
CS525: Advanced Database Organization

Notes 3: File and System Structure

Yousef M. Elmehdwi

Department of Computer Science

Illinois Institute of Technology

yelmehdwi@iit.edu

January 17, 22, 2018

Slides: adapted from a courses taught by Hector Garcia-Molina, Stanford, Elke A.
Rundensteiner, Worcester Polytechnic Institute, Shun Yan Cheung, Emory

University, &Marc H. Scholl,University of Konstanz

1 / 96

yelmehdwi@iit.edu
http://infolab.stanford.edu/people/hector.html
https://www.stanford.edu/
http://web.cs.wpi.edu/~cs4432/d04/
http://web.cs.wpi.edu/~cs4432/d04/
https://www.wpi.edu/
http://www.mathcs.emory.edu/~cheung/Courses/554/
www.emory.edu
www.emory.edu
http://www.inf.uni-konstanz.de/dbis/teaching/ws0607/arch-dbms/
www.konstanz.de

Data Storage: Overview

How does a DBMS store and manage large amounts of data? (last
lecture)

What representations and data structures best support efficient
manipulations of this data? (today)

2 / 96

Today

How to lay out data on disk

3 / 96

Principles of Data Layout

Attributes of relational tuples represented by sequences of bytes called
fields

Fields grouped together into records

representation of tuples

Records stored in blocks

File: collection of blocks that forms a relation

How the principal SQL datatypes are represented as fields of a record?

4 / 96

Overview

Data Items

Records

Blocks

Files

Memory

5 / 96

What are the data items we want to store?

a salary

a name

a date

a picture

⇒ What we have available: Bytes

6 / 96

To represent

Integer (short): 2 bytes

e.g., 35 is

Integer (long): 4 bytes

Real, floating point

n bits for mantissa, m for exponent

7 / 96

To represent

Characters

various coding schemes suggested (ASCII, UTF8, . . .)

Example: (8 bits ASCII)

A: 1000001
a: 1100001
5: 0110101

LF: 0001010

8 / 96

To represent

Boolean

Application specific

e.g., RED → 1 BLUE → 2 GREEN → 3 YELLOW → 4 . . .

Can we use less than 1 byte/code? Yes, but only if desperate

9 / 96

To represent

Dates
e.g.,

Integer, # days since Jan 1, 1900
8 characters, YYYYMMDD
7 characters, YYYYDDD

Where DDD are digits between 001 and 366 denoting a day of that year

10 chars: YYYY-MM-DD

Time
e.g.,

Integer, seconds since midnight
Characters, HHMMSSFF

10 / 96

To represent: String of characters

Variable-Length Character Strings
e.g, VARCHAR(n): n + 1 bytes max

Null terminated
e.g.,

Length given
e.g.,

11 / 96

To represent: String of characters

Fixed-Length Character Strings
e.g., CHAR(n)

n bytes
If the value is shorter, fill the array with a pad character, whose 8-bit
code is not one of the legal characters for SQL strings

e.g., CHAR(5)

12 / 96

Key Points

Fixed length items

Variable length items

usually length given at beginning

Type of an item: Tells us how to interpret (plus size if fixed)

13 / 96

Overview

Data Items

Records

Blocks

Files

Memory

14 / 96

Record

How fields are grouped together into records

Collection of related data items (called FIELDS)

Typically used to store one tuple

E.g.: Employee record consisting of:

name field, CHAR(20),
salary field, Number,
date-of-hire field, Date,
. . .

15 / 96

Types of records

Main choices:

FIXED vs VARIABLE FORMAT
FIXED vs VARIABLE LENGTH

16 / 96

Fixed format

A schema contains information such as:

Number of fields (attributes)
type of each field (length)
order of attributes in record
meaning of each field (domain)

The schema is consulted when it is necessary to access components
of the record

Not associated with each record.

17 / 96

fixed format and length

All records have the same length and same number of fields (all the
fields of the record have a fixed length)

The address of any field can be computed from info in the system
schema

We can simply concatenate fields.

18 / 96

Example: fixed format and length

Example: Employee record

1 E#, 2 byte integer

2 E.name, 10 char.

3 Dept, 2 byte code

Schema

Records

19 / 96

Variable format

Not all fields are included in the record, and/or possibly in different
orders.

Record itself contains format “Self Describing”

every record contains (# fields, type of each field, order in record, . . .)
information in its header

20 / 96

Example: variable format and length

21 / 96

Why Variable Format?/Variable format useful for

“sparse” records, eg. medical records

repeating fields

information integration

22 / 96

Example: variable format record with repeating fields

e.g., Employee has one or more children

23 / 96

Note

Repeating fields does not imply variable format, nor variable size

key is to allocate maximum number of repeating fields (If not used,
set to null)

e.g., a person and her hobbies.

24 / 96

Many variants between fixed - variable format

Example 1: Include record type in record

25 / 96

Record header

Reserved part at the beginning of a record

Data at beginning that describes record

Typically contains:

pointer to schema (record type)
length of record (for skipping)
time stamp (create time, modification time, last access)
other stuff

26 / 96

Many variants between fixed - variable format

Example 2: Hybrid format: one part is fixed, other is variable

E.g.: All employees have E#, name, dept; and other fields vary.

27 / 96

Also, many variations in internal organization of record

28 / 96

Other interesting issues

Compression

within record - e.g. code selection
collection of records - e.g. find common patterns

Encryption

29 / 96

Next

Data Items

Records

Blocks

Files

Memory

30 / 96

Monday, 01/22/2018

31 / 96

Announcement

TA: Xu Ouyang: xouyang3@hawk.iit.edu

32 / 96

Continue

How to lay out data on disk

33 / 96

Next: placing records into blocks

Files consist of blocks containing records

How to place records into blocks?

34 / 96

Options for storing records in blocks

1 separating records

2 spanned vs. unspanned

3 mixed record types - clustering

4 split records

5 sequencing

6 indirection

35 / 96

(1) Separating records

(a) no need to separate - fixed size records

(b) special marker

(c) give record lengths (or offsets)

i) within each record
ii) in block header

36 / 96

(2) Spanned vs. Unspanned

Unspanned: records must be within one block

Spanned: one record in two or more blocks

37 / 96

With spanned records

38 / 96

Spanned vs. unspanned

Unspanned is much simpler, but may waste space

Spanned essential if record size > block size

39 / 96

Example

106 records

each of size 2,050 bytes (fixed)

block size = 4096 bytes

if records are just slightly larger than half a block, the wastage can
approach 50%

Utilization = 50% ⇒ 1
2 of space is wasted

40 / 96

(3) Mixed record types

Mixed - records of different types (e.g. Employee, Dept) allowed in
same block

e.g., a block

41 / 96

Why do we want to mix?

Answer: Clustering

Records that are frequently accessed together should be in the same
block

Problems
Creates variable length records in block
Must avoid duplicates (how to cluster?)
Insert/deletes are harder

42 / 96

Example Clustering

Q1)

SELECT A#, C NAME, C CITY ,
FROM DEPOSIT , CUSTOMER
WHERE DEPOSIT . C NAME = CUSTOMER. C .NAME;

a block

43 / 96

Example Clustering

44 / 96

Example Clustering

If Q1 frequent, clustering good

But if Q2 frequent

SELECT ∗
FROM CUSTOMER;

Clustering is counter productive

45 / 96

Compromise

No mixing, but keep related records in same cylinder . . .

46 / 96

(4) Split records

47 / 96

Example

48 / 96

(5) Sequencing

Ordering records in file (and block) by some key value

Sequential file (→ sequenced file)

Why sequencing?
Typically to make it possible to efficiently read records in order

(e.g., to do a merge-join - discussed later)
Can be used for binary search

49 / 96

Sequencing Options

(a) Next record physically contiguous

(b) Records are linked

What about Insert/Delete?

50 / 96

Sequencing Options

(c) Overflow area
Records in sequence

51 / 96

(6) Indirection Addressing

How does one refer to records? Identifying a block/record on disk

Problem: Records can be on disk or in (virtual) memory.

52 / 96

Types of addresses to identify blocks/records

There are 2 types of address to identify a block/record in use:
1 Database Address:

Used to identifies data (block or record) stored on disk
There are 2 kinds of database addresses:

Physical address
Logical address

2 Virtual memory address: used to identify data (block or record)
stored in (virtual) memory

53 / 96

Purely Physical Addressing

direct addressing format for identify block/record on a disk

, gives exact position of record

, no indirection - direct access

/ long addresses

/ must update all occurrences of pointers if record moves

54 / 96

Logical Address

an indirect addressing format for identify block/record on a disk

Logical block address:

Each block/address is assigned a unique logical address
Logical address = an arbitrary string of fixed length bits

(Can be generated automatically using some sequence generator or
keep adding 1 to a counter)

DBMS uses a map table to translate:

To speed up access, the Map Table is organized as a hash table.

, update only entry in map table in case of modification

55 / 96

Trade-off

Flexibility to move records (for deletions, insertions) ↔ Cost of
indirection (lookup)

What to do: Options in between?

56 / 96

Problem with referencing another record using a physical
address

Example

2 records references the record Y

Problem: If record Y is moved to a different part of the disk.

We must update many addresses

57 / 96

Problem with referencing another record using a physical
address

Example (Solution)

Using a logical address as reference

If we move the record Y , we only need to

Update the physical address in the map table

58 / 96

Block header

Data at beginning that describes block

May contain:

File ID (or RELATION or DB ID)
This block ID
Record directory
Pointer to free space
Type of block (e.g. contains recs type 4; is overflow, . . .)
Pointer to other blocks “like it”
Timestamps . . .

59 / 96

Example: Indirection in block

Consider the records stored in a block:

Address of a record = address of the block that

contains the record + some offset information

60 / 96

Pointer Swizzling

When the block is read in main memory, it receives a main memory
address

Need another translation table

Optimization: Pointer Swizzling

The process of replacing a physical/logical pointer with a main memory
pointer
Still need translation table, but subsequent references are faster

61 / 96

Other Topics

1 Modification of Records

2 Buffer Management

3 Comparison of Schemes

62 / 96

Modification of Records

How to handle the following operations on the record level?

1 Insertion

2 Deletion

3 Update

63 / 96

1) Insertion

Easy case Records fixed length/not in sequence

Insert new record at end of file
or, in deleted slot

A little harder
If records are variable size, not as easy
may not be able to reuse space - fragmentation

A Difficult case: records in sequence

Find position and slide following records
If records are sequenced by linking, insert overflow blocks

64 / 96

2) Deletion

65 / 96

Options

(a) Deleted and immediately reclaim space by shifting other records or
removing overflows

(b) Mark deleted and list as free for re-use

Trade-offs
How expensive is immediate reclaim?

How expensive is to move valid record to free space for immediate
reclaim

How much space is wasted?

66 / 96

Concern with deletions

A caveat when using physical addresses to reference a block/record

Example

2 block with records refereeing a record Y

67 / 96

Concern with deletions

A caveat when using physical addresses to reference a block/record

Example

When the record Y is deleted

the physical addresses will reference an incorrect record

68 / 96

Techniques to handle record deletion

Using logical addresses is easy

Before deleting record Y

69 / 96

Techniques to handle record deletion

Using logical addresses is easy

After deleting record Y

70 / 96

Techniques to handle record deletion

Deleting a record using physical address: use a tombstone record

Tombstone record: a (very small) special purpose record used to
indicate a deleted record

When a record is delete, it is replaced by the tomb stone record

This tombstone is permanent, it must exist until the entire database
is reconstructed

71 / 96

Tombstones

Example

Before deleting record Y

72 / 96

Tombstones

Example

After deleting record Y

73 / 96

Tombstones

When you insert a new record, you cannot use the space of a
tombstone record
Because: Existing record references to the deleted record will then
references to the newly inserted record:

74 / 96

Update

If new record is shorter than previous, easy

If it is longer, need to shift records, create overflow blocks

75 / 96

Other Topics

1 Modification of Records

2 Buffer Management

3 Comparison of Schemes

76 / 96

Buffer Management

For Caching of Disk Blocks

Buffer Replacement Strategies

E.g., LRU, clock

Pinned blocks

Forced output

Double buffering (Notes02)

77 / 96

Buffer Manager

Size of the database on secondary storage � size of

available primary memory to hold user data.

To scan the entire pages of a 20 GB table (SELECT * FROM ...),
the DBMS needs to

1 bring in pages as they are needed for in memory processing,
2 overwrite (replace) such pages when they become obsolete for query

processing and new pages require in-memory space.

The buffer manager manages a collection of pages in a designated
main memory area, the buffer pool.

Manages blocks cached from disk in main memory

once all slots, frames, in this pool have been occupied, the buffer
manager uses a replacement policy to decide which frame to
overwrite when a new page needs to be brought in.

78 / 96

Buffer Manager

Two variable for each frame:
pin count: indicates how many “users” (e.g., transactions) are
working with that page,
boolean variable dirty: indicates whether the page has been modified
since it was brought into the buffer pool from disk

79 / 96

Buffer replacement policies/strategies

The choice of victim frame selection (or buffer replacement) policy can
considerably affect DBMS performance:

LRU

Clock
...

80 / 96

Least Recently Used (LRU)

Replace page that has not been accessed for the longest time

Implementation:

Keep a queue of pointers to frames with pin count 0
A frame is added to the tail of queue, when pin count is decremented
to 0
To find the next victim, the page in the frame at the head of the queue

81 / 96

Clock: “second chance”

Frames are organized clock-wise

Number the N frames in buffer pool 0 . . .N − 1, initialize counter
current ← 0, and maintain a bit array referenced[0 . . .N − 1],
initialized to all 0

Page P is loaded or accessed referenced[P]→ 1

To find the next victim, consider page current:

If pin count(current) = 0 and referenced[current] = 0,
current is the victim.
Otherwise, referenced[current] ← 0, current ← (current +

1) mod N, repeat.

82 / 96

Clock: “second chance”

83 / 96

Other Replacement Strategies

Other well-known replacement policies are, e.g.:

LRU-K

GCLOCK

Clock-Pro

ARC

LFU

84 / 96

Why not use the Operating System for the task?

DBMS may be able to anticipate access patterns

Hence, may also be able to perform prefetching

DBMS needs the ability to force pages to disk, for recovery purposes

85 / 96

Row vs Column Store

1 So far we assumed that fields of a record are stored contiguously (row
store)

2 Another option is to store like fields together (column store)

86 / 96

Row Store

Order consists of
id, cust, prod, store, price, date, qty

87 / 96

Column Store

Order consists of
id, cust, prod, store, price, date, qty

88 / 96

Row vs Column Store

Advantages of Column Store

more compact storage (fields need not start at byte boundaries)
efficient reads on data mining operations

Advantages of Row Store

writes (multiple fields of one record) more efficient
efficient reads for record access

More information: “Column-Stores vs. Row-Stores: How Different
Are They Really?”

89 / 96

Other Topics

1 Modification of Records

2 Buffer Management

3 Comparison of Schemes

90 / 96

Comparison

There are 10, 000, 000 ways to organize my data on disk . . .

Which is right for me?

91 / 96

Issues

92 / 96

To evaluate a given strategy, compute following parameters

space used for expected data

expected time to

fetch record given key
fetch record with next key
insert record
append record
delete record
update record
read all file
reorganize file

93 / 96

Example

How would you design Megatron 3000 storage system? (for a
relational DB)

Variable length records?
Spanned?
What data types?
Fixed format?
Record IDs ?
Sequencing?
How to handle deletions?

94 / 96

Assignment 1 - Storage Manager

Implement a storage manager that allows read/writing of blocks
to/from a file on disk

Assignment 1 - Storage Manager

Two weeks, starting Friday January, 26

95 / 96

http://cs.iit.edu/~cs525/assign1.html

Next

How to find a record quickly, given a key

96 / 96

	Class Information
	Course Overview

