## CS525: Advanced Database Organization

## Notes 6: Multi-dimensional indexes

Yousef M. Elmehdwi<br>Department of Computer Science<br>Illinois Institute of Technology<br>yelmehdwi@iit.edu<br>February 12, 14, 19, 2018

Slides: adapted from a course taught by Shun Yan Cheung, Emory University

## Topics

- Multi-dimensional information and query
- Motivation for Multi-dimensional indexes
- Multi-dimensional index structures
- Hash like structures
- Tree like structures
- Bitmap indices


## Recap

- We have studied the following 3 index structures:
- Sorted indexes
- $\mathrm{B}^{+}$-tree indexes
- Hashing-based indexes:
- Common property
- The search key values are values taken from a one-dimensional space/set


## Multi-dimensional Information

- There are information that are naturally multi-dimensional
- e.g., Geographic information:
- Stores objects in a (typically) two-dimensional space.
- The objects may be points or shapes.
- Often, these databases are maps, where the stored objects could represent houses, roads, bridges, pipelines, and many other physical objects.


## Multi-dimensional queries

- Partial Match queries
- Range queries
- Nearest neighbor queries
- Where-am-I queries


## Partial Match queries

- The query specifies conditions on some dimensions but not on all dimensions
- e.g., Find all points/objects that intersects with $y=50$



## Range queries

- Find objects that are located either partial or wholly within a certain range
- e.g., Find all objects that have an overlap with the green area:



## Nearest neighbor queries

- Find the closest point to a given point.
- Suppose we have a relation containing points on a map
- Each point is stored in the following relation as Point ( $\mathrm{x}, \mathrm{y}$ )
- Find the point that is closest to point $P(10,20)$



## Where-am-I queries

- Given a location (i.e., coordinate)
- Find the object(s) that contains the location



## Motivation for developing multi-dimensional indexes

- Are muliti-dimensional indexes necessary?
- Can one-dimensional index technique support geometrical (2-dimensional) queries efficiently?
- Case Study: Try to process a range query using a B-tree index


## Processing the geometrical query using a B-tree index

- Database and query description
- Database: object locations
- Object( $x, y$, other-attributes)
- where $x$ and $y$ are the coordinates of the object
- Query
- Find all objects that lies within a rectangle



## Processing the geometrical query using a B-tree index

- Suppose we have $\mathrm{B}^{+}$-tree indexes on:
- The $x$-coordinate attribute of Object and
- The $y$-coordinate attribute of Object


## Processing the geometrical query using a B-tree index

- The $\mathrm{B}^{+}$-tree on the $x$-coordinate information looks like this:

- The point with the smallest $x$-coordinate value is the left-most leaf key


## Processing the geometrical query using a B -tree index

- The $\mathrm{B}^{+}$-tree on the $y$-coordinate information looks like this:

- The point with the smallest $y$-coordinate value is the left-most leaf key


## Processing the geometrical query using a B-tree index

- Range query:
- Find all points such that:
- $x_{L} \leq x \leq x_{H}$ and
- $y_{L} \leq y \leq y_{H}$



## How to use the $\mathrm{B}^{+}$-tree indexes to process range query

1. Use the $x-B^{+}$-tree index and find the first value that is $\geq x_{L}$


## How to use the $\mathrm{B}^{+}$-tree indexes to process range query

- Traverse the leaf nodes to find all record pointers for which $x_{L} \leq x \leq x_{H}$



## How to use the $\mathrm{B}^{+}$-tree indexes to process range query

2. Do the same for the $y$-coordinate


## How to use the $\mathrm{B}^{+}$-tree indexes to process range query

3. Compute the intersection of the 2 pointer sets


## How to use the $\mathrm{B}^{+}$-tree indexes to process range query

4. Retrieve the records using the record pointers in the intersection

- These records are guarantee to satisfy:
- $x_{L} \leq x \leq x_{H}$ and
- $y_{L} \leq y \leq y_{H}$
- This solution is not faster than scanning the entire relation


## Example

- Consider the following situation:

- Some statistics:
- Green area $=100 \times 100=10,000$
- Total area $=1000 \times 1000=1,000,000$
- Green area $=0.01 \times$ Total area


## Example

- Total \# points in area $=1,000,000$
- \# points in green area $\cong 0.01 \times 1,000,000=10,000$

- \# points with $x$-coordinate in $[450,550]$

$$
\cong 0.1 \times 1,000,000=100,000
$$

- \# points with $y$-coordinate in $[450,550]$

$$
\cong 0.1 \times 1,000,000=100,000
$$

## Storage information

- To compute the processing cost $=$ \# disk blocks accessed
- 1 disk block contains 100 points
- 1 B-tree block (node) contains an average of 200 (key, ptr) pairs


## Compute the Processing Cost

1. Use the $x-B^{+}$-tree index and find the first value that is $\geq x_{L}$


## Compute the Processing Cost

- Traverse the leaf nodes to find all record pointers for which $x_{L} \leq x \leq x_{H}$



## Compute the Processing Cost

2. Do the same for the $y$-coordinate


100,000 pts $/ 200=500$ blocks

## Compute the Processing Cost

3. Compute the intersection of the 2 pointer sets


## Compute the Processing Cost

4. Retrieve the records using the record pointers in the intersection

- We assume the records are stored randomly (i.e., not ordered by the $x$ or $y$ coordinate)
- Different records will likely be stored in different blocks
- Accessing the 10,000 records using the record pointers will result in Accessing 10,000 data blocks

5. Total number of disk blocks accessed: $500+500+10,000=11,000$ disk blocks

## Scan the entire relation

- Now, consider finding the points by scanning the entire relation:
- There are $1,000,000$ points
- 1 disk block stores 100 points
- \# disk blocks used $=\frac{1,000,000}{100}=10,000$ blocks
- So we would need: 10, 000 disk blocks accesses
- $\Rightarrow$ using the B-tree index does not help us improve performance


## Conclusion

- We cannot store geographically 'related'' data randomly
- If related geographical data is store randomly, we will need to access too many data blocks
- $\Rightarrow$ must store geographically ' 'related', data (i.e.: points that are close to each other) in the same data block
- To support the access to the geometrical data
- Need a more appropriate index structure for multi-dimensional data


## Multi-dimensional index structures

- Hash like structures
- Grid files
- Partitioned Hashing functions
- Tree like structures
- Multiple key indexes
- kd-trees
- Quad trees
- R-trees


## Grid Index

- Partition multi-dimensional space with a grid
- In each dimension, grid lines partition space into stripes
- Intersections of stripes from different dimensions define regions
- The number of grid lines in different dimensions may vary.
- Spacings between adjacent grid lines may also vary.
- Each region corresponds to a bucket.
- Attribute values for record determine region and therefore bucket


## Grid Index

- Grid index file: an index that is organized into a 2-dimensional structure

- Note: Geographically ' 'related'' data (i.e.: points that are close to each other) are stored in the same data block


## Storage Structure of Grid Index File

1) Stores the size parameters $m$ and $n$ of the grid
2) Stores the buckets of the grid

- $v_{1}, v_{2}, \ldots, v_{m}$
- $x_{1}, x_{2}, \ldots, x_{n}$

3) contains $m \times n$ block pointers

Logical structure of the grid index file
key 1

A grid index file:


## Buckets and Grid lines

key 2


Bucket

## Interpreting the grid lines

- You can interpret the values:
- $v_{1}, v_{2}, \ldots, v_{m}$
- $x_{1}, x_{2}, \ldots, x_{n}$

1) As individual points
2) As intervals

## Interpreting the grid lines: Point interpretation

key 2


- The grid lines represents discrete values
- With $n$ grid lines you will have $n$ index points


## Interpreting the grid lines: Interval interpretation

## key 2



- The grid lines represents end points of intervals
- With $n$ grid lines you will have $n+1$ intervals


## Example of a Grid index file

- Data on people who buy jewelry:

$$
\begin{array}{llll}
\text { (age, salary (in } \$ 1,000)) & \\
& & \\
\text { A(25,60) } & \mathrm{D}(45,60) & \mathrm{G}(50,75) & \mathrm{J}(50,100) \\
\mathrm{B}(50,120) & \mathrm{E}(70,110) & \mathrm{H}(85,140) & \mathrm{K}(30,260) \\
\mathrm{C}(25,400) & \mathrm{F}(45,350) & \mathrm{I}(50,275) & \mathrm{L}(60,260)
\end{array}
$$

- Ranges

| Age: | $0-40$ | $40-55$ | $\geq 55+$ |
| :--- | :--- | :--- | :--- |
| Salary: | $0-90 \mathrm{~K}$ | $90 \mathrm{~K}-225 \mathrm{~K}$ | $\geq 225 \mathrm{~K}+$ |

- Grid index file



## Example of a Grid index file

- How the grid index file is stored:

Storage of the grid index file:


## Example of a Grid index file

- The text book use the following method to represent the index file

- For the following data set

```
(age, salary (in $1,000))
A(25,6) D(45,60) G(50,75) J(50,100)
B(50,120) E(70,110) H(85,140) K(30,260)
C(25,400) F(45,350) I(50,275) L(60,260)
```


## Generalization to higher dimensions

A 3-dimensional grid index file:

| $m$ | $n$ | $k$ | $v_{1}$ | $v_{2}$ | $\ldots$ | $v_{m}$ | $x_{1}$ | $x_{2}$ | $\ldots$ | $x_{n}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



## Lookup a search key

- Given: search key (Age = 50, Salary = 100)
- How to find this record


## Lookup a search key

- Find the row index using age $=50$

Storage of the grid index file:

## $3 \times 3$ pointers



## Lookup a search key

- Find the column index using salary $=100$

Storage of the grid index file:
$3 \times 3$ pointers


## Lookup a search key

- Find the offset (this is the standard way to find an array element)
- offset $=$ row index $\times$ (column width) + column index $=$ $1 \times 3+1=4$
- Access the blocks and search for the record

Storage of the grid index file:

## $3 \times 3$ pointers



## Insert a new record in a Grid Index file

Algorithm 1 insert( record )
1: Lookup (record.SearchKey)
2: Let $b=$ the last bucket block
: if $b$ has room for record then
4: Insert record in block $b$
5: else
6: Allocate an overflow block for bucket
7: Link overflow block to $b$
8: Insert record in overflow bucket block
9: end if

## Performance Analysis: lookup/insert a search key

- Assumption: The grid index file can be store in memory
- Lookup performance
- 0 block access to obtain the bucket block pointer
- 1 block access to obtain the data block (that contains the record)
- If there areoverflow blocks, need to access a few more (overflow) blocks


## Performance Analysis: lookup/insert a search key

- Assumption: The grid index file can be store in memory
- Insert performance
- In addition to the lookup cost
- 1 more block write operation to update the bucket block
- If overflow, need to update the overflow link in the bucket and write an overflow block)


## Using a grid index in multi-dimensional queries

- Performance of Grid index for the commonly used multi-dimensional queries
- Assumption: The grid index file can be stored entirely in memory


## 1) Partial Match queries

- The query specifies conditions on some dimensions but not on all dimensions
- Find all jewelry purchases by people with age $=50$

- You will access $m$ disk blocks ( $m$ is some dimension of the grid)


## 2) Range queries

- Find objects that are located either partial or wholly within a certain range
- Find all jewelry purchases by people whose $35 \leq$ age $\leq 50$, $50 K \leq$ salary $\leq 100 K$

- In this example, we must access 4 disk blocks


## Announcement

- Coding assignment 2 due date: Sunday, March 11, 2018 by midnight (Chicago time:)
- Quiz 1:
- Post: Friday February 23.
- Due on Blackboard: Tuesday February 27 by midnight (Chicago time)
- Midterm: Close notes/book/friends: March 5 in class time


## 3) Nearest neighbor queries

- Find the nearest neighbor of a data point data point



## 3) Nearest neighbor queries

- Start by finding the nearest neighbor in the bucket that contains the data point



## 3) Nearest neighbor queries

- This distance will limit the block where you need to search to all blocks that intersect with this circle:



## 3) Nearest neighbor queries

- Expand the search region in an adjacent bucket that contained within the circle:



## 3) Nearest neighbor queries

- And so forth



## 3) Nearest neighbor queries

- And so forth
data point


Age

## 3) Nearest neighbor queries

- Note: You may need to expand the search range beyond the adjacent regions



## nearest neighbor

- The nearest neighbor is outside the adjacent regions
- You must use the current nearest neighbor and the grid lines to decide whether you need to expend the range of the search


## 3) Nearest neighbor queries: Performance

- The expanding range search will access on average 9 data blocks (in a 2-dimensional grid index)

nearest neighbor is usually found in this region


## 4) Where-am-I queries

- Given a location (i.e., coordinate)
- Find the object(s) that contains the location

- Grid index cannot represent objects (can only present points)
- $\Rightarrow$ Grid Index cannot handle Where-am-I type of queries
- The only kind of index that can handle Where-am-I queries is the R-tree (Region-tree) (Discussed later)


## Grid Index: Summary

+ Good for multiple-key search
- Space, management overhead (nothing is free)
- Need partitioning ranges that evenly split keys


## Grid Index

- A major problem with Grid Index files is Poor occupancy rate at many grid buckets

- Especially when you have 3 or more dimensions. You will have many buckets that are empty.


## Multi-dimensional index structures

- Hash like structures
- Grid files
- Partitioned Hash functions
- Tree like structures
- Multiple key indexes
- kd-trees
- Quad trees
- R-trees


## Partitioned Hashing

- Traditional hashing

- Problem with traditional hashing
- If the key is composite

$$
K=(x, y)
$$



- and some component of the key is not known

- we cannot compute a meaningful hash value at all


## Partitioned Hashing

- Partitioned Hashing
- The key is a composite:

- Use $n$ hash functions, one function on one component



## Partitioned Hashing

- Partitioned Hashing
- The hash value is the concatenation of the individual hash function values


Hash value

## Partitioned Hashing: Example



## Advantage of Partitioned Hashing

- Partitioned Hashing can generate a meaningful hash value for incomplete keys



## Partitioned Hashing: A complete example

- Data on people who buy jewelry

| (age, salary (in $\$ 1,000)$ ) |  |  |  |
| :--- | :--- | :--- | :--- |
| A(25,60) | $\mathrm{D}(45,60)$ | $\mathrm{G}(50,75)$ | $\mathrm{J}(50,100)$ |
| $\mathrm{B}(50,120)$ | $\mathrm{E}(70,110)$ | $\mathrm{H}(85,140)$ | $\mathrm{K}(30,260)$ |
| $\mathrm{C}(25,400)$ | $\mathrm{F}(45,350)$ | $\mathrm{I}(50,275)$ | $\mathrm{L}(60,260)$ |

- Given hash functions

| Age: | $h_{1}($ age $)=$ age $\% 2$ |
| :--- | :--- |
| Salary: | $h_{2}($ salary $)=$ salary $\% 4$ |

- Some Hash Function values

| $A(25,60)$ | $\mathrm{D}(45,60)$ | $\mathrm{G}(50,75)$ | $\mathrm{J}(50,100)$ |
| :---: | :---: | :---: | :---: |
| \| | \| | \| | V |
| 100 | V | V | V |
|  | 100 | 011 | 000 |
| $\mathrm{~B}(50,120)$ | $\mathrm{E}(70,110)$ | $\mathrm{H}(85,140)$ | $\mathrm{K}(30,260)$ |
| $\mathrm{C}(25,400)$ | $\mathrm{F}(45,350)$ | $\mathrm{I}(50,275)$ | $\mathrm{L}(60,260)$ |

## Partitioned Hashing: A complete example

- The Partitioned Hash index



## Using a Partitioned Hashing

- The Partitioned Hash index



## 1) Partial Match queries

- Find people with age $=50$

- Age $=50$ will hash to the hash value Hash(age) $=0 \times \times$.
- Start at bucket 000 and scan to bucket 011


## 2) Range queries

- Find objects that are located either partial or wholly within a certain range
- Find people such that: $35 \leq$ age $\leq 50,50 K \leq$ salary $\leq 100 K$


## 2) Range queries

a) Hash all values inside the range

```
hash(35, 50K) --> block pointer 1
hash(36, 50K) --> block pointer 2
hash(50, 50K)
```

And so on:
$(35,55 \mathrm{~K})(36,55 \mathrm{~K}), \ldots .(50,55 \mathrm{~K})$
(35, 100K) $(36,100 \mathrm{~K}), \ldots . .(50,100 \mathrm{~K})$

- Note: the block pointers can have duplicates
b) Collect all the buckets (eliminate duplicate block pointers)
c) Access all (unique) buckets (disk blocks)
- $\Rightarrow$ Hashing is not appropriate for range type queries


## 3) Nearest neighbor queries

- Hashing is completely useless for nearest neighbor type queries
- Because: There is no notion of distance in the hash function
- Example: find records that with distance $\leq 1$ to search key $=1$
- We hash the search key 1



## 3) Nearest neighbor queries

- However, we cannot use the distance in the hash table to locate "nearby" objects (records)

- The value 2 is near the value 1 , but may get hash very far away


## Property of hashing:

- Closeness of bucket indexes has nothing to do with real distance between data points (because hashing computes a random number)


## 4) Where-am-I queries

- Hashing is also not useful here either
- Because hashing provide no information on distance


## Advantage of Partitioned Hashing

- Good hash functions will randomize the records
- $\Rightarrow$ Partitioned hashing will achieve good occupancy rate per bucket


## Multi-dimensional index structures

- Hash like structures
- Grid files
- Partitioned Hash functions
- Tree like structures
- Multiple key indexes
- kd-trees
- Quad trees
- R-trees


## Multiple-key index

- special case of a multilevel index using different types of search keys in each level


## index on $x$

indexes on $y$


3 separate index files

## Multiple-key index: Example

- Data on people who buy jewelry

$$
\begin{array}{llll}
\text { (age, salary (in } \$ 1,000) \text { ) } & \\
\mathrm{A}(25,60) & \mathrm{D}(45,60) & \mathrm{G}(50,75) & \mathrm{J}(50,100) \\
\mathrm{B}(50,120) & \mathrm{E}(70,110) & \mathrm{H}(85,140) & \mathrm{K}(30,260) \\
\mathrm{C}(25,400) & \mathrm{F}(45,350) & \mathrm{I}(50,275) & \mathrm{L}(60,260)
\end{array}
$$

- A multiple-key index on keys (age, salary)
index on age index on salary



## Using a Multiple-key index: 1) Partial Match queries

- Find all people with age $=25$

- Use the index on age to find the index block(s) for age $=25$
- Then, scan all entries in the salary index file (list of blocks) indexed by age $=25$ to find the records


## 1) Partial Match queries

- Multiple-key index for partial match query will only be useful when the first dimension is given
- We cannot use multiple-key index to process the following query efficiently


## 1) Partial Match queries

- Find all people who earn $\$ 60,000$ who buy jewelry. We will need to scan the first index

- Result: many disk accesses


## 2) Range queries

- Find objects that are located either partial or wholly within a certain range
- Find people such that: $35 \leq$ age $\leq 50,50 K \leq$ salary $\leq 100 K$


## 2) Range queries

- Use the range of age to find all of the subindexes that might contain answer

- Only need to search a limited number of lower level index files


## 3) Nearest neighbor queries

- The multiple key index can help in the processing of Nearest neighbor queries
- BUT: It involves a complicated expanding range search algorithm in "nearby branches" of the index tree


## 4) Where-am-I queries

- Multiple-key index are not used in Where-am-I queries


## Multi-dimensional index structures

- Hash like structures
- Grid files
- Partitioned Hash functions
- Tree like structures
- Multiple key indexes
- kd-trees
- Quad trees
- R-trees


## kd (k-dimensional) tree:

- The kd-tree as a main memory data structure
- Adaptation of the kd-tree for disk storage


## Review: Binary Search Tree

- Binary Search Tree (BST) is a binary tree where
- The values in the nodes in the left subtree of the node x in the tree has a smaller value than x
- The values in the nodes in the right subtree of the node x in the tree has a greater value than x
- Notice the above property holds for every node in the binary tree


## Review: Binary Search Tree: Example



## Review: Binary Search Tree: Example



## The kd-tree

- The kd-tree is a generalization of the classic Binary Search Tree (BST)
- The search key used at different levels belongs to a different dimension (domain)
- The dimensions at different levels will wrap around (i.e., circulate)


## Example: a 2-dimensional kd-tree

- 2 dimentions: x and y



## Properties

- Subtrees of $\mathrm{x}_{1}$ must satisfy this property



## Properties

- Subtrees of $y_{1}$ and $y_{2}$ must satisfy this property

- And so on (for every level of the kd-tree)


## Classical kd-tree

- The actual record (data) are stored in every node (search key) of the kd-tree

- The node $y_{1}$ contains the data (record) for ( $\mathrm{x}_{1}, \mathrm{y}_{1}$ )
- The node $x_{2}$ contains the data (record) for ( $\mathrm{x}_{2}, \mathrm{y}_{1}$ )
- And so on


## Modifications to the kd-tree for storage on disk

- Interior nodes do not store data
- Interior node only stores
- Attribute name (i.e.:X or Y)
- Dividing value (i.e.: $\mathrm{x}_{1}$ or $\mathrm{y}_{4}$ ) of the attribute
- Pointers to the (2) children nodes


## Modifications to the kd-tree for storage on disk

- Dividing line is "moved" a little bit

- The equality is included in right branch of the kd-tree
- Each leaf node of the modified kd-tree is one (1) data block


## Example kd-tree

- Data on people who buy jewelry

$$
\begin{array}{llll}
\text { (age, salary (in } \$ 1,000)) & \\
& & \\
\mathrm{A}(25,60) & \mathrm{D}(45,60) & \mathrm{G}(50,75) & \mathrm{J}(50,100) \\
\mathrm{B}(50,120) & \mathrm{E}(70,110) & \mathrm{H}(85,140) & \mathrm{K}(30,260) \\
\mathrm{C}(25,400) & \mathrm{F}(45,350) & \mathrm{I}(50,275) & \mathrm{L}(60,260)
\end{array}
$$

- A kd-tree for the data:



## Example kd-tree

- Behold the structural properties of the kd-tree
- This left (shaded) subtree has salary search key values $<150$ (for salary)



## Example kd-tree

- This left subtree has salary $<150$ and age $<60$



## Example kd-tree

- This right subtree has salary $<150$ and age $\geq 60$



## How a kd-tree partitions the data space

- The root node

- partitions the data space in half



## How a kd-tree partitions the data space

- The age nodes at level 2

- partitions each sub-space in half



## How a kd-tree partitions the data space

- This kd-tree



## How a kd-tree partitions the data space

- will divide the data space up as follows



## Using kd-tree for common multi-dim queries

1) Partial Match queries

- Search Algorithm
- For a dimension for which the search value is given (specified)
- Take the (one) branch of the subtree for the search value
- For a dimension for which the search value is not given (not specified)
- Take both branches of the subtree


## 1) Partial Match queries: Example

- Find all person with age $=35$

Lookup: age $=35$


## 2) Range queries

- Search Algorithm
- For the search range is completely contained by the left subtree, then
- Take only the left branch of the subtree for the search value
- For the search range is completely contained by the right subtree, then
- Take only the right branch of the subtree for the search value
- Otherwise (the search range saddles at the search value)
- Search both subtrees


## 2) Range queries: Example



## 3) Nearest neighbor queries

- Not easy to to find the nearest neighbor using a kd-tree index

- It requires up and down traversal/search in the kd-tree


## 4) Where-am-I queries

- Not applicable
- kd-tree can only stores points
- Cannot store objects


## Multi-dimensional index structures

- Hash like structures
- Grid files
- Partitioned Hash functions
- Tree like structures
- Multiple key indexes
- kd-trees
- Quad trees
- R-trees


## The Quad-tree

- An index structure that divides a search space in half (exactly) in every dimension
- Structure of a quad-tree node
- A quad-tree node contains the following
- 1 search key value for each dimension
- $2^{n}$ child nodepointers ( $n$ way split)
- One parent node pointer (except for the root node)
- The child node pointers will point to every possible combination of $<$ and $\geq$ relationships with the search key values


## Quad-tree on common multi-dimensional queries

- A quad-tree is similar to a kd-tree
- The techniques discussed in the kd-tree applies to the Quad-tree


## Multi-dimensional index structures

- Hash like structures
- Grid files
- Partitioned Hash functions
- Tree like structures
- Multiple key indexes
- kd-trees
- Quad trees
- R-trees


## The R-tree (Region-tree)

- Bounding Box
- a rectangle that contains a group of objects
- Example: given a group of objects

- The Bounding Box for this group of objects



## The R-tree (Region-tree)

- Minimum Bounding Box (MBB)
- the smallest rectangle that contains a group of objects
- Example: given a group of objects

- The Minimum Bounding Box for this group of objects



## The R-tree (Region-tree)

- Note: A rectangle can be represented as follows
- coordinate of the lower left corner
- coordinate of the upper right corner
- Example: Rectangle: $((10,20),(50,40))$



## The R-tree (Region-tree)

- R-Tree: an index tree-structure derived from the B-tree that uses bounding boxes as search keys
- The internal nodes contains a number of entries of the following format
- (bounding box, child node pointer)
- Example: $(((10,20),(50,40))$, ptr 1$)$
- The leaf nodes contains a number of entries of the following format:
- (min bounding box, object pointer)
- Example: $(((10,20),(50,40))$,house-ptr $)$


## Property of a R-tree

- An internal node of the R-tree has the following structure bounding box


Objects that are entirely contained inside the bouding box ((10,20),(50,40))

Objects that are entirely contained inside the bouding box ((15,25),(70,80))

- The subtree indexed by the bounding box will contain
- Only objects that is contained within the given bounding box


## R-tree: Example

- Objects that we want to represent

- There are 7 objects
- school, pop (point of presence), house1, house2, road1 road2, pipeline


## R-tree: Example

- The 3 objects house1, road1 and road2 are completely enclosed by the bounding box $(0,0),(60,50))$



## R-tree: Example

- The objects school, pop , house2 and pipeline are completely enclosed by the bounding box $((20,20),(100,80))$



## R-tree: Example

- The R-tree that uses the previous bounding boxes


## R-tree:



- The minimum bounding box (mbb) field for different objects are different


## Overlapping Bounding boxes in R -tree

- The bounding boxes used in the internal R-tree nodes can overlap
- Example



## Overlapping Bounding boxes in R-tree

- You can see the overlap clearly



## Lookup operation in the R-tree

- Lookup algorithm for a point in an R -tree
- Search Algorithm for a Point ( $\mathrm{x}, \mathrm{y}$ )
- The search algorithm is recursive
- The search starts at the root node of the R-tree


## Search algorithm for a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$

Algorithm 2 Lookup ( $(\mathrm{x}, \mathrm{y})$, n , result)
// $n=$ current node of the search in the R-tree
: if ( $n==$ internal node ) then
3: for each entry (BB, childptr) in internal node $n$ ) do
4: $\quad / /$ Look in subtree if $(x, y)$ is inside bounding box
5: $\quad$ if $(x, y) \in B B$ then
6: $\quad \operatorname{Lookup}((x, y)$, childptr, result $)$
7: end if
8: end for
9: else
10: $\quad / / n$ is a leaf node
11: for ( each object $O b$ in node $n$ ) do
12: $\quad$ if $(x, y) \in \operatorname{MBB}(0 b)$ then
13: $\quad$ Add $O b$ to result // Object Ob contains point ( $\mathrm{x}, \mathrm{y}$ )
14: end if
15: end for
16: end if

## R-tree- Insert

- Similar to B-tree, but more complex
- Overlap: multiple choices where to add entry
- Split harder because more choice how to split node (compare B-tree = 1 choice)

1) Find potential subtrees for current node

- Choose one for insert (e.g., the one the would grow the least)
- continue until leaf is found

2) Insert into leaf
3) Leaf is full? $\Rightarrow$ split

- Find best split (minimum overlap between new nodes) is hard $\left(0\left(2^{M}\right)\right)$
- Use linear or quadratic heuristics (original paper: R-trees: a dynamic index structure for spatial searching)

4) Adapt parents if necessary

## Bitmap indexes

- Assumption: Records in a file/relation occupy a permanent location in the file/relation
- A records is uniquely identified by a position ID
- Definition: Current value set (F): the current set of values stored in a field $f$ in the records
- Example

Records:


## Bitmap indexes

- Bitmap index of a field $f$ : is a collection of bit vectors of length n , where n is the number of records
- There is one bit vector for each value $v$ that appears in field $f$
- The bit vector for the value $v$ is equal to
- $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{i} \ldots \mathrm{x}_{n}$
- $\mathrm{x}_{i}=1$ if the $\mathrm{i}^{t h}$ record's field $\mathrm{f}=\mathrm{v}$, otherwise $=0$


## Bitmap indexes: Example

- A file has 6 records

| Fields: | A | B |
| :--- | :--- | :--- |
| record 1: | 30 | foo |
| record 2: | 30 | bar |
| record 3: | 40 | baz |
| record 4: | 50 | foo |
| record 5: | 40 | bar |
| record 6: | 30 | baz |

- The bitmap index for the field A is

| value | 123456 |  |
| :---: | :---: | :---: |
| 30 | 110001 | <---- bit vector |
| 40 | 001010 |  |
| 50 | 000100 |  |

Explanation:
The value 30 appears in the records: 1, 2, 6
So: bit \#1, \#2 and \#6 are set

## Bitmap indexes: Example

- A file has 6 records

| Fields: | A | B |
| :--- | :--- | :--- |
| record 1: | 30 | foo |
| record 2: | 30 | bar |
| record 3: | 40 | baz |
| record 4: | 50 | foo |
| record 5: | 40 | bar |
| record 6: | 30 | baz |

- The bitmap index for the field B is
value 123456

| foo | 100100 | $<---$ bit vector |
| :--- | :--- | :--- |
| bar | 010010 |  |
| baz | 001001 |  |

Explanation:
The value foo appears in the records: 1, 4
So: bit \#1 and \#4 are set

## Bitmap indexes: Example: people who buy jewelry

- Data on people who buy jewelry

```
(age, salary (in $1,000))
1(25,60) 2(45,60) 3(50,75) 4(50,100)
5(50,120) 6(70,110) 7(85,140) 8(30,260)
9(25,400) 10(45,350) 11(50,275) 12(60,260)
```

- The bitmap index on age is

| Value | 123456789012 |
| :---: | :---: |
| ------------------0 |  |
| 25 | 100000001000 |
| 30 | 000000010000 |
| 45 | 010000000100 |
| 50 | 001110000010 |
| 60 | 000000000001 |
| 70 | 000001000000 |
| 85 | 000000100000 |

## Bitmap indexes: Example: people who buy jewelry

- Data on people who buy jewelry

```
(age, salary (in $1,000))
1(25,60) 2(45,60) 3(50,75) 4(50,100)
5(50,120) 6(70,110) 7(85,140) 8(30,260)
9(25,400) 10(45,350) 11(50,275) 12(60,260)
```

- The bitmap index on salary is

| Value | 123456789012 |
| :---: | :---: |
| 60 | 110000000000 |
| 75 | 001000000000 |
| 100 | 000100000000 |
| 110 | 000001000000 |
| 120 | 000010000000 |
| 140 | 000000100000 |
| 260 | 000000010001 |
| 275 | 000000000010 |
| 350 | 000000000100 |
| 400 | 000000001000 |

## Using Bitmap indexes

- Example query:

```
Find people (who by jewelry) such that age \(=50\) and
salary = 100
```

- Answer:


Record \#4

## Multi-dimensional nature of Bitmap indexes

- There are some multi-dimensional queries that can be answered efficiently using bitmap indexes


## 1) Partial Match queries using Bitmap indexes

- Query: Find people (buyers of jewelry) whose age $=50$
- Solution:

```
Bitmap index for age:
Value 123456789012
\begin{tabular}{lll}
25 & 100000001000 & \\
30 & 000000010000 & \\
45 & 010000000100 & \\
50 & 001110000010 & \\
60 & 000000000001 & \\
70 & 000001000000 & \\
85 & 000000100000 &
\end{tabular}
```

Records: 3, 4, 5 and 11

## 2) Range Match queries using Bitmap indexes

- Query: Find people (buyers of jewelry) where $45 \leq$ age $\leq 55,100 \leq$ salary $\leq 200$
- Solution:



## 2) Range Match queries using Bitmap indexes

- Query: Find people (buyers of jewelry) where $45 \leq$ age $\leq 55,100 \leq$ salary $\leq 200$
- Solution:

| Bitmap index for salary: |  |
| :--- | :---: |
| Value | 123456789012 |
| 60 | 110000000000 |
| 75 | 001000000000 |
| 100 | 000100000000 |
| 110 | 000001000000 |
| 120 | 000010000000 |
| 140 | 000000100000 |
| 260 | 000000010001 |
| 275 | 000000000010 |
| 350 | 000000000100 |
| 400 | 000000001000 |
|  |  |
| Vralue | 000111100000 |

## 2) Range Match queries using Bitmap indexes

- Query: Find people (buyers of jewelry) where $45 \leq$ age $\leq 55,100 \leq$ salary $\leq 200$
- Solution:

$$
(45 \leq \text { age } \leq 50) \text { AND }(100 \leq \text { salary } \leq 200):
$$

123456789012

$$
\begin{aligned}
& \text { ====ユ================= } \\
& 011110000110 \\
& 000111100000 \text { (AND) }
\end{aligned}
$$

000110000000

Records: 4 and 5

## Compression

- Observation
- Each record has one value in indexed attribute
- For $n$ records and domain of size $|D|$
- Only $\frac{1}{|D|}$ bits are 1
- $\Rightarrow$ waste of space
- Solution
- Compress data
- Need to make sure that and and or is still fast


## Bitmap indexes

- Fast for read intensive workloads
- Used a lot in data warehousing
- Often build on the fly during query processing
- As we will see later in class

