5%,k=2 13.4ms 48.3ms 750.4ms 149.1ms 295.2ms

r=1k,u=5%,k=10 13.4ms 48.2ms 751.1ms 150.4ms 296.1ms

Range(r),Uncertainty(u),k or full sorting

Table 6.10. Windowed aggregation microbenchmarks - Performance

(a) Order-by, Window size (w), Range (r), Uncertainty (u)

Configurations Det Imp MCDB10 MCDB20

Order-by

+ Window

size

w=3,r=1k,u=5% 85.3ms 895.3ms 948.6ms 1850.4ms

w=3,r=10k,u=5% 87.1ms 899.7ms 931.3ms 1877.5ms

w=3,r=1k,u=20% 88.7ms 903.2ms 944.7ms 1869.7ms

w=6,r=1k,u=5% 86.2ms 1008.3ms 953.1ms 1885.1ms

(b) Order-by + partition-by, Window size (w), Range (r), Uncertainty (u)

Configurations Det Rewr MCDB10 MCDB20

Order-by

+ Partiton-by

+ Window size

w=3,r=1k,u=5% 105.1ms 73.5s 1209.4ms 2127.1ms

w=3,r=10k,u=5% 101.7ms 75.2s 1231.3ms 2142.9ms

w=3,r=1k,u=20% 104.2ms 81.1s 1201.1ms 2102.3ms
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Table 6.11. Real world data - performance

Datasets Imp Det MCDB20 Rewr Symb PT-k

& Queries (time) (time) (time) (time) (time) (time)

Iceberg [103]

(1.1%, 167K)

Rank 0.816ms 0.123ms 2.337ms 1.269ms 278ms 1s

Window 2.964ms 0.363ms 7.582ms 1.046ms 589ms N.A.

Crimes [99]

(0.1%, 1.45M)

Rank 1043.505ms 94.306ms 2001.12ms 14787.723ms >10min >10min

Window 3.050ms 0.416ms 8.337ms 2.226ms >10min N.A.

Healthcare [100]

(1.0%, 171K)

Rank 287.515ms 72.289ms 1451.232ms 4226.260ms 15s 8s

Window 130.496ms 15.212ms 323.911ms 13713.218ms >10min N.A.

Table 6.12. Real world data - sort position accuracy and recall

Datasets & Measures Imp/Rewr MCDB20 PT-k/Symb

Iceberg

[103]

bound accuracy 0.891 1 1

bound recall 1 0.765 1

Crimes

[99]

bound accuracy 0.996 1 1

bound recall 1 0.919 1

Healthcare

[100]

bound accuracy 0.990 1 1

bound recall 1 0.767 1
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Table 6.13. Real world data - windowed aggregation accuracy and recall

Datasets Grouping/Order Grouping/Order Aggregation Aggregation

& Methods accuracy recall accuracy recall

Iceberg

[103]

Imp/Rewr 0.977 1 0.925 1

MCDB20 1 0.745 1 0.604

Symb 1 1 1 1

Crimes

[99]

Imp/Rewr 0.995 1 0.989 1

MCDB20 1 0.916 1 0.825

Symb 1 1 1 1

Healthcare

[100]

Imp/Rewr 0.998 1 0.998 1

MCDB20 1 0.967 1 0.967

Symb 1 1 1 1
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

We proposed two models for dealing with uncertain data by using representations

that compactly represent two or more possibilities to a tuple using a single tuple

with proven correctness guarantees. UA-DBs are a novel and e�cient way to rep-

resent uncertainty as bounds on certain answers. Being based on K-relations, our

approach applies to the incomplete version of any data model that can be encoded

as K-relations including set and bag semantics. Then on top of UA-DBs, we present

attribute-annotated uncertain databases (AU-DBs) that support full relational al-

gebra including aggregations, sortings(top-K) and windowed aggregations. Our ap-

proach stands out in that it is (i) more general in terms of supported queries than

past works, (ii) has guaranteed PTIME data complexity, and (iii) compactly encodes

over-approximations of incomplete databases. We demonstrated the e�ciency of our

approach over a wide range of datasets and queries, including TPC-H queries.

7.2 Future works

For future works, in order to extend our work beyond SQL query processing, one

possible direction is to expand our uncertainty models to encompass a wider range

of data-related operations, such as imperative programming (especially looping and

recursion) which are wild used to model machine learning tasks. This would in-

volve enabling processing of uncertain input values, and possibly even uncertain code.

While keeping the ability to produce a deterministic execution result given a selected

guess world, we can produce extra sensitivity information indicating the potential

quality of the output to build an uncertain sensitivity aware machine learning model.

An alternative approach involves expanding AU-DB to incorporate diverse forms of
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uncertainty representations, such as continuous or possibility distributions, and de-

vising semantics to propagate this information across queries, while keeping query

processing overhead reasonably low.
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APPENDIX A

APPENDIX
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A.1 UA-DB Proofs

Proof: [Proof of Lemma 1] Proven by substitution of definitions.

pwi(0KW
) = 0KW

[i] = 0K pwi(1KW
) = 1KW

[i] = 1K

pwi(~k1+KW

~k2) = (~k1+KW

~k2)[i] = ~k1[i] +K ~k2[i]

= pwi(~k1) +K pwi(~k2)

pwi(~k1·KW

~k2) = (~k1·KW

~k2)[i] = ~k1[i] ·K ~k2[i]

= pwi(~k1) ·K pwi(~k2)

Proof: [Proof of Theorem 1] We first prove that the possible world D = pwi(D) for

some i encoded by DUA is preserved by queries. We have to show that for any query

Q we have hdet(Q(DUA)) = pwi(Q(D)). Since a UA-DB is the direct product of two

semirings, hdet is a homomorphism. Also by construction we have hdet(DUA) = D.

Using these facts and Lemma 1 we get:

hdet(Q(DUA)) =Q(hdet(DUA)) = Q(D)

=Q(pwi(D)) = pwi(Q(D))

For the same argument as above, hcert is a homomorphism, so Q(hcert(DUA)) =

hcert(Q(DUA)). Since according to Theorem 5 queries over bounds preserve the under-

approximation of certain annotations this implies the theorem.

Proof: [Proof of Lemma 2] +K: Based on the definition of �K, if k �K k0 then there

exists k00 such that k +K k00 = k0. Thus, k3 = k1 +K k1
0 and k4 = k2 +K k2

0 for some

k1
0 and k2

0. Also, (k1 +K k2) �K (k1 +K k2) +K k00 for any k00 and we get:

k1 +K k2 �K (k1 +K k2) +K (k1
0 +K k2

0) = k3 +K k4
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·K: The proof for multiplication ·K is similar.

(k1 ·K k2)

�K(k1 ·K k2) +K (k1 ·K k2
0) +K (k1

0
·K k2) +K (k1

0
·K k2

0)

=(k1 +K k1
0) ·K (k2 +K k2

0) = k3 ·K k4

Proof: [Proof of Lemma 3] Recall that +KW
and ·KW

are defined element-wise and

that certK(~k) = uK(~k). Furthermore, k1 �K k2 i↵ 9k0 : k1 +K k0 = k2. Consider

an arbitrary ~k1, ~k2 2 KW . Let kglb1 = uK(~k1) and kglb2 = uK(~k2). Based on the

definition of uK this implies that for any i, kglb1 �K ~k1[i] which in turn implies that

~k1[i] = kglb1 +K k0 for some k0. Analog, we can find a k00 such that ~k2[i] = kglb2 +K k00.

Superadditivity: Let kglb = uK(~k1+KW

~k2). We are going to prove that kglb1 +K kglb2

is a lower bound for (~k1+KW

~k2), i.e., that 8i 2 W : kglb1 +K kglb2 �K (~k1+KW

~k2)[i].

Since, kglb is the greatest lower bound this implies that kglb1+Kkglb2 �K kglb. Consider

an arbitrary i 2 W . Based on the discussion above we have:

(~k1+KW

~k2)[i] = ~k1[i] +K ~k2[i] = kglb1 +K k0 +K kglb2 +K k00

=(kglb1 +K kglb2) +K k0 +K k00 ⌫K kglb1 +K kglb2

Thus, kglb1+Kkglb2 is a lower bound and since kglb1 = certK(~k1) and kglb2 = certK(~k2)

it follows that certK is superadditive:

certK(~k1) +K certK(~k2) �K certK(~k1+KW

~k2)

Supermultiplicativity: We use an analogous argument to prove supermultiplicativity.

Let kglb = certK(~k1 ·K ~k2). We will prove that kglb1 ·K kglb2 is a lower bound for

(~k1·KW

~k2) which implies supermultiplicativity. Consider i 2 W :
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(~k1·KW

~k2)[i] = (kglb1 +K k0) ·K (kglb2 +K k00)

=(kglb1 ·K kglb2) +K (kglb1 ·K k00) +K (k0 ·K kglb2) +K (k0 ·K k00)

⌫K(kglb1 ·K kglb2)

Proof: [Proof of Lemma 4] Consider an RA
+ query Q and D a KW -database. To

prove preservation of certain lower bound, we have to show that the result of Q(D#)

is an under approximation for Q(D), i.e., that for any tuple t we have Q(D#)(t) �K

certK(Q(D), t). Recall that RA
+ queries over KW -relations and queries over K-

approximations are defined using the semiring addition and multiplication operations.

Hence, the claim

Q(D#)(t) �K certK(Q(D), t)

follows immediately from the superadditivity and supermultiplicativity of certK

(Lemma 3) and the fact that D# is a exact approximation.

Proof: [Proof of Theorem 5] Since D
# is an under approxmation, for any tuple t we

have D
#(t) �K certK(D, t). We have to prove that for any t we have Q(D#)(t) �K

certK(Q(D), t). For that we show that for any k1, k2 2 K and ~k3, ~k4 2 KW such that

k1 �K certK(~k3) and k2 �K certK(~k4), we have (k1 +K k2) �K certK(~k3+KW

~k4)

and k1 ·K k2 �K certK(~k3·KW

~k4).

k1 +K k2 �KcertK(~k3) +K certK(~k4) (by Lemma 2)

�KcertK(~k3+KW

~k4) (by Lemma 3)

k1 ·K k2 �KcertK(~k3) ·K certK(~k4) (by Lemma 2)

�KcertK(~k3·KW

~k4) (by Lemma 3)

Since by assumption the input is an under approximation, we have D
#(t) �K

certK(D, t) for any tuple t. Thus, based on the property we have just proven and the
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fact the K-relational query semantics is defined based on the operations of semirings

only, this implies that for any tuple t: Q(D#)(t) �K certK(Q(D), t). Thus, Q(D#) is

an under approximation for Q(D).

Proof: [Proof of Theorem 20] LetD# = transUADB

C-table(D). A tuple t is labeled as certain

i↵ �D(t) is in CNF and |= �D(t), which means the expression �D is a tautology. By

definition of C-tables, a tuple t exists in a possible world if �D(t) evaluates to true in

that possible world. Thus, t must exist in all possible worlds if �D(t) is a tautology

and D
# is an under approximation of certain.

Proof: [Proof of Theorem 19] Trivially holds, since a tuple is certain i↵ it is not

optional and has only one alternative. Even though multiple x-tuples may share

an alternative, the independence of x-tuples guarantees that this does not lead to

additional certain tuples.



240

BIBLIOGRAPHY

[1] S. R. Je↵ery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom, “Declarative
support for sensor data cleaning,” in PERVASIVE, pp. 83–100, 2006.

[2] S. Sarawagi et al., “Information extraction,” Foundations and Trends® in
Databases, vol. 1, no. 3, pp. 261–377, 2008.

[3] D. Olteanu, L. Papageorgiou, and S. J. van Schaik, “Pigora: An integration
system for probabilistic data,” in ICDE, pp. 1324–1327, 2013.

[4] P. Agrawal, A. D. Sarma, J. Ullman, and J. Widom, “Foundations of uncertain-
data integration,” PVLDB, vol. 3, no. 1-2, pp. 1080–1090, 2010.

[5] A. Halevy, A. Rajaraman, and J. Ordille, “Data integration: the teenage years,”
in VLDB, pp. 9–16, 2006.

[6] Y. Yang, N. Meneghetti, R. Fehling, Z. H. Liu, and O. Kennedy, “Lenses: An
on-demand approach to etl,” PVLDB, vol. 8, no. 12, pp. 1578–1589, 2015.

[7] W. Fan, “Dependencies revisited for improving data quality,” in PODS, pp. 159–
170, 2008.

[8] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin, “Sampling from repairs of
conditional functional dependency violations,” VLDBJ, vol. 23, no. 1, pp. 103–
128, 2014.

[9] M. Console, P. Guagliardo, L. Libkin, and E. Toussaint, “Coping with incom-
plete data: Recent advances,” in PODS, pp. 33–47, ACM, 2020.
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