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Topics

Multi-dimensional information and query

Motivation for Multi-dimensional indexes

Multi-dimensional index structures

Hash like structures
Tree like structures

Bitmap indices
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Recap

We have studied the following 3 index structures:

Sorted indexes
B+-tree indexes
Hashing-based indexes:

Common property

The search key values are values taken from a one-dimensional

space/set
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Multi-dimensional Information

There are information that are naturally multi-dimensional

e.g., Geographic information:

Stores objects in a (typically) two-dimensional space.
The objects may be points or shapes.
Often, these databases are maps, where the stored objects could
represent houses, roads, bridges, pipelines, and many other physical
objects.
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Multi-dimensional queries

Partial Match queries

Range queries

Nearest neighbor queries

Where-am-I queries
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Partial Match queries

The query specifies conditions on some dimensions but not on all
dimensions

e.g., Find all points/objects that intersects with y = 50
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Range queries

Find objects that are located either partial or wholly within a certain
range

e.g., Find all objects that have an overlap with the green area:
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Nearest neighbor queries

Find the closest point to a given point.

Suppose we have a relation containing points on a map

Each point is stored in the following relation as Point(x,y)

Find the point that is closest to point P(10,20)
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Where-am-I queries

Given a location (i.e., coordinate)

Find the object(s) that contains the location
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Motivation for developing multi-dimensional indexes

Are muliti-dimensional indexes necessary?

Can one-dimensional index technique support geometrical
(2-dimensional) queries efficiently?

Case Study: Try to process a range query using a B-tree index
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Processing the geometrical query using a B-tree index

Database and query description
Database: object locations

Object(x,y, other-attributes)

where x and y are the coordinates of the object

Query
Find all objects that lies within a rectangle
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Processing the geometrical query using a B-tree index

Suppose we have B+-tree indexes on:

The x-coordinate attribute of Object and
The y -coordinate attribute of Object
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Processing the geometrical query using a B-tree index

The B+-tree on the x-coordinate information looks like this:

The point with the smallest x-coordinate value is the left-most

leaf key
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Processing the geometrical query using a B-tree index

The B+-tree on the y -coordinate information looks like this:

The point with the smallest y -coordinate value is the left-most

leaf key
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Processing the geometrical query using a B-tree index

Range query:
Find all points such that:

xL ≤ x ≤ xH and
yL ≤ y ≤ yH
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How to use the B+-tree indexes to process range query

1. Use the x-B+-tree index and find the first value that is ≥ xL
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How to use the B+-tree indexes to process range query

Traverse the leaf nodes to find all record pointers for which
xL ≤ x ≤ xH
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How to use the B+-tree indexes to process range query

2. Do the same for the y -coordinate
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How to use the B+-tree indexes to process range query

3. Compute the intersection of the 2 pointer sets
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How to use the B+-tree indexes to process range query

4. Retrieve the records using the record pointers in the
intersection

These records are guarantee to satisfy:

xL ≤ x ≤ xH and
yL ≤ y ≤ yH

This solution is not faster than scanning the entire relation
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Example

Consider the following situation:

Some statistics:

Green area = 100× 100 = 10, 000
Total area = 1000× 1000 = 1, 000, 000
Green area = 0.01× Total area
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Example

Total # points in area = 1, 000, 000
# points in green area ∼= 0.01× 1, 000, 000 = 10, 000

# points with x-coordinate in [450, 550]

∼= 0.1× 1, 000, 000 = 100, 000

# points with y-coordinate in [450, 550]

∼= 0.1× 1, 000, 000 = 100, 000
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Storage information

To compute the processing cost = # disk blocks accessed

1 disk block contains 100 points
1 B-tree block (node) contains an average of 200 (key, ptr) pairs
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Compute the Processing Cost

1. Use the x-B+-tree index and find the first value that is ≥ xL
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Compute the Processing Cost

Traverse the leaf nodes to find all record pointers for which
xL ≤ x ≤ xH

25 / 149



Compute the Processing Cost

2. Do the same for the y -coordinate
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Compute the Processing Cost

3. Compute the intersection of the 2 pointer sets
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Compute the Processing Cost

4. Retrieve the records using the record pointers in the
intersection

We assume the records are stored randomly (i.e., not ordered by the
x or y coordinate)
Different records will likely be stored in different blocks
Accessing the 10, 000 records using the record pointers will result
in Accessing 10, 000 data blocks

5. Total number of disk blocks accessed:
500 + 500 + 10, 000 = 11, 000 disk blocks
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Scan the entire relation

Now, consider finding the points by scanning the entire relation:

There are 1, 000, 000 points
1 disk block stores 100 points
# disk blocks used = 1,000,000

100 = 10, 000 blocks

So we would need: 10, 000 disk blocks accesses

⇒ using the B-tree index does not help us improve performance
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Conclusion

We cannot store geographically ‘‘related’’ data randomly

If related geographical data is store randomly, we will need to
access too many data blocks

⇒ must store geographically ‘‘related’’ data (i.e.: points
that are close to each other) in the same data block

To support the access to the geometrical data

Need a more appropriate index structure for multi-dimensional
data
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Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hashing functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees
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Grid Index

Partition multi-dimensional space with a grid

In each dimension, grid lines partition space into stripes

Intersections of stripes from different dimensions define regions

The number of grid lines in different dimensions may vary.

Spacings between adjacent grid lines may also vary.

Each region corresponds to a bucket.

Attribute values for record determine region and therefore bucket

32 / 149



Grid Index

Grid index file: an index that is organized into a 2-dimensional
structure

Note: Geographically ‘‘related’’ data (i.e.: points that are
close to each other) are stored in the same data block
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Storage Structure of Grid Index File

1) Stores the size parameters m and n of the grid
2) Stores the buckets of the grid

v1, v2, . . . , vm
x1, x2, . . . , xn

3) contains m × n block pointers
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Buckets and Grid lines
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Interpreting the grid lines

You can interpret the values:

v1, v2, . . . , vm
x1, x2, . . . , xn

1) As individual points

2) As intervals
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Interpreting the grid lines: Point interpretation

The grid lines represents discrete values

With n grid lines you will have n index points
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Interpreting the grid lines: Interval interpretation

The grid lines represents end points of intervals
With n grid lines you will have n + 1 intervals
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Example of a Grid index file

Data on people who buy jewelry:

Ranges

Grid index file
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Example of a Grid index file

How the grid index file is stored:
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Example of a Grid index file

The text book use the following method to represent the index file

For the following data set
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Generalization to higher dimensions
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Lookup a search key

Given: search key (Age = 50, Salary = 100)

How to find this record
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Lookup a search key

Find the row index using age = 50
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Lookup a search key

Find the column index using salary = 100
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Lookup a search key

Find the offset (this is the standard way to find an array element)

offset = row index × (column width) + column index =
1× 3 + 1 = 4

Access the blocks and search for the record
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Insert a new record in a Grid Index file

Algorithm 1 insert( record )

1: Lookup (record.SearchKey)
2: Let b = the last bucket block
3: if b has room for record then
4: Insert record in block b
5: else
6: Allocate an overflow block for bucket
7: Link overflow block to b
8: Insert record in overflow bucket block
9: end if
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Performance Analysis: lookup/insert a search key

Assumption: The grid index file can be store in memory

Lookup performance

0 block access to obtain the bucket block pointer
1 block access to obtain the data block (that contains the record)
If there areoverflow blocks, need to access a few more (overflow)

blocks
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Performance Analysis: lookup/insert a search key

Assumption: The grid index file can be store in memory

Insert performance

In addition to the lookup cost
1 more block write operation to update the bucket block

If overflow, need to update the overflow link in the bucket and write
an overflow block)
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Using a grid index in multi-dimensional queries

Performance of Grid index for the commonly used multi-dimensional
queries

Assumption: The grid index file can be stored entirely in memory
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1) Partial Match queries

The query specifies conditions on some dimensions but

not on all dimensions

Find all jewelry purchases by people with age = 50

You will access m disk blocks (m is some dimension of the grid)

51 / 149



2) Range queries

Find objects that are located either partial or wholly

within a certain range

Find all jewelry purchases by people whose 35 ≤ age ≤ 50,
50K ≤ salary ≤ 100K

In this example, we must access 4 disk blocks
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Announcement

Coding assignment 2 due date: Sunday, March 11, 2018 by midnight
(Chicago time:)

Quiz 1:

Post: Friday February 23.
Due on Blackboard: Tuesday February 27 by midnight (Chicago time)

Midterm: Close notes/book/friends: March 5 in class time
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3) Nearest neighbor queries

Find the nearest neighbor of a data point
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3) Nearest neighbor queries

Start by finding the nearest neighbor in the bucket that contains
the data point

55 / 149



3) Nearest neighbor queries

This distance will limit the block where you need to search to all
blocks that intersect with this circle:

56 / 149



3) Nearest neighbor queries

Expand the search region in an adjacent bucket that contained
within the circle:
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3) Nearest neighbor queries

And so forth
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3) Nearest neighbor queries

And so forth
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3) Nearest neighbor queries

Note: You may need to expand the search range beyond the
adjacent regions

The nearest neighbor is outside the adjacent regions

You must use the current nearest neighbor and the grid lines

to decide whether you need to expend the range of the search
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3) Nearest neighbor queries: Performance

The expanding range search will access on average 9 data

blocks (in a 2-dimensional grid index)
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4) Where-am-I queries

Given a location (i.e., coordinate)

Find the object(s) that contains the location

Grid index cannot represent objects (can only present points)

⇒ Grid Index cannot handle Where-am-I type of queries

The only kind of index that can handle Where-am-I queries is the

R-tree (Region-tree) (Discussed later)
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Grid Index: Summary

+ Good for multiple-key search

- Space, management overhead (nothing is free)

- Need partitioning ranges that evenly split keys
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Grid Index

A major problem with Grid Index files is Poor occupancy rate at

many grid buckets

Especially when you have 3 or more dimensions. You will have many
buckets that are empty.
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Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hash functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees
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Partitioned Hashing

Traditional hashing

Problem with traditional hashing
If the key is composite

and some component of the key is not known

we cannot compute a meaningful hash value at all
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Partitioned Hashing

Partitioned Hashing
The key is a composite:

Use n hash functions, one function on one component
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Partitioned Hashing

Partitioned Hashing

The hash value is the concatenation of the individual hash
function values
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Partitioned Hashing: Example
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Advantage of Partitioned Hashing

Partitioned Hashing can generate a meaningful hash value for
incomplete keys
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Partitioned Hashing: A complete example

Data on people who buy jewelry

Given hash functions

Some Hash Function values
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Partitioned Hashing: A complete example

The Partitioned Hash index
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Using a Partitioned Hashing

The Partitioned Hash index
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1) Partial Match queries

Find people with age = 50

Age = 50 will hash to the hash value Hash(age) = 0××.

Start at bucket 000 and scan to bucket 011
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2) Range queries

Find objects that are located either partial or wholly

within a certain range

Find people such that: 35 ≤ age ≤ 50, 50K ≤ salary ≤ 100K
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2) Range queries

a) Hash all values inside the range

Note: the block pointers can have duplicates

b) Collect all the buckets (eliminate duplicate block pointers)

c) Access all (unique) buckets (disk blocks)

⇒ Hashing is not appropriate for range type queries
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3) Nearest neighbor queries

Hashing is completely useless for nearest neighbor type queries

Because: There is no notion of distance in the hash function
Example: find records that with distance ≤ 1 to search key = 1

We hash the search key 1

77 / 149



3) Nearest neighbor queries

However, we cannot use the distance in the hash table to locate
“nearby” objects (records)

The value 2 is near the value 1, but may get hash very far away
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Property of hashing:

Closeness of bucket indexes has nothing to do with real distance
between data points (because hashing computes a random number)
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4) Where-am-I queries

Hashing is also not useful here either

Because hashing provide no information on distance
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Advantage of Partitioned Hashing

Good hash functions will randomize the records

⇒ Partitioned hashing will achieve good occupancy rate per bucket
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Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hash functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees
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Multiple-key index

special case of a multilevel index using different types of search
keys in each level
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Multiple-key index: Example

Data on people who buy jewelry

A multiple-key index on keys (age, salary)
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Using a Multiple-key index: 1) Partial Match queries

Find all people with age =25

Use the index on age to find the index block(s) for age = 25

Then, scan all entries in the salary index file (list of blocks)
indexed by age= 25 to find the records
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1) Partial Match queries

Multiple-key index for partial match query will only be useful
when the first dimension is given

We cannot use multiple-key index to process the following query
efficiently
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1) Partial Match queries

Find all people who earn $60,000 who buy jewelry. We will need to
scan the first index

Result: many disk accesses
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2) Range queries

Find objects that are located either partial or wholly

within a certain range

Find people such that: 35 ≤ age ≤ 50, 50K ≤ salary ≤ 100K
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2) Range queries

Use the range of age to find all of the subindexes that might contain
answer

Only need to search a limited number of lower level index files
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3) Nearest neighbor queries

The multiple key index can help in the processing of Nearest neighbor
queries

BUT: It involves a complicated expanding range search algorithm
in “nearby branches” of the index tree
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4) Where-am-I queries

Multiple-key index are not used in Where-am-I queries
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Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hash functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees
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kd (k-dimensional) tree:

The kd-tree as a main memory data structure

Adaptation of the kd-tree for disk storage
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Review: Binary Search Tree

Binary Search Tree (BST) is a binary tree where

The values in the nodes in the left subtree of the node x in the
tree has a smaller value than x

The values in the nodes in the right subtree of the node x in the
tree has a greater value than x

Notice the above property holds for every node in the binary tree
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Review: Binary Search Tree: Example
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Review: Binary Search Tree: Example
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The kd-tree

The kd-tree is a generalization of the classic Binary Search Tree

(BST)

The search key used at different levels belongs to a different
dimension (domain)

The dimensions at different levels will wrap around (i.e., circulate)
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Example: a 2-dimensional kd-tree

2 dimentions: x and y
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Properties

Subtrees of x1 must satisfy this property
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Properties

Subtrees of y1 and y2 must satisfy this property

And so on (for every level of the kd-tree)
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Classical kd-tree

The actual record (data) are stored in every node (search key)

of the kd-tree

The node y1 contains the data (record) for (x1,y1)
The node x2 contains the data (record) for (x2,y1)
And so on
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Modifications to the kd-tree for storage on disk

Interior nodes do not store data

Interior node only stores

Attribute name (i.e.:X or Y)
Dividing value (i.e.: x1 or y4) of the attribute
Pointers to the (2) children nodes
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Modifications to the kd-tree for storage on disk

Dividing line is “moved” a little bit

The equality is included in right branch of the kd-tree

Each leaf node of the modified kd-tree is one (1) data block
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Example kd-tree

Data on people who buy jewelry

A kd-tree for the data:
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Example kd-tree

Behold the structural properties of the kd-tree
This left (shaded) subtree has salary search key values < 150
(for salary)
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Example kd-tree

This left subtree has salary < 150 and age < 60
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Example kd-tree

This right subtree has salary < 150 and age ≥ 60
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How a kd-tree partitions the data space

The root node

partitions the data space in half
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How a kd-tree partitions the data space

The age nodes at level 2

partitions each sub-space in half
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How a kd-tree partitions the data space

This kd-tree
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How a kd-tree partitions the data space

will divide the data space up as follows
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Using kd-tree for common multi-dim queries

1) Partial Match queries

Search Algorithm

For a dimension for which the search value is given (specified)

Take the (one) branch of the subtree for the search value

For a dimension for which the search value is not given (not specified)

Take both branches of the subtree
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1) Partial Match queries: Example

Find all person with age = 35
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2) Range queries

Search Algorithm

For the search range is completely contained by the left

subtree, then

Take only the left branch of the subtree for the search value

For the search range is completely contained by the right
subtree, then

Take only the right branch of the subtree for the search value

Otherwise (the search range saddles at the search value)

Search both subtrees
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2) Range queries: Example
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3) Nearest neighbor queries

Not easy to to find the nearest neighbor using a kd-tree index

It requires up and down traversal/search in the kd-tree
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4) Where-am-I queries

Not applicable

kd-tree can only stores points

Cannot store objects
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Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hash functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees
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The Quad-tree

An index structure that divides a search space in half (exactly) in
every dimension

Structure of a quad-tree node

A quad-tree node contains the following

1 search key value for each dimension
2n child nodepointers (n way split)
One parent node pointer (except for the root node)

The child node pointers will point to every possible combination of <
and ≥ relationships with the search key values
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Quad-tree on common multi-dimensional queries

A quad-tree is similar to a kd-tree

The techniques discussed in the kd-tree applies to the Quad-tree
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Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hash functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees
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The R-tree (Region-tree)

Bounding Box
a rectangle that contains a group of objects

Example: given a group of objects

The Bounding Box for this group of objects

122 / 149



The R-tree (Region-tree)

Minimum Bounding Box (MBB)

the smallest rectangle that contains a group of objects

Example: given a group of objects

The Minimum Bounding Box for this group of objects
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The R-tree (Region-tree)

Note: A rectangle can be represented as follows

coordinate of the lower left corner
coordinate of the upper right corner

Example: Rectangle:
(
(10,20), (50,40)

)
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The R-tree (Region-tree)

R-Tree: an index tree-structure derived from the B-tree that uses
bounding boxes as search keys

The internal nodes contains a number of entries of the following
format

(bounding box, child node pointer)

Example:
((

(10,20),(50,40)
)
,ptr1

)
The leaf nodes contains a number of entries of the following
format:

(min bounding box, object pointer)

Example:
((

(10,20),(50,40)
)
,house-ptr

)
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Property of a R-tree

An internal node of the R-tree has the following structure

The subtree indexed by the bounding box will contain

Only objects that is contained within the given bounding box

126 / 149



R-tree: Example

Objects that we want to represent

There are 7 objects
school, pop (point of presence), house1, house2, road1 road2, pipeline
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R-tree: Example

The 3 objects house1, road1 and road2 are completely enclosed by
the bounding box

(
(0,0),(60,50)

)
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R-tree: Example

The objects school, pop , house2 and pipeline are completely enclosed
by the bounding box

(
(20,20),(100,80)

)
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R-tree: Example

The R-tree that uses the previous bounding boxes

The minimum bounding box (mbb) field for different objects are
different
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Overlapping Bounding boxes in R-tree

The bounding boxes used in the internal R-tree nodes can
overlap

Example
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Overlapping Bounding boxes in R-tree

You can see the overlap clearly
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Lookup operation in the R-tree

Lookup algorithm for a point in an R-tree

Search Algorithm for a Point(x,y)

The search algorithm is recursive
The search starts at the root node of the R-tree
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Search algorithm for a point P(x,y)

Algorithm 2 Lookup
(
(x, y), n, result

)
1: // n = current node of the search in the R-tree

2: if ( n == internal node ) then
3: for each entry (BB, childptr) in internal node n ) do
4: // Look in subtree if (x,y) is inside bounding box
5: if (x,y) ∈ BB then
6: Lookup

(
(x ,y), childptr, result

)
7: end if
8: end for
9: else

10: //n is a leaf node
11: for ( each object Ob in node n) do
12: if (x ,y) ∈ MBB(Ob) then
13: Add Ob to result // Object Ob contains point (x,y)
14: end if
15: end for
16: end if
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R-tree- Insert

Similar to B-tree, but more complex

Overlap: multiple choices where to add entry
Split harder because more choice how to split node (compare B-tree

= 1 choice)
1) Find potential subtrees for current node

Choose one for insert (e.g., the one the would grow the least)
continue until leaf is found

2) Insert into leaf
3) Leaf is full? ⇒ split

Find best split (minimum overlap between new nodes) is hard (O(2M))
Use linear or quadratic heuristics (original paper: R-trees: a dynamic
index structure for spatial searching)

4) Adapt parents if necessary
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Bitmap indexes

Assumption: Records in a file/relation occupy a permanent location
in the file/relation

A records is uniquely identified by a position ID

Definition: Current value set (F): the current set of values
stored in a field f in the records

Example
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Bitmap indexes

Bitmap index of a field f: is a collection of bit vectors of
length n, where n is the number of records

There is one bit vector for each value v that appears in field f

The bit vector for the value v is equal to

x1 x2 . . . xi . . . xn
xi = 1 if the ith record’s field f = v, otherwise = 0
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Bitmap indexes: Example

A file has 6 records

The bitmap index for the field A is
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Bitmap indexes: Example

A file has 6 records

The bitmap index for the field B is
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Bitmap indexes: Example: people who buy jewelry

Data on people who buy jewelry

The bitmap index on age is
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Bitmap indexes: Example: people who buy jewelry

Data on people who buy jewelry

The bitmap index on salary is
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Using Bitmap indexes

Example query:

Find people (who by jewelry) such that age = 50 and

salary = 100

Answer:

142 / 149



Multi-dimensional nature of Bitmap indexes

There are some multi-dimensional queries that can be answered
efficiently using bitmap indexes
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1) Partial Match queries using Bitmap indexes

Query: Find people (buyers of jewelry) whose age = 50

Solution:
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2) Range Match queries using Bitmap indexes

Query: Find people (buyers of jewelry) where

45 ≤ age ≤ 55, 100 ≤ salary ≤ 200

Solution:
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2) Range Match queries using Bitmap indexes

Query: Find people (buyers of jewelry) where

45 ≤ age ≤ 55, 100 ≤ salary ≤ 200

Solution:
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2) Range Match queries using Bitmap indexes

Query: Find people (buyers of jewelry) where

45 ≤ age ≤ 55, 100 ≤ salary ≤ 200

Solution:
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Compression

Observation

Each record has one value in indexed attribute
For n records and domain of size |D|

Only 1
|D| bits are 1

⇒ waste of space

Solution

Compress data
Need to make sure that and and or is still fast
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Bitmap indexes

Fast for read intensive workloads

Used a lot in data warehousing

Often build on the fly during query processing

As we will see later in class
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