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Abstract
We present the first query-based approach for explaining

missing answers to queries over nested relational data which

is a common data format used by big data systems such as

Apache Spark. Our main contributions are a novel way to

define query-based why-not provenance based on repairs to

queries and presenting an implementation and preliminary

experiments for answering such queries in Spark.

Keywords Why-not provenance, nested data

1 Introduction
The need to explain missing answers is prevalent in many

applications including debugging complex analytical queries.

Such complex analytics are often implemented using data-

intensive scalable computing (DISC) systems such as Spark

which employ nested data models. Hence, there is a need

for missing answer techniques for nested data models and

implementations of such techniques in DISC systems.

Missing answers approaches typically fall into one of two

categories: instance-based approaches justify the absence of

an answer based on missing input data; and query-based ap-

proaches explain the missing answer by determining which

parts of the query are responsible for the failure to derive the

result. The contributions of this work towards explanation

for query-based missing-answers are twofold: (i) We deter-

mine which operators are responsible for a missing answer

based on a novel notion of responsibility rooted in query

repairs. This is necessary as the notion of picky operators
that was introduced in the seminal work by Chapman [5]

and was used as the basis of most follow-up work on query-

based why-not provenance is not suited well for nested data

as we illustrate below; (ii) we present a practical solution

for explaining missing answers in this context, a prototype

implementation using provenance tracking for Spark.

Example 1.1. Consider the nested relation shown in Fig-

ure 1a, which records taxi rides. Each row corresponds to
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driver car rides

id name
1 John

SX-123-2B

from to times

1st St. 10th St.

start end
09 : 45 10 : 16

Main St. Market St.

start end
10 : 29 10 : 42

12 : 12 12 : 23

id name
2 Jane

VW-678-5X

from to times

1st St. 10th St.

start end
17 : 20 17 : 36

Main St. Market St.

start end
09 : 52 10 : 11

(a) Input relation taxiRides

from to driver

1st St. 10th St.

name
Jane

Main St. Market St.

name
John

John

(b) Output

val drs = spark.read.json("taxiRides.json")
val fl1 = drs.withColumn("ride",explode($"rides"))
val fl2 = fl1.withColumn("time",explode($"ride.times.start"))
val fi = fl2.filter($"time" > "10:00")
val rt = fi.select($"ride.from", $"ride.to", $"driver.name")
val rs = rt.groupBy($"from", $"to").agg(collect_list($"name"))

(c) Processing pipeline
Figure 1. Given relation taxiRides (a), program (c) com-

putes a list of drivers (b) for each route (from A to B) .

one car, storing the driver in a nested tuple and rides in a

nested bag. The rides are grouped by their origin (from) and
destination (to). For each origin and destination, the relation

stores the start and end times of all trips in a nested bag

times. The Spark program in Figure 1c groups trips after 10

am by their origin and destination, and computes a nested

bag of drivers for each trip. The result is shown in Fig-

ure 1b. Looking at the 2
nd

result tuple, a user may wonder

why there is no result with the same from and to values

where (i) Jane is a driver or (ii) John appears only once in-

stead of twice. Our query-based why-not approach identifies

which operators of the Spark program cause the unexpected

result. Here, the filter operator or the second flatten operator

are too restrictive for (i). The filter condition can be changed

to 9 am or the second flatten operator should unnest the end
times instead of the start times. For (ii) the filter operator it

not restrictive enough. Why-not techniques such as [5] iden-

tify picky operators, i.e., operators whose inputs contain data

items that are “successors” of (are derived from) an input

which is “unpicked” (is compatible with the missing answer),

but whose output does not contain data items derived from

such successors. The intuition is that these operators are

responsible for removing data that could potentially have

produced the missing answer. However, such an approach
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would not identify the filter and flatten operators in our ex-

ample as picky wrt. the question (i), since a successor of the

2
nd

input tuple which is compatible with (i) exists in the

output (the 2
nd

result tuple).

2 Related Work
The work presented in this paper mainly builds on prior

research in three areas. We refer readers to [9] for a survey.

Query-based why-not provenance. Solutions that ex-
plain missing results based on the query or data transforma-

tion either identify query operators (query-based, e.g., [3–5])

responsible for the disappearance of relevant data or “repair”

the query by changing selected operators such that the miss-

ing result is returned. The later have also been referred to as

query refinement [13] and query relaxations [12]. All these

approaches target flat relational data and, with the exception

of [2, 5] which target workflows, support queries limited to

(at best) relational algebra plus grouping and aggregation.

These approaches cannot be easily extended to a richer set

of operators and nested data.

Provenance capture in DISC systems. While research

on why-not provenance has mostly focused on relational

queries, provenance capture for DISC systems has been stud-

ied [1, 10]. Given that we target query-based why-not expla-

nations for nested data in the context of such systems, we

choose to extend one of these systems.

Provenance for nested data. Given that query-based

why-not explanations are typically defined and computed

based on the provenance of existing results, our work is also

related to work on provenance models for nested data [1, 6].

3 Preliminaries and Notation
To define why-not questions and explanations for nested

data, we first formalize the nested relational model and a bag

version of relational algebra (NRAB) inspired by [7]. Similar

to [1], this allows us to express a large variety of practical

queries on big data analytics platforms.

Definition 3.1 (Nested Relation). Let L be an infinite set

of names. A nested instance I is an element of a type τ con-

forming to the grammar shown below where each Ai ∈ L. A
nested relation is a nested instance of some R-type.

P := int | str | bool | . . . R :={{T }}

T :=⟨A1 : A, . . . , An : A⟩ A := P | T | R

Data conforming to this model is manipulated through

NRAB using the operators shown in Table 2. Table 1 pro-

vides an overview of the notation used here. Due to space

constraints, we cannot discuss all details. We also omit the

definition of operators which behave as in flat relational

algebra: table access, projection, renaming, selection, join,

union, and deduplication. Given that our data model allows

a nested element to either be a tuple or a bag of homoge-

neous tuples (i.e., a nested relation), we provide two types of

nesting and flatten operators – one for nested tuples and one

Notation Description

t .A Projection of tuple t on an attribute of set of attributes A
τR .A The tuple type of a projection of relation R on attribute(s) A, e.g., if

type(R) = {{ ⟨A1 : int, A2 : int⟩ }} then τR .A
1
= ⟨A1 : int⟩

sch(R) The set of attributes of relation R
◦ Concatenation of tuples and tuple types

tn ∈ R Tuple t appears in relation R with multiplicity n. For convenience,
t 0 ∈ R indicates that t does not appear in R

⟦Q⟧D , ⟦Q⟧ Evaluating query Q over a database D , possibly omitting D
Q (D) The result of evaluating a query Q over input D

Table 1. Notation

for nested relations. Aggregation applies to each input tuple

individually, aggregating all values from a relation nested in

a specified attribute.

Example 3.2. Employing our algebra, the sample program

of Figure 1c can be expressed as follows:

NR
name→dr iver (πf rom,to,name (σt ime>10:00(

Fdr iver (Fr ide .t imes .star t→t ime (Fr ides→r ide (taxiRides))))))

We first denormalize the whole relation by flattening the

rides, times, and driver elements.We then filter records based

on the trip duration and project onto from, to, and name.
Finally, we nest all drivers for a trip in an element driver.

4 Why-Not Provenance for Nested Data
We now introduce why-not questions, (minimal) successful

re-parameterizations, and explanations.

4.1 Why-Not Questions
In our framework, a why-not question consists of a query, a

database instance, and a missing tuple with constants and

placeholders. The purpose of placeholders is to give the user

the flexibility to leave some parts of the missing answer of in-

terest unspecified, e.g., in our running example the user may

ask why are there no rides in the result that start from 10th

St. (leaving the destination and set of drivers unspecified).

Definition 4.1 (Why-not question). A why-not question Φ
is a triple (Q,D, t) where Q is a query, D is a nested relation,

and t is a tuple that is of same type as the result of query Q .

Each element in t is either (i) a constant value of the element’s

type, (ii) a placeholder ? that denotes some value of the type

of the element, or (iii) a placeholder ∗ that represents any

number of tuples (possibly none) in nested collections.

Example 4.2. The why-not questions (i) and (ii) from Ex-

ample 1.1 can be expressed using the tuples shown below.

t1=⟨from:Main St., to:Market St.,driver:{{ ⟨name:Jane⟩,∗}}⟩

t2=⟨from:Main St., to:Market St.,driver:{{ ⟨name:John⟩ }}⟩

If instead we are interested in why there are no trips starting

from 10th street in the result, we can use placeholders for

attributes to and driver: t3 = ⟨from:10th St., to:?, driver:?⟩

Note that for finite domains, the problem of answering

why-not questions with placeholders can be reduced to an-

swering a set of questions where the tuple is fully specified
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Operator Semantics Output type type(·)
Tuple Flatten ⟦FA(R)⟧ = {{(t .M ◦ t .A)k |tk ∈ R }} {{τR .M ◦ τA }} where τR .A = ⟨A : τA ⟩ andM = sch(R) − {A}

Relation Flatten ⟦FA(R)⟧ = {{(t .M ◦ u)k ·l |tk ∈ R ∧ ul ∈ t .A}} {{τR .M ◦ τA }} where τR .A = ⟨A : {{τA }}⟩ andM = sch(R) − {A}

Tuple Nesting ⟦NT
A→C (R)⟧ = {{(t .M ◦ ⟨C : t .A⟩)k | tk ∈ R }} {{τR .M ◦ ⟨C : τR .A ⟩ }} whereM = sch(R) − {A}

Relation ⟦NR
A→C (R)⟧ = {{(t .M ◦ ns(R, A,C , t ))1 |t ∈ дr (R, A)}} {{τR .M ◦ ⟨C : {{τR .A }}⟩ }} whereM = sch(R) − {A}

Nesting дr (R, A) = {t .A | tn ∈ R }, ns(R, A,C , t ) = ⟨C : ⟦πA(σA=t (R))⟧⟩
Aggregation ⟦γf (A)→B (R)⟧ = {{(t ◦ ⟨B : f (t .A)⟩)k |tk ∈ R }} type(R) ◦ {{ ⟨B : type(f (A))⟩ }}

Table 2. Evaluation semantics and output types for the operators of our nested relational algebra for bags.

using constants.
1
However, this reduction may come at the

cost of an exponential blow-up of the problem size. Thus,

for performance reasons, it is still important to directly sup-

port these question types to avoid this blow-up. However,

from a theoretical perspective, the expressive power of these

why-not question types is not larger than the fully specified

tuple case. In the present paper, we will limit the discussion

to fully specified tuples and leave the efficient handling of

questions with placeholders to future work.

4.2 Reparameterizations and Explanations
As mentioned in Section 2, the definition of picky operators

from [5] was shown to fall short in several regards. Here,

we take a more principled approach by considering a set

of operators as an explanation if there exists a minimal (in
a precise sense to be defined below) repair Qr epair of the

query which changes this set of operators and for which the

missing answer is in the result of Qr epair (D). Note that we
only identify operators as potential causes instead of actually

repairing the query to limit the complexity of the problem.

Furthermore, we would like to point out that, for larger

instances and/or complex queries, we cannot expect the user

to specify all missing answers that should be produced by a

query. In this case, a repair that only returns the subset of the

missing answers provided by the user is unlikely to produce

all missing answers. Thus, we argue that it is more important

to identify parts of the query that may be incorrect rather

than returning a repair that is likely to be too restrictive.

To formalize such explanations, we have to decide what

modifications to the input query are admissible repairs, e.g.,

we disallow repairs that have nothing in common with the

original query since such repairs are unlikely to provide any

meaningful information about what is wrong with the input

query. Here, we focus on a set of repairs that we refer to

as re-parameterizations (RPs). That is, modifications of

the input query Q where the query structure is preserved

but parameters of operators may differ from Q , e.g., in the

running example, we may change σt ime>‘10:00’ to σt ime>‘9:00’
but replacing it with a projection is disallowed. For a RP Q ′

,

we use ∆(Q,Q ′) to denote the set of operators which have

different parameters in Q and Q ′
.

Successful Re-parameterizations (SRs).We use Re(Φ)
to denote the RPs for a question Φ. A re-parameterization is

1
Even though there are infinitely many instances of a nested relation since

we employ bag semantics, the number of instances that can be produced by

repairs of a query are finite since the input database is fixed.

successful if it produces the missing answer. We use SR(Φ)
to denote the set of successful re-parameterizations for Φ.

Definition 4.3 (Successful Re-parameterizations). Let Φ =
(Q,D, t) be a why-not question. We call Q ′ ∈ Re(Φ) a suc-
cessful re-parameterization if t ∈ Q ′(D).

Minimal SuccessfulRe-parameterizations (MSRs).Ob-
viously, explanations should not be derived from SRs that

apply unnecessary changes to query Q . Intuitively, a SR Q ′′

applies unnecessary changes if we can find another SR Q ′

that only changes a subset of the operators that Q ′′
changes

and for which the effect on the query result is less thanQ ′′
’s

effect. We formalize this as a partial order ⪯Φ over SRs and,

then, define MSRs as SRs that are minimal according to ⪯Φ.

Definition 4.4 (Minimal Successful Re-parameterization).
Let Φ = (Q,D, t) be a why-not question. We call Q ′ ∈ SR(Φ)
minimal if ∄Q ′′ ∈ SR(Φ) : Q ′′ ⪯Φ Q ′

. We have Q ′ ⪯Φ Q ′′
if:

1. ∆(Q,Q ′) ⊆ ∆(Q,Q ′′) 2. Q ′(D) −Q(D) ⊆ Q ′′(D) −Q(D)
3. Q ′(D) ∩Q(D) ⊇ Q ′′(D) ∩Q(D)

Explanations.We use MSR(Φ) to denote the set of MSRs

for Φ. An explanation for Φ according to one of its MSRs Q ′

is ∆(Q,Q ′), i.e., the operators whose parameters need to be

changed to produce t .

Definition 4.5. The set of explanations E(Φ) for a why-not
question Φ is: E(Φ) = {∆(Q,Q ′) | Q ′ ∈ MSR(Φ)}

Example 4.6. Consider a questionΦ1 using tuple t1 from Ex-

ample 4.2. Some RPs are (only modified operators are shown)

Q ′
: {σt ime>9:00} andQ

′′
: {σt ime>9:00, Fr ide .t imes .end→t ime }.

Here, Q ′ ∈ SR(Φ1) because the structure of Q is preserved

and t1 ∈ Q ′(D). While Q ′′ ∈ SR(Φ1), it is not minimal be-

cause Q ′ ⪯Φ Q ′′
: Q ′′

unnecessarily changes the second flat-

ten operator, Q ′′(D) is a superset of Q ′(D), and both retain

the same tuples from the original input. In fact,Q ′
is an MSR

and, thus, the filter operator inQ is one possible explanation

for the missing answer.

5 Implementation & Evaluation
A naive implementation of the model defined in the previous

section would likely be computationally prohibitive.We have

developed a prototype that employs a relaxed version of the

model. It is built on top of a provenance system for nested

data in Spark. Our implementation is guaranteed to produce

an explanation when E(Φ) , ∅. This improves on the state-

of-the-art where no solution may be returned.

Implementation. Our prototype captures provenance

for Spark’s DataFrame API. DataFrames are collections of
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tuples that roughly conform to our data model from Sec-

tion 3. It annotates input tuples with a unique identifiers and

tracks them through a query expressible in the algebra out-

lined in Table 2. For that it instruments DataFrame operators

to record associations between (nested) input and output

elements as well as tracks schema manipulations while com-

puting the query result to answer why-not questions later.

In our prototype, why-not questions according to Defini-

tion 4.1 are expressed as tree-patterns [11]. A tree-pattern

allows for (i) addressing schema elements in a flexible man-

ner (e.g. by supporting ancestor-descendant relationships be-

tween elements, or placeholders as defined in Definition 4.1),

(ii) accessing individual tuples in nested collections, and (iii)

supporting multiplicity constraints over elements in nested

collections. While all three features improve the convenience

of expressing a why-not question, the latter two features

further improve the query performance as Spark’s built-in

means require expensive flattening, nesting, and join opera-

tions to evaluate such patterns.

Given a tree-pattern, query result, and collected prove-

nance, our prototype first identifies which parts of the query

result schema-matches the tree-pattern. Similar to [4], it em-

ploys an “unrenaming” of schema elements manipulated in

the program. Essentially, it traces matching output schema

elements back to the input schema. This allows the proto-

type to (partially) match the unrenamed tree-pattern over

the source data to identify source tuples that are potentially

relevant for explaining a missing answer. Such input tuples

are called compatibles. Next, the prototype employs forward

tracing of the compatibles to identify picky operators.
Discussion.While our solution may sound similar to [5],

it differs in several important aspects. For instance, our pro-

totype utilizes dedicated provenance capture methods for

nested data and processes novel types of why-not questions

for nested data using tree patterns. Implementation-wise,

it adds support for processing tree-patterns to Spark and,

in contrast to [5], mostly operates on a provenance repre-

sentation that consists of identifier mappings. Thus, it can

often avoid materialization or dynamic re-computation of

intermediate results.

Let us now compare the output of our prototype with our

formal semantics defined in Section 4. As mentioned earlier,

our protoype finds an answer if an explanation exists. More

precisely, when an explanation ∆(Q,Q ′) of size one exists, it

is certainly returned. If no explanation in E(Φ) consists of
one operator, the returned sets of picky operators are strict

subsets of explanations from the full set of explanations.

Towards finding the complete explanations, one avenue for

future research is the injection of “fictive” tuples to explore

the full program, similarly to ideas presented in [8].

Evaluation. We conduct a preliminary evaluation of our

prototype using the dblp.org dataset (2GB). We flatten the

authors element of all journal articles and filter for database

journals (e.g., VLDB Journal) and then create a nested bag of

the titles of all such articles for each author. As a why-not

question, we ask why there is no result that has Miller as
author and includes an article titled “Creating probabilistic

databases from duplicated data”. The cause of the missing

answer is the filter condition: DBLP uses “VLDB J.”.
A naive extension of the algorithms from [4, 5] for nested

data would consider all tuples that result from flattening as

compatible successors, thus failing to return any explanation.

However, for our why-not question, co-authors of Miller are
not compatible. Our prototype returns the correct result by

only tracking tuples whose flattened author is Miller.
In terms of performance, we run this scenario five times

on a machine with one 2.5Ghz quad-core Intel Core i7 CPU

and 16GB memory. Executing the query without provenance

tracking took 20.7 seconds on average. Computing the why-

not provenance took 25.6 seconds which, in this scenario, is

only 24% slower than computing the query result.

6 Conclusions
We present a novel formalization of query-based missing

answers, apply it to explain missing answers for queries over

nested data, and introduce a Spark-based implementation of

this technique. In future work, we will investigate extensions

of our algorithm and study which guarantees they provide

wrt. our formalization of why-not provenance.
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