
CS525: Advanced Database Organization

Notes 6: Multi-dimensional indexes

Yousef M. Elmehdwi

Department of Computer Science

Illinois Institute of Technology

yelmehdwi@iit.edu

February 12, 14, 19, 2018

Slides: adapted from a course taught by Shun Yan Cheung, Emory University

1 / 149

yelmehdwi@iit.edu
http://www.mathcs.emory.edu/~cheung/Courses/554/
www.emory.edu

Topics

Multi-dimensional information and query

Motivation for Multi-dimensional indexes

Multi-dimensional index structures

Hash like structures
Tree like structures

Bitmap indices

2 / 149

Recap

We have studied the following 3 index structures:

Sorted indexes
B+-tree indexes
Hashing-based indexes:

Common property

The search key values are values taken from a one-dimensional

space/set

3 / 149

Multi-dimensional Information

There are information that are naturally multi-dimensional

e.g., Geographic information:

Stores objects in a (typically) two-dimensional space.
The objects may be points or shapes.
Often, these databases are maps, where the stored objects could
represent houses, roads, bridges, pipelines, and many other physical
objects.

4 / 149

Multi-dimensional queries

Partial Match queries

Range queries

Nearest neighbor queries

Where-am-I queries

5 / 149

Partial Match queries

The query specifies conditions on some dimensions but not on all
dimensions

e.g., Find all points/objects that intersects with y = 50

6 / 149

Range queries

Find objects that are located either partial or wholly within a certain
range

e.g., Find all objects that have an overlap with the green area:

7 / 149

Nearest neighbor queries

Find the closest point to a given point.

Suppose we have a relation containing points on a map

Each point is stored in the following relation as Point(x,y)

Find the point that is closest to point P(10,20)

8 / 149

Where-am-I queries

Given a location (i.e., coordinate)

Find the object(s) that contains the location

9 / 149

Motivation for developing multi-dimensional indexes

Are muliti-dimensional indexes necessary?

Can one-dimensional index technique support geometrical
(2-dimensional) queries efficiently?

Case Study: Try to process a range query using a B-tree index

10 / 149

Processing the geometrical query using a B-tree index

Database and query description
Database: object locations

Object(x,y, other-attributes)

where x and y are the coordinates of the object

Query
Find all objects that lies within a rectangle

11 / 149

Processing the geometrical query using a B-tree index

Suppose we have B+-tree indexes on:

The x-coordinate attribute of Object and
The y -coordinate attribute of Object

12 / 149

Processing the geometrical query using a B-tree index

The B+-tree on the x-coordinate information looks like this:

The point with the smallest x-coordinate value is the left-most

leaf key

13 / 149

Processing the geometrical query using a B-tree index

The B+-tree on the y -coordinate information looks like this:

The point with the smallest y -coordinate value is the left-most

leaf key

14 / 149

Processing the geometrical query using a B-tree index

Range query:
Find all points such that:

xL ≤ x ≤ xH and
yL ≤ y ≤ yH

15 / 149

How to use the B+-tree indexes to process range query

1. Use the x-B+-tree index and find the first value that is ≥ xL

16 / 149

How to use the B+-tree indexes to process range query

Traverse the leaf nodes to find all record pointers for which
xL ≤ x ≤ xH

17 / 149

How to use the B+-tree indexes to process range query

2. Do the same for the y -coordinate

18 / 149

How to use the B+-tree indexes to process range query

3. Compute the intersection of the 2 pointer sets

19 / 149

How to use the B+-tree indexes to process range query

4. Retrieve the records using the record pointers in the
intersection

These records are guarantee to satisfy:

xL ≤ x ≤ xH and
yL ≤ y ≤ yH

This solution is not faster than scanning the entire relation

20 / 149

Example

Consider the following situation:

Some statistics:

Green area = 100× 100 = 10, 000
Total area = 1000× 1000 = 1, 000, 000
Green area = 0.01× Total area

21 / 149

Example

Total # points in area = 1, 000, 000
points in green area ∼= 0.01× 1, 000, 000 = 10, 000

points with x-coordinate in [450, 550]

∼= 0.1× 1, 000, 000 = 100, 000

points with y-coordinate in [450, 550]

∼= 0.1× 1, 000, 000 = 100, 000
22 / 149

Storage information

To compute the processing cost = # disk blocks accessed

1 disk block contains 100 points
1 B-tree block (node) contains an average of 200 (key, ptr) pairs

23 / 149

Compute the Processing Cost

1. Use the x-B+-tree index and find the first value that is ≥ xL

24 / 149

Compute the Processing Cost

Traverse the leaf nodes to find all record pointers for which
xL ≤ x ≤ xH

25 / 149

Compute the Processing Cost

2. Do the same for the y -coordinate

26 / 149

Compute the Processing Cost

3. Compute the intersection of the 2 pointer sets

27 / 149

Compute the Processing Cost

4. Retrieve the records using the record pointers in the
intersection

We assume the records are stored randomly (i.e., not ordered by the
x or y coordinate)
Different records will likely be stored in different blocks
Accessing the 10, 000 records using the record pointers will result
in Accessing 10, 000 data blocks

5. Total number of disk blocks accessed:
500 + 500 + 10, 000 = 11, 000 disk blocks

28 / 149

Scan the entire relation

Now, consider finding the points by scanning the entire relation:

There are 1, 000, 000 points
1 disk block stores 100 points
disk blocks used = 1,000,000

100 = 10, 000 blocks

So we would need: 10, 000 disk blocks accesses

⇒ using the B-tree index does not help us improve performance

29 / 149

Conclusion

We cannot store geographically ‘‘related’’ data randomly

If related geographical data is store randomly, we will need to
access too many data blocks

⇒ must store geographically ‘‘related’’ data (i.e.: points
that are close to each other) in the same data block

To support the access to the geometrical data

Need a more appropriate index structure for multi-dimensional
data

30 / 149

Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hashing functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees

31 / 149

Grid Index

Partition multi-dimensional space with a grid

In each dimension, grid lines partition space into stripes

Intersections of stripes from different dimensions define regions

The number of grid lines in different dimensions may vary.

Spacings between adjacent grid lines may also vary.

Each region corresponds to a bucket.

Attribute values for record determine region and therefore bucket

32 / 149

Grid Index

Grid index file: an index that is organized into a 2-dimensional
structure

Note: Geographically ‘‘related’’ data (i.e.: points that are
close to each other) are stored in the same data block

33 / 149

Storage Structure of Grid Index File

1) Stores the size parameters m and n of the grid
2) Stores the buckets of the grid

v1, v2, . . . , vm
x1, x2, . . . , xn

3) contains m × n block pointers

34 / 149

Buckets and Grid lines

35 / 149

Interpreting the grid lines

You can interpret the values:

v1, v2, . . . , vm
x1, x2, . . . , xn

1) As individual points

2) As intervals

36 / 149

Interpreting the grid lines: Point interpretation

The grid lines represents discrete values

With n grid lines you will have n index points

37 / 149

Interpreting the grid lines: Interval interpretation

The grid lines represents end points of intervals
With n grid lines you will have n + 1 intervals

38 / 149

Example of a Grid index file

Data on people who buy jewelry:

Ranges

Grid index file

39 / 149

Example of a Grid index file

How the grid index file is stored:

40 / 149

Example of a Grid index file

The text book use the following method to represent the index file

For the following data set

41 / 149

Generalization to higher dimensions

42 / 149

Lookup a search key

Given: search key (Age = 50, Salary = 100)

How to find this record

43 / 149

Lookup a search key

Find the row index using age = 50

44 / 149

Lookup a search key

Find the column index using salary = 100

45 / 149

Lookup a search key

Find the offset (this is the standard way to find an array element)

offset = row index × (column width) + column index =
1× 3 + 1 = 4

Access the blocks and search for the record

46 / 149

Insert a new record in a Grid Index file

Algorithm 1 insert(record)

1: Lookup (record.SearchKey)
2: Let b = the last bucket block
3: if b has room for record then
4: Insert record in block b
5: else
6: Allocate an overflow block for bucket
7: Link overflow block to b
8: Insert record in overflow bucket block
9: end if

47 / 149

Performance Analysis: lookup/insert a search key

Assumption: The grid index file can be store in memory

Lookup performance

0 block access to obtain the bucket block pointer
1 block access to obtain the data block (that contains the record)
If there areoverflow blocks, need to access a few more (overflow)

blocks

48 / 149

Performance Analysis: lookup/insert a search key

Assumption: The grid index file can be store in memory

Insert performance

In addition to the lookup cost
1 more block write operation to update the bucket block

If overflow, need to update the overflow link in the bucket and write
an overflow block)

49 / 149

Using a grid index in multi-dimensional queries

Performance of Grid index for the commonly used multi-dimensional
queries

Assumption: The grid index file can be stored entirely in memory

50 / 149

1) Partial Match queries

The query specifies conditions on some dimensions but

not on all dimensions

Find all jewelry purchases by people with age = 50

You will access m disk blocks (m is some dimension of the grid)

51 / 149

2) Range queries

Find objects that are located either partial or wholly

within a certain range

Find all jewelry purchases by people whose 35 ≤ age ≤ 50,
50K ≤ salary ≤ 100K

In this example, we must access 4 disk blocks

52 / 149

Announcement

Coding assignment 2 due date: Sunday, March 11, 2018 by midnight
(Chicago time:)

Quiz 1:

Post: Friday February 23.
Due on Blackboard: Tuesday February 27 by midnight (Chicago time)

Midterm: Close notes/book/friends: March 5 in class time

53 / 149

3) Nearest neighbor queries

Find the nearest neighbor of a data point

54 / 149

3) Nearest neighbor queries

Start by finding the nearest neighbor in the bucket that contains
the data point

55 / 149

3) Nearest neighbor queries

This distance will limit the block where you need to search to all
blocks that intersect with this circle:

56 / 149

3) Nearest neighbor queries

Expand the search region in an adjacent bucket that contained
within the circle:

57 / 149

3) Nearest neighbor queries

And so forth

58 / 149

3) Nearest neighbor queries

And so forth

59 / 149

3) Nearest neighbor queries

Note: You may need to expand the search range beyond the
adjacent regions

The nearest neighbor is outside the adjacent regions

You must use the current nearest neighbor and the grid lines

to decide whether you need to expend the range of the search

60 / 149

3) Nearest neighbor queries: Performance

The expanding range search will access on average 9 data

blocks (in a 2-dimensional grid index)

61 / 149

4) Where-am-I queries

Given a location (i.e., coordinate)

Find the object(s) that contains the location

Grid index cannot represent objects (can only present points)

⇒ Grid Index cannot handle Where-am-I type of queries

The only kind of index that can handle Where-am-I queries is the

R-tree (Region-tree) (Discussed later)

62 / 149

Grid Index: Summary

+ Good for multiple-key search

- Space, management overhead (nothing is free)

- Need partitioning ranges that evenly split keys

63 / 149

Grid Index

A major problem with Grid Index files is Poor occupancy rate at

many grid buckets

Especially when you have 3 or more dimensions. You will have many
buckets that are empty.

64 / 149

Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hash functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees

65 / 149

Partitioned Hashing

Traditional hashing

Problem with traditional hashing
If the key is composite

and some component of the key is not known

we cannot compute a meaningful hash value at all

66 / 149

Partitioned Hashing

Partitioned Hashing
The key is a composite:

Use n hash functions, one function on one component

67 / 149

Partitioned Hashing

Partitioned Hashing

The hash value is the concatenation of the individual hash
function values

68 / 149

Partitioned Hashing: Example

69 / 149

Advantage of Partitioned Hashing

Partitioned Hashing can generate a meaningful hash value for
incomplete keys

70 / 149

Partitioned Hashing: A complete example

Data on people who buy jewelry

Given hash functions

Some Hash Function values

71 / 149

Partitioned Hashing: A complete example

The Partitioned Hash index

72 / 149

Using a Partitioned Hashing

The Partitioned Hash index

73 / 149

1) Partial Match queries

Find people with age = 50

Age = 50 will hash to the hash value Hash(age) = 0××.

Start at bucket 000 and scan to bucket 011

74 / 149

2) Range queries

Find objects that are located either partial or wholly

within a certain range

Find people such that: 35 ≤ age ≤ 50, 50K ≤ salary ≤ 100K

75 / 149

2) Range queries

a) Hash all values inside the range

Note: the block pointers can have duplicates

b) Collect all the buckets (eliminate duplicate block pointers)

c) Access all (unique) buckets (disk blocks)

⇒ Hashing is not appropriate for range type queries

76 / 149

3) Nearest neighbor queries

Hashing is completely useless for nearest neighbor type queries

Because: There is no notion of distance in the hash function
Example: find records that with distance ≤ 1 to search key = 1

We hash the search key 1

77 / 149

3) Nearest neighbor queries

However, we cannot use the distance in the hash table to locate
“nearby” objects (records)

The value 2 is near the value 1, but may get hash very far away

78 / 149

Property of hashing:

Closeness of bucket indexes has nothing to do with real distance
between data points (because hashing computes a random number)

79 / 149

4) Where-am-I queries

Hashing is also not useful here either

Because hashing provide no information on distance

80 / 149

Advantage of Partitioned Hashing

Good hash functions will randomize the records

⇒ Partitioned hashing will achieve good occupancy rate per bucket

81 / 149

Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hash functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees

82 / 149

Multiple-key index

special case of a multilevel index using different types of search
keys in each level

83 / 149

Multiple-key index: Example

Data on people who buy jewelry

A multiple-key index on keys (age, salary)

84 / 149

Using a Multiple-key index: 1) Partial Match queries

Find all people with age =25

Use the index on age to find the index block(s) for age = 25

Then, scan all entries in the salary index file (list of blocks)
indexed by age= 25 to find the records

85 / 149

1) Partial Match queries

Multiple-key index for partial match query will only be useful
when the first dimension is given

We cannot use multiple-key index to process the following query
efficiently

86 / 149

1) Partial Match queries

Find all people who earn $60,000 who buy jewelry. We will need to
scan the first index

Result: many disk accesses

87 / 149

2) Range queries

Find objects that are located either partial or wholly

within a certain range

Find people such that: 35 ≤ age ≤ 50, 50K ≤ salary ≤ 100K

88 / 149

2) Range queries

Use the range of age to find all of the subindexes that might contain
answer

Only need to search a limited number of lower level index files

89 / 149

3) Nearest neighbor queries

The multiple key index can help in the processing of Nearest neighbor
queries

BUT: It involves a complicated expanding range search algorithm
in “nearby branches” of the index tree

90 / 149

4) Where-am-I queries

Multiple-key index are not used in Where-am-I queries

91 / 149

Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hash functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees

92 / 149

kd (k-dimensional) tree:

The kd-tree as a main memory data structure

Adaptation of the kd-tree for disk storage

93 / 149

Review: Binary Search Tree

Binary Search Tree (BST) is a binary tree where

The values in the nodes in the left subtree of the node x in the
tree has a smaller value than x

The values in the nodes in the right subtree of the node x in the
tree has a greater value than x

Notice the above property holds for every node in the binary tree

94 / 149

Review: Binary Search Tree: Example

95 / 149

Review: Binary Search Tree: Example

96 / 149

The kd-tree

The kd-tree is a generalization of the classic Binary Search Tree

(BST)

The search key used at different levels belongs to a different
dimension (domain)

The dimensions at different levels will wrap around (i.e., circulate)

97 / 149

Example: a 2-dimensional kd-tree

2 dimentions: x and y

98 / 149

Properties

Subtrees of x1 must satisfy this property

99 / 149

Properties

Subtrees of y1 and y2 must satisfy this property

And so on (for every level of the kd-tree)

100 / 149

Classical kd-tree

The actual record (data) are stored in every node (search key)

of the kd-tree

The node y1 contains the data (record) for (x1,y1)
The node x2 contains the data (record) for (x2,y1)
And so on

101 / 149

Modifications to the kd-tree for storage on disk

Interior nodes do not store data

Interior node only stores

Attribute name (i.e.:X or Y)
Dividing value (i.e.: x1 or y4) of the attribute
Pointers to the (2) children nodes

102 / 149

Modifications to the kd-tree for storage on disk

Dividing line is “moved” a little bit

The equality is included in right branch of the kd-tree

Each leaf node of the modified kd-tree is one (1) data block

103 / 149

Example kd-tree

Data on people who buy jewelry

A kd-tree for the data:

104 / 149

Example kd-tree

Behold the structural properties of the kd-tree
This left (shaded) subtree has salary search key values < 150
(for salary)

105 / 149

Example kd-tree

This left subtree has salary < 150 and age < 60

106 / 149

Example kd-tree

This right subtree has salary < 150 and age ≥ 60

107 / 149

How a kd-tree partitions the data space

The root node

partitions the data space in half

108 / 149

How a kd-tree partitions the data space

The age nodes at level 2

partitions each sub-space in half

109 / 149

How a kd-tree partitions the data space

This kd-tree

110 / 149

How a kd-tree partitions the data space

will divide the data space up as follows

111 / 149

Using kd-tree for common multi-dim queries

1) Partial Match queries

Search Algorithm

For a dimension for which the search value is given (specified)

Take the (one) branch of the subtree for the search value

For a dimension for which the search value is not given (not specified)

Take both branches of the subtree

112 / 149

1) Partial Match queries: Example

Find all person with age = 35

113 / 149

2) Range queries

Search Algorithm

For the search range is completely contained by the left

subtree, then

Take only the left branch of the subtree for the search value

For the search range is completely contained by the right
subtree, then

Take only the right branch of the subtree for the search value

Otherwise (the search range saddles at the search value)

Search both subtrees

114 / 149

2) Range queries: Example

115 / 149

3) Nearest neighbor queries

Not easy to to find the nearest neighbor using a kd-tree index

It requires up and down traversal/search in the kd-tree

116 / 149

4) Where-am-I queries

Not applicable

kd-tree can only stores points

Cannot store objects

117 / 149

Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hash functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees

118 / 149

The Quad-tree

An index structure that divides a search space in half (exactly) in
every dimension

Structure of a quad-tree node

A quad-tree node contains the following

1 search key value for each dimension
2n child nodepointers (n way split)
One parent node pointer (except for the root node)

The child node pointers will point to every possible combination of <
and ≥ relationships with the search key values

119 / 149

Quad-tree on common multi-dimensional queries

A quad-tree is similar to a kd-tree

The techniques discussed in the kd-tree applies to the Quad-tree

120 / 149

Multi-dimensional index structures

Hash like structures

Grid files
Partitioned Hash functions

Tree like structures

Multiple key indexes
kd-trees
Quad trees
R-trees

121 / 149

The R-tree (Region-tree)

Bounding Box
a rectangle that contains a group of objects

Example: given a group of objects

The Bounding Box for this group of objects

122 / 149

The R-tree (Region-tree)

Minimum Bounding Box (MBB)

the smallest rectangle that contains a group of objects

Example: given a group of objects

The Minimum Bounding Box for this group of objects

123 / 149

The R-tree (Region-tree)

Note: A rectangle can be represented as follows

coordinate of the lower left corner
coordinate of the upper right corner

Example: Rectangle:
(
(10,20), (50,40)

)

124 / 149

The R-tree (Region-tree)

R-Tree: an index tree-structure derived from the B-tree that uses
bounding boxes as search keys

The internal nodes contains a number of entries of the following
format

(bounding box, child node pointer)

Example:
((

(10,20),(50,40)
)
,ptr1

)
The leaf nodes contains a number of entries of the following
format:

(min bounding box, object pointer)

Example:
((

(10,20),(50,40)
)
,house-ptr

)

125 / 149

Property of a R-tree

An internal node of the R-tree has the following structure

The subtree indexed by the bounding box will contain

Only objects that is contained within the given bounding box

126 / 149

R-tree: Example

Objects that we want to represent

There are 7 objects
school, pop (point of presence), house1, house2, road1 road2, pipeline

127 / 149

R-tree: Example

The 3 objects house1, road1 and road2 are completely enclosed by
the bounding box

(
(0,0),(60,50)

)

128 / 149

R-tree: Example

The objects school, pop , house2 and pipeline are completely enclosed
by the bounding box

(
(20,20),(100,80)

)

129 / 149

R-tree: Example

The R-tree that uses the previous bounding boxes

The minimum bounding box (mbb) field for different objects are
different

130 / 149

Overlapping Bounding boxes in R-tree

The bounding boxes used in the internal R-tree nodes can
overlap

Example

131 / 149

Overlapping Bounding boxes in R-tree

You can see the overlap clearly

132 / 149

Lookup operation in the R-tree

Lookup algorithm for a point in an R-tree

Search Algorithm for a Point(x,y)

The search algorithm is recursive
The search starts at the root node of the R-tree

133 / 149

Search algorithm for a point P(x,y)

Algorithm 2 Lookup
(
(x, y), n, result

)
1: // n = current node of the search in the R-tree

2: if (n == internal node) then
3: for each entry (BB, childptr) in internal node n) do
4: // Look in subtree if (x,y) is inside bounding box
5: if (x,y) ∈ BB then
6: Lookup

(
(x ,y), childptr, result

)
7: end if
8: end for
9: else

10: //n is a leaf node
11: for (each object Ob in node n) do
12: if (x ,y) ∈ MBB(Ob) then
13: Add Ob to result // Object Ob contains point (x,y)
14: end if
15: end for
16: end if

134 / 149

R-tree- Insert

Similar to B-tree, but more complex

Overlap: multiple choices where to add entry
Split harder because more choice how to split node (compare B-tree

= 1 choice)
1) Find potential subtrees for current node

Choose one for insert (e.g., the one the would grow the least)
continue until leaf is found

2) Insert into leaf
3) Leaf is full? ⇒ split

Find best split (minimum overlap between new nodes) is hard (O(2M))
Use linear or quadratic heuristics (original paper: R-trees: a dynamic
index structure for spatial searching)

4) Adapt parents if necessary

135 / 149

http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf
http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf

Bitmap indexes

Assumption: Records in a file/relation occupy a permanent location
in the file/relation

A records is uniquely identified by a position ID

Definition: Current value set (F): the current set of values
stored in a field f in the records

Example

136 / 149

Bitmap indexes

Bitmap index of a field f: is a collection of bit vectors of
length n, where n is the number of records

There is one bit vector for each value v that appears in field f

The bit vector for the value v is equal to

x1 x2 . . . xi . . . xn
xi = 1 if the ith record’s field f = v, otherwise = 0

137 / 149

Bitmap indexes: Example

A file has 6 records

The bitmap index for the field A is

138 / 149

Bitmap indexes: Example

A file has 6 records

The bitmap index for the field B is

139 / 149

Bitmap indexes: Example: people who buy jewelry

Data on people who buy jewelry

The bitmap index on age is

140 / 149

Bitmap indexes: Example: people who buy jewelry

Data on people who buy jewelry

The bitmap index on salary is

141 / 149

Using Bitmap indexes

Example query:

Find people (who by jewelry) such that age = 50 and

salary = 100

Answer:

142 / 149

Multi-dimensional nature of Bitmap indexes

There are some multi-dimensional queries that can be answered
efficiently using bitmap indexes

143 / 149

1) Partial Match queries using Bitmap indexes

Query: Find people (buyers of jewelry) whose age = 50

Solution:

144 / 149

2) Range Match queries using Bitmap indexes

Query: Find people (buyers of jewelry) where

45 ≤ age ≤ 55, 100 ≤ salary ≤ 200

Solution:

145 / 149

2) Range Match queries using Bitmap indexes

Query: Find people (buyers of jewelry) where

45 ≤ age ≤ 55, 100 ≤ salary ≤ 200

Solution:

146 / 149

2) Range Match queries using Bitmap indexes

Query: Find people (buyers of jewelry) where

45 ≤ age ≤ 55, 100 ≤ salary ≤ 200

Solution:

147 / 149

Compression

Observation

Each record has one value in indexed attribute
For n records and domain of size |D|

Only 1
|D| bits are 1

⇒ waste of space

Solution

Compress data
Need to make sure that and and or is still fast

148 / 149

Bitmap indexes

Fast for read intensive workloads

Used a lot in data warehousing

Often build on the fly during query processing

As we will see later in class

149 / 149

	Class Information
	Course Overview

