
CS525: Advanced Database Organization

Notes 2: Storage Hardware

Yousef M. Elmehdwi

Department of Computer Science

Illinois Institute of Technology

yelmehdwi@iit.edu

January 10, 2018

Slides: adapted from a courses taught by Hector Garcia-Molina, Stanford, Paris
Koutris, & Leonard McMillan

1 / 52

yelmehdwi@iit.edu
http://infolab.stanford.edu/people/hector.html
https://www.stanford.edu/
http://pages.cs.wisc.edu/~paris/cs564-f16/
http://pages.cs.wisc.edu/~paris/cs564-f16/
http://www.csbio.unc.edu/mcmillan/Media/Comp521F10Lecture13.pdf

Outline

Study of data storage in a database management systems

There are two issues we must address which are related to how a
DBMS deals with very large amounts of data efficiently:

How does a computer system store and manage very large volumes of
data?
What representations and data structures best support efficient
manipulations of this data?

2 / 52

Today

Hardware: Disks

Access Times

Optimizations

Other Topics:

Storage costs
Using secondary storage
Disk failures

3 / 52

Hardware

4 / 52

Data Storage

How does a DBMS store and access data?

main memory (fast, temporary)
disk (slow, permanent)

How do we move data from disk to main memory?

buffer manager

How do we organize relational data into files?

5 / 52

Disks and Files

DBMS stores information on (“hard”) disks.

This has major implications for DBMS design!

READ: transfer data from disk to main memory (RAM).
WRITE: transfer data from RAM to disk.
Both are high-cost operations, relative to in-memory operations, so
must be planned carefully!

6 / 52

Why Not Store Everything in Memory?

Relatively high cost

Main memory is not persistent (volatile)

We want data to be saved between runs. (Obviously!)

Data Size > Memory Size > Address Space

7 / 52

Typical Storage Hierarchy

CPU Registers temporary variables

Cash - Fast copies of frequently accessed memory locations

Main memory (RAM) for currently used “addressable” data.

Disk for main database (secondary storage)

Tapes for archiving older versions of the data (tertiary storage)

8 / 52

Memory hierarchy

1

1 c©2013 Gribble, Lazowska, Levy, Zahorjan
9 / 52

Disks

The use of secondary storage is one of the important characteristics
of a DBMS.

To motivate many of the ideas used in DBMS implementation, we
must examine the operation of disks in detail

10 / 52

Disks

Secondary storage device of choice

Main advantage over tapes: random access vs. sequential

Sequential: read the data contiguously
Random: read the data from anywhere at any time

Data is stored and retrieved in units called disk blocks or pages

Typical numbers these days are 64 KB per block

Retrieval time depends upon the location of the disk

Therefore, relative placement of pages on disk has major impact on
DBMS performance!

11 / 52

Components of a Disk

platter: circular hard surface on
which data is stored by inducing
magnetic changes

spindle: responsible for rotating
the platters

RPM (Rotations Per Minute):
7200 RPM 15000 RPM

12 / 52

Components of a Disk

data is encoded in concentric
circles of sectors called tracks

The arm assembly is moved in
or out to position a head on a
desired track.

Tracks under heads make a
cylinder (imaginary!).

Only one head reads/writes at
any one time.

Block size is a multiple of sector
size (which is fixed).

13 / 52

Top View

14 / 52

Disk Storage Characteristics

Cylinders= # tracks per surface (platter)

e.g., 10 sectors ⇒ 10 cylinders and we can refer to them cylinder zero
to cylinder nine

tracks per cylinder= # of heads or 2× # platter

sector per track

bytes per sector

⇒disk capacity/size

15 / 52

Today

Hardware: Disks

Access Times

Optimizations

Other Topics:

Storage costs
Using secondary storage
Disk failures

16 / 52

Accessing the Disk

The time taken between the moment at which the command to read
a block is issued and the time that the contents of the block appear
in main memory is called the latency of the disk.

The access time is also called the latency of the disk.

17 / 52

Accessing the Disk

Note that blocks can be read or written only when:

The heads are positioned at the cylinder containing the track on
which the block is located, and

The sectors contained in the block move under the disk head as the
entire disk assembly rotates.

18 / 52

Accessing the Disk

access time = seek time + rotational delay + transfer time +other
delay

Other Delays:

CPU time to issue I/O
Contention for controller
Contention for bus, memory
“Typical” Value: 0

19 / 52

Accessing the Disk

access time = seek time + rotational delay + transfer time

Seek time: time to move the arm to position disk head on the right
track

Seek time can be 0 if the heads happen already to be at the proper
cylinder.

If not, the heads require some minimum time to start moving and to
stop again, plus additional time that is roughly proportional to the
distance traveled.

The average seek time is often used as a way to characterize the
speed of the disk.

20 / 52

Average Random Seek Time

Given N as the total number of tracks

S =

∑N
i=1

∑N
j=1,j 6=i SEEKTIME (i → j)

N(N − 1)

It sums up all the time traveled between each pair of tracks and get
the average of it as the average seek time.

21 / 52

Accessing the Disk

access time = seek time + rotational delay + transfer time

rotational delay: time to wait for sector to rotate under the disk head

22 / 52

Average Rotational Delay

On the average, the desired sector will be about half way around the
circle when the heads arrive at its cylinder.

Average rotational delay is time for 1
2 revolution

Example: Given a total revolution of 7200 RPM

One rotation = 60s
7200 = 8.33 ms

Average rotational latency = 4.16 ms

23 / 52

Accessing the Disk

access time = seek time + rotational delay + transfer time

data transfer time: time to move the data to/from the disk surface

Transfer time is the time it takes the sectors of the block and any
gaps between them to rotate past the head.

Given a transfer rate, the transfer time= block size
transfer rate

24 / 52

Accessing the Disk

Seek time and rotational delay dominate.

Key to lower I/O cost: reduce seek/rotation delays!

25 / 52

Arranging Blocks on Disk

So far: Random Block Access.

Blocks in a file should be arranged sequentially on disk (by “next”) to
minimize seek and rotational delay.

Next block concept:

blocks on same track, followed by
blocks on same cylinder, followed by
blocks on adjacent cylinder

For a sequential scan, pre-fetching several blocks at a time is a big
win.

26 / 52

If we do things right

(e.g., Double Buffer, Stagger Blocks)

Time to get blocks should be proportional to the size of blocks, and
the seek time and rotational latency thus become trivial

time to get block = Block size
transfer rate + Negligible

Negligible:

skip gap
switch track
once in a while, next cylinder

27 / 52

Rule of Thumb

Random I/O: Expensive

Sequential I/O: Much less

28 / 52

Cost for Writing similar to Reading

The process of writing a block is, in its simplest form, quite similar to
reading a block

. . . unless we want to verify!

need to add (full) rotation + Block size
transfer rate

29 / 52

To Modify a Block?

It is not possible to modify a block on disk directly. Rather, even if we
wish to modify only a few bytes, we must do the following:

1 Read Block

2 Modify in Memory

3 Write Block

4 [Verify?]

30 / 52

SSD (SOLID STATE DRIVE)

SSDs use flash memory

No moving parts (no rotate/seek motors)

eliminates seek time and rotational delay
very low power and lightweight

Data transfer rates: 300-600 MB/s

SSDs can read data (sequential or random) very fast!

Small storage (0.1− 0.5× of HDD)

expensive (20× of HDD)

Writes are much more expensive than reads (10×)

Limited lifetime

1-10K writes per page
the average failure rate is 6 years

31 / 52

Today

Hardware: Disks

Access Times

Optimizations

Other Topics:

Storage costs
Using secondary storage
Disk failures

32 / 52

Optimizations (in controller or O.S.)

Effective ways to speed up disk accesses:

Disk Scheduling Algorithms

Track (or larger) Buffer

Pre-fetch

Arrays

Mirrored Disks

On Disk Cache

33 / 52

Double Buffering

Another suggestion for speeding up some secondary-memory
algorithms is called double buffering.

In some scenarios, we can predict the order in which blocks will be
requested from disk by some process.

Prefetching (double buffering) is the method of fetching the necessary
blocks into the buffer in advance

Requires enough buffer space

Speedup factor up to n, where n is the number of blocks requested by
a process

34 / 52

Double Buffering

Problem

Have a File

Sequence of Blocks B1, B2

Have a Program

Process B1
Process B2
Process B3
...

35 / 52

Single Buffer Solution

1 Read B1 → Buffer

2 Process Data in Buffer

3 Read B2 → Buffer

4 Process Data in Buffer

5
...

36 / 52

Single Buffer Solution

Let:

P = time to process/block

R = time to read in 1 block

n = # blocks

Single buffer time =n(P + R)

37 / 52

Double Buffering Solution

38 / 52

Double Buffering Solution

39 / 52

Double Buffering Solution

40 / 52

Double Buffer Solution

Let:

P = time to process/block

R = time to read in 1 block

n = # blocks

P ≥ R

What is processing time?

Double buffering time = R + nP

Single buffer time =n(R + P)

41 / 52

Block Size Selection?

Big Block → Less Management Overhead

Unfortunately

Big Block → Read in more useless stuff and takes longer to read

Trend: As memory prices drop, blocks get bigger

42 / 52

Disk Failures

We Consider ways in which disks can fail and what can be done to
mitigate these failures:

Partial → Total

Intermittent → Permanent

43 / 52

Coping with Disk Failures

Detection

e.g. Checksum

Correction

Redundancy

44 / 52

Megatron 747 Disk (old)

Example

Rotate at 3600 RPM

Only 1 surface

16 MB usable capacity (usable capacity excludes the gaps)

128 cylinders

seek time:

average = 25 ms.
adjacent cylinders = 5 ms.

1 KB block = 1 sector

10% overhead between blocks

gaps represent 10% of the circle and
sectors represent the remaining 90%

45 / 52

Megatron 747 Disk (old)

bytes/cyl = total capacity
total # cylinders = 220×16

128 = 224

27
= 217 = 128KB

#blocks/cyl = capacity of each cylinder
size of block = 128KB

1KB = 128

46 / 52

Megatron 747 Disk (old)

3600 RPM → 60 revolutions/sec→1 rev. = 16.66 msec.

Time over useful data = 16.66× 0.9 = 14.99 ms

Time over gaps=16.66× 0.1 = 1.66 ms

Transfer time 1 block =14.99
128 = 0.117ms

Q) If there are 128 sectors in each cylinder, then how

many gaps are there?

Transfer time 1 block+gap=16.66
128 = 0.13ms

47 / 52

Megatron 747 Disk (old)

T1 = Time to read one random block

T1 = seek + rotational delay + Transfer time 1 block

T1 = 25 + 16.66
2 + 0.117 = 33.45 ms.

48 / 52

Megatron 747 Disk (old)

Suppose OS deals with 4 KB blocks

T4 = 25 + 16.66
2 + 0.117× 1 + 0.13× 3 = 33.83 ms

Compare to T1 = 33.45ms

Q) The time to read a full track is ?

49 / 52

Summary

Secondary storage, mainly disks

I/O times

I/Os should be avoided, especially random ones

50 / 52

Reading

Chapter 2: data storage in week1/reading folder, except Sections:
2.3.3, 2.3.4, 2.3.5, 2.4.4, 2.5.4, 2.6

51 / 52

Next

File and System Structure

52 / 52

	Class Information
	Course Overview

