CS525: Advanced Database Organization

Notes 6: Multi-dimensional indexes

Yousef M. Elmehdwi

Department of Computer Science

Illinois Institute of Technology

yelmehdwi@iit.edu

February 12, 14, 19, 2018

Slides: adapted from a course taught by Shun Yan Cheung, Emory University

- Multi-dimensional information and query
- Motivation for Multi-dimensional indexes
- Multi-dimensional index structures
 - Hash like structures
 - Tree like structures
- Bitmap indices

- We have studied the following 3 index structures:
 - Sorted indexes
 - B⁺-tree indexes
 - Hashing-based indexes:
- Common property
 - The search key values are values taken from a one-dimensional space/set

- There are information that are naturally multi-dimensional
 - e.g., Geographic information:
 - Stores objects in a (typically) two-dimensional space.
 - The objects may be points or shapes.
 - Often, these databases are maps, where the stored objects could represent houses, roads, bridges, pipelines, and many other physical objects.

- Partial Match queries
- Range queries
- Nearest neighbor queries
- Where-am-I queries

Partial Match queries

- The query specifies conditions on some dimensions but not on all dimensions
- e.g., Find all points/objects that intersects with y = 50

- Find objects that are located either partial or wholly within a certain range
- e.g., Find all objects that have an overlap with the green area:

Nearest neighbor queries

- Find the closest point to a given point.
- Suppose we have a relation containing points on a map
- Each point is stored in the following relation as Point(x,y)
- Find the point that is closest to point P(10,20)

Where-am-I queries

• Given a location (i.e., coordinate)

• Find the object(s) that contains the location

- Are muliti-dimensional indexes necessary?
- Can one-dimensional index technique support geometrical (2-dimensional) queries efficiently?
- Case Study: Try to process a range query using a B-tree index

- Database and query description
 - Database: object locations
 - Object(x,y, other-attributes)
 - where x and y are the coordinates of the object
 - Query
 - Find all objects that lies within a rectangle

- Suppose we have B⁺-tree indexes on:
 - The x-coordinate attribute of Object and
 - The y-coordinate attribute of Object

• The B⁺-tree on the x-coordinate information looks like this:

• The point with the smallest x-coordinate value is the left-most leaf key

• The B^+ -tree on the *y*-coordinate information looks like this:

• The point with the smallest *y*-coordinate value is the left-most leaf key

• Range query:

• Find all points such that:

•
$$x_L \leq x \leq x_H$$
 and

How to use the B^+ -tree indexes to process range query

1. Use the x-B⁺-tree index and find the first value that is $\geq x_L$

How to use the B⁺-tree indexes to process range query

• Traverse the leaf nodes to find all record pointers for which $x_L \le x \le x_H$

2. Do the same for the *y*-coordinate

How to use the B^+ -tree indexes to process range query

3. Compute the intersection of the 2 pointer sets

- 4. Retrieve the records using the record pointers in the intersection
- These records are guarantee to satisfy:
 - $x_L \leq x \leq x_H$ and
 - $y_L \leq y \leq y_H$
- This solution is not faster than scanning the entire relation

Example

• Consider the following situation:

Some statistics:

- Green area = $100 \times 100 = 10,000$
- Total area = $1000 \times 1000 = 1,000,000$
- Green area = $0.01 \times Total$ area

Example

- Total # points in area = 1,000,000
- # points in green area $\cong 0.01 \times 1,000,000 = 10,000$

- \bullet To compute the processing cost = # disk blocks accessed
 - 1 disk block contains 100 points
 - 1 B-tree block (node) contains an average of 200 (key, ptr) pairs

1. Use the x-B⁺-tree index and find the first value that is $\geq x_L$

• Traverse the leaf nodes to find all record pointers for which $x_L \leq x \leq x_H$

2. Do the same for the *y*-coordinate

3. Compute the intersection of the 2 pointer sets

- 4. Retrieve the records using the record pointers in the intersection
 - We assume the records are stored randomly (i.e., not ordered by the x or y coordinate)
 - Different records will likely be stored in different blocks
 - Accessing the 10,000 records using the record pointers will result in Accessing 10,000 data blocks
- 5. Total number of disk blocks accessed: 500 + 500 + 10,000 = 11,000 disk blocks

- Now, consider finding the points by scanning the entire relation:
 - There are 1,000,000 points
 - 1 disk block stores 100 points
 - # disk blocks used = $\frac{1,000,000}{100} = 10,000$ blocks
- So we would need: 10,000 disk blocks accesses
- \Rightarrow using the B-tree index does not help us improve performance

- We cannot store geographically ''related'' data randomly
 - If related geographical data is store randomly, we will need to access too many data blocks
- ⇒ must store geographically ''related'' data (i.e.: points that are close to each other) in the same data block
- To support the access to the geometrical data
 - Need a more appropriate index structure for multi-dimensional data

Hash like structures

- Grid files
- Partitioned Hashing functions
- Tree like structures
 - Multiple key indexes
 - kd-trees
 - Quad trees
 - R-trees

- Partition multi-dimensional space with a grid
- In each dimension, grid lines partition space into stripes
- Intersections of stripes from different dimensions define regions
- The number of grid lines in different dimensions may vary.
- Spacings between adjacent grid lines may also vary.
- Each region corresponds to a bucket.
- Attribute values for record determine region and therefore bucket

Grid Index

• Grid index file: an index that is organized into a 2-dimensional structure

• Note: Geographically ''related'' data (i.e.: points that are close to each other) are stored in the same data block

Storage Structure of Grid Index File

- 1) Stores the size parameters m and n of the grid
- 2) Stores the buckets of the grid
 - v_1, v_2, \ldots, v_m
 - x_1, x_2, \ldots, x_n
- 3) contains $m \times n$ block pointers

Logical structure of the grid index file

Buckets and Grid lines

- You can interpret the values:
 - v_1, v_2, \ldots, v_m
 - x_1, x_2, \ldots, x_n
- 1) As individual points
- 2) As intervals
Interpreting the grid lines: Point interpretation

- The grid lines represents discrete values
- With *n* grid lines you will have *n* index points

Interpreting the grid lines: Interval interpretation

- The grid lines represents end points of intervals
- With n grid lines you will have n + 1 intervals

Example of a Grid index file

• Data on people who buy jewelry:

	(age, salary (in \$1,000))			
	A(25,60)	D(45,60)	G(50,75)	J(50,100)
	B(50,120)	E(70,110)	H(85,140)	K(30,260)
	C(25,400)	F(45,350)	I(50,275)	L(60,260)
D				
Ranges	Age:	0-40	40-55	≥ 55+
	Salary:	0-90K	90K-225K	≥ 225K+

• Grid index file

• How the grid index file is stored:

Example of a Grid index file

• The text book use the following method to represent the index file

• For the following data set

```
(age, salary (in $1,000))
A(25,6) D(45,60) G(50,75) J(50,100)
B(50,120) E(70,110) H(85,140) K(30,260)
C(25,400) F(45,350) I(50,275) L(60,260)
```

A 3-dimensional grid index file:

(Or (m+1)*(n+1)*(k+1) range pointers)

- Given: search key (Age = 50, Salary = 100)
- How to find this record

• Find the row index using age = 50

• Find the column index using salary = 100

Lookup a search key

- Find the offset (this is the standard way to find an array element)
- offset = row index \times (column width) + column index = $1\times 3+1=4$
- Access the blocks and search for the record

Algorithm 1 insert(record)

- 1: Lookup (record.SearchKey)
- 2: Let b = the last bucket block
- 3: if b has room for record then
- 4: Insert record in block b
- 5: **else**
- 6: Allocate an overflow block for bucket
- 7: Link overflow block to b
- 8: Insert record in overflow bucket block
- 9: end if

- Assumption: The grid index file can be store in memory
- Lookup performance
 - O block access to obtain the bucket block pointer
 - 1 block access to obtain the data block (that contains the record)
 - If there areoverflow blocks, need to access a few more (overflow) blocks

- Assumption: The grid index file can be store in memory
- Insert performance
 - In addition to the lookup cost
 - 1 more block write operation to update the bucket block
 - If overflow, need to update the overflow link in the bucket and write an overflow block)

Using a grid index in multi-dimensional queries

- Performance of Grid index for the commonly used multi-dimensional queries
- Assumption: The grid index file can be stored entirely in memory

1) Partial Match queries

- The query specifies conditions on some dimensions but not on all dimensions
- Find all jewelry purchases by people with age = 50

• You will access *m* disk blocks (*m* is some dimension of the grid)

2) Range queries

- Find objects that are located either partial or wholly within a certain range
- Find all jewelry purchases by people whose $35 \le age \le 50$, $50K \le salary \le 100K$

• In this example, we must access 4 disk blocks

- Coding assignment 2 due date: Sunday, March 11, 2018 by midnight (Chicago time:)
- Quiz 1:
 - Post: Friday February 23.
 - Due on Blackboard: Tuesday February 27 by midnight (Chicago time)
- Midterm: Close notes/book/friends: March 5 in class time

• Find the nearest neighbor of a data point data point 500K nearest neighbor Salary 225K 90K 0 0 55 40 Age

• Start by finding the nearest neighbor in the bucket that contains the data point

• This distance will limit the block where you need to search to all blocks that intersect with this circle:

• Expand the search region in an adjacent bucket that contained within the circle:

57 / 149

• And so forth

• And so forth

• Note: You may need to expand the search range beyond the adjacent regions

- The nearest neighbor is outside the adjacent regions
- You must use the current nearest neighbor and the grid lines to decide whether you need to expend the range of the search

3) Nearest neighbor queries: Performance

• The expanding range search will access on average 9 data blocks (in a 2-dimensional grid index)

4) Where-am-I queries

- Given a location (i.e., coordinate)
- Find the object(s) that contains the location

- Grid index cannot represent objects (can only present points)
- ullet \Rightarrow Grid Index cannot handle Where-am-I type of queries
- The only kind of index that can handle Where-am-I queries is the R-tree (Region-tree) (Discussed later)

- + Good for multiple-key search
 - Space, management overhead (nothing is free)
 - Need partitioning ranges that evenly split keys

Grid Index

• A major problem with Grid Index files is Poor occupancy rate at many grid buckets

• Especially when you have 3 or more dimensions. You will have many buckets that are empty.

Hash like structures

- Grid files
- Partitioned Hash functions
- Tree like structures
 - Multiple key indexes
 - kd-trees
 - Quad trees
 - R-trees

Partitioned Hashing

Traditional hashing

- Problem with traditional hashing
 - If the key is composite

$$K = (x, y)$$

$$(x,y) \rightarrow h(\bullet) \rightarrow h(x,y)$$

• and some component of the key is not known

• we cannot compute a meaningful hash value at all

Partitioned Hashing

- Partitioned Hashing
 - The key is a composite:

• Use *n* hash functions, one function on one component

Partitioned Hashing

- Partitioned Hashing
 - The hash value is the concatenation of the individual hash function values

Partitioned Hashing: Example

Advantage of Partitioned Hashing

• Partitioned Hashing can generate a meaningful hash value for incomplete keys

Partitioned Hashing: A complete example

• Data on people who buy jewelry

(age, salary (in \$1,000))

A(25,60)	D(45,60)	G(50,75)	J(50,100)
B(50,120)	E(70,110)	H(85,140)	K(30,260)
C(25,400)	F(45,350)	I(50,275)	L(60,260)

• Given hash functions

Age:	h ₁ (age)	=	age % 2
Salary:	h ₂ (salary) =	salary % 4

• Some Hash Function values

A(25, 60)	D(45,60)	G(50 ,75)	J(50,10 0)
V	V	V	V
100	100	011	000
B(50,120)	E(70,110)	H(85,140)	K(30,260)
C(25,400)	F(45,350)	I(50,275)	L(60,260)

Partitioned Hashing: A complete example

• The Partitioned Hash index

Using a Partitioned Hashing

• The Partitioned Hash index

1) Partial Match queries

• Find people with age = 50

- Age = 50 will hash to the hash value $Hash(age) = 0 \times \times$.
- Start at bucket 000 and scan to bucket 011

- Find objects that are located either partial or wholly within a certain range
- Find people such that: $35 \le age \le 50$, $50K \le salary \le 100K$

2) Range queries

a) Hash all values inside the range

```
hash(35, 50K) --> block pointer 1
hash(36, 50K) --> block pointer 2
....
hash(50, 50K)
And so on:
(35, 55K) (36, 55K), .... (50, 55K)
...
(35, 100K) (36, 100K), .... (50, 100K)
```

• Note: the block pointers can have duplicates

b) Collect all the buckets (eliminate duplicate block pointers)c) Access all (unique) buckets (disk blocks)

 $\bullet\,\Rightarrow\,\mathsf{Hashing}$ is not appropriate for range type queries

3) Nearest neighbor queries

- Hashing is completely useless for nearest neighbor type queries
- Because: There is no notion of distance in the hash function
- \bullet Example: find records that with distance ≤ 1 to search key = 1
 - We hash the search key 1

3) Nearest neighbor queries

However, we cannot use the distance in the hash table to locate • "nearby" objects (records) hash(1000000) hash(1) hash(2)

• The value 2 is near the value 1, but may get hash very far away

• Closeness of bucket indexes has nothing to do with real distance between data points (because hashing computes a random number)

- Hashing is also not useful here either
- Because hashing provide no information on distance

- Good hash functions will randomize the records
- \bullet \Rightarrow Partitioned hashing will achieve good occupancy rate per bucket

- Hash like structures
 - Grid files
 - Partitioned Hash functions
- Tree like structures
 - Multiple key indexes
 - kd-trees
 - Quad trees
 - R-trees

Multiple-key index

 special case of a multilevel index using different types of search keys in each level

3 separate index files

Multiple-key index: Example

• Data on people who buy jewelry

84 / 149

SAME search key values

Using a Multiple-key index: 1) Partial Match queries

• Find all people with age =25

- Use the index on age to find the index block(s) for age = 25
- Then, scan all entries in the salary index file (list of blocks) indexed by age= 25 to find the records

- Multiple-key index for partial match query will only be useful when the first dimension is given
- We cannot use multiple-key index to process the following query efficiently

1) Partial Match queries

• Find all people who earn \$60,000 who buy jewelry. We will need to scan the first index

• Result: many disk accesses

- Find objects that are located either partial or wholly within a certain range
- Find people such that: $35 \le age \le 50$, $50K \le salary \le 100K$

• Use the range of age to find all of the subindexes that might contain answer

• Only need to search a limited number of lower level index files

- The multiple key index can help in the processing of Nearest neighbor queries
- BUT: It involves a complicated expanding range search algorithm in "nearby branches" of the index tree

• Multiple-key index are not used in Where-am-I queries

- Hash like structures
 - Grid files
 - Partitioned Hash functions
- Tree like structures
 - Multiple key indexes
 - kd-trees
 - Quad trees
 - R-trees

- The kd-tree as a main memory data structure
- Adaptation of the kd-tree for disk storage

- Binary Search Tree (BST) is a binary tree where
 - The values in the nodes in the left subtree of the node x in the tree has a smaller value than x
 - The values in the nodes in the right subtree of the node x in the tree has a greater value than x
- Notice the above property holds for every node in the binary tree

Review: Binary Search Tree: Example

Review: Binary Search Tree: Example

- The kd-tree is a generalization of the classic Binary Search Tree (BST)
- The search key used at different levels belongs to a different dimension (domain)
- The dimensions at different levels will wrap around (i.e., circulate)

• 2 dimentions: x and y

• Subtrees of x₁ must satisfy this property

• Subtrees of y_1 and y_2 must satisfy this property

• And so on (for every level of the kd-tree)

Classical kd-tree

• The actual record (data) are stored in every node (search key) of the kd-tree

- The node y_1 contains the data (record) for (x_1, y_1)
- The node x_2 contains the data (record) for (x_2, y_1)
- And so on

- Interior nodes do not store data
- Interior node only stores
 - Attribute name (i.e.:X or Y)
 - Dividing value (i.e.: x_1 or y_4) of the attribute
 - Pointers to the (2) children nodes

Modifications to the kd-tree for storage on disk

• Dividing line is "moved" a little bit

- The equality is included in right branch of the kd-tree
- Each leaf node of the modified kd-tree is one (1) data block

• Data on people who buy jewelry

(age, salary	(in \$1,000))		
A(25,60)	D(45,60)	G(50,75)	J(50,100)
B(50,120)	E(70,110)	H(85,140)	K(30,260)
C(25,400)	F(45,350)	I(50,275)	L(60,260)

• A kd-tree for the data:

- Behold the structural properties of the kd-tree
 - This left (shaded) subtree has salary search key values $< 150 \ (for salary)$

 \bullet This left subtree has salary < 150 and age < 60

 \bullet This right subtree has salary $\,<\,$ 150 and age $\,\geq\,$ 60 $\,$

How a kd-tree partitions the data space

108 / 149
How a kd-tree partitions the data space

• The age nodes at level 2

• partitions each sub-space in half

How a kd-tree partitions the data space

This kd-tree

How a kd-tree partitions the data space

• will divide the data space up as follows

- 1) Partial Match queries
 - Search Algorithm
 - For a dimension for which the search value is given (specified)
 - Take the (one) branch of the subtree for the search value
 - For a dimension for which the search value is not given (not specified)
 - Take both branches of the subtree

1) Partial Match queries: Example

• Find all person with age = 35

Search Algorithm

- For the search range is completely contained by the left subtree, then
 - Take only the left branch of the subtree for the search value
- For the search range is completely contained by the right subtree, then
 - Take only the right branch of the subtree for the search value
- Otherwise (the search range saddles at the search value)
 - Search both subtrees

2) Range queries: Example

3) Nearest neighbor queries

• Not easy to to find the nearest neighbor using a kd-tree index

• It requires up and down traversal/search in the kd-tree

- Not applicable
 - kd-tree can only stores points
 - Cannot store objects

Hash like structures

- Grid files
- Partitioned Hash functions
- Tree like structures
 - Multiple key indexes
 - kd-trees
 - Quad trees
 - R-trees

- An index structure that divides a search space in half (exactly) in every dimension
- Structure of a quad-tree node
 - A quad-tree node contains the following
 - 1 search key value for each dimension
 - 2ⁿ child nodepointers (n way split)
 - One parent node pointer (except for the root node)
 - The child node pointers will point to every possible combination of < and \geq relationships with the search key values

Quad-tree on common multi-dimensional queries

- A quad-tree is similar to a kd-tree
- The techniques discussed in the kd-tree applies to the Quad-tree

Hash like structures

- Grid files
- Partitioned Hash functions
- Tree like structures
 - Multiple key indexes
 - kd-trees
 - Quad trees
 - R-trees

The R-tree (Region-tree)

- Bounding Box
 - a rectangle that contains a group of objects
- Example: given a group of objects

• The Bounding Box for this group of objects

The R-tree (Region-tree)

- Minimum Bounding Box (MBB)
 - the smallest rectangle that contains a group of objects
- Example: given a group of objects

• The Minimum Bounding Box for this group of objects

• Note: A rectangle can be represented as follows

- coordinate of the lower left corner
- coordinate of the upper right corner
- Example: Rectangle: ((10,20), (50,40))

- **R-Tree:** an index tree-structure derived from the B-tree that uses bounding boxes as search keys
- The internal nodes contains a number of entries of the following format
 - (bounding box, child node pointer)
 - Example: (((10,20),(50,40)),ptr1)
- The leaf nodes contains a number of entries of the following format:
 - (min bounding box, object pointer)
 - Example: (((10,20),(50,40)),house-ptr)

• An internal node of the R-tree has the following structure

- The subtree indexed by the bounding box will contain
 - Only objects that is contained within the given bounding box

R-tree: Example

• Objects that we want to represent

• There are 7 objects

• school, pop (point of presence), house1, house2, road1 road2, pipeline

R-tree: Example

• The 3 objects house1, road1 and road2 are completely enclosed by the bounding box ((0,0),(60,50))

R-tree: Example

• The objects school, pop, house2 and pipeline are completely enclosed by the bounding box ((20,20),(100,80))

• The R-tree that uses the previous bounding boxes

• The minimum bounding box (mbb) field for different objects are different

Overlapping Bounding boxes in R-tree

- The bounding boxes used in the internal R-tree nodes can overlap
- Example

Overlapping Bounding boxes in R-tree

• You can see the overlap clearly

- Lookup algorithm for a point in an R-tree
 - Search Algorithm for a Point(x,y)
 - The search algorithm is recursive
 - The search starts at the root node of the R-tree

Search algorithm for a point P(x,y)

Algorithm 2 Lookup((x, y), n, result)

- 1: // n = current node of the search in the R-tree
- 2: if (n == internal node) then
- 3: for each entry (BB, childptr) in internal node n) do
- 4: // Look in subtree if (x,y) is inside bounding box
- 5: if $(x,y) \in BB$ then
- 6: Lookup((x,y), childptr, result)
- 7: end if
- 8: end for
- 9: **else**
- 10: //n is a leaf node
- 11: **for** (each object *Ob* in node *n*) **do**
- 12: **if** $(x,y) \in MBB(Ob)$ **then**
- 13: Add *Ob* to result // Object Ob contains point (x,y)
- 14: end if
- 15: end for
- 16: end if

• Similar to B-tree, but more complex

- Overlap: multiple choices where to add entry
- Split harder because more choice how to split node (compare B-tree = 1 choice)
- 1) Find potential subtrees for current node
 - Choose one for insert (e.g., the one the would grow the least)
 - continue until leaf is found
- 2) Insert into leaf
- 3) Leaf is full? \Rightarrow split
 - Find best split (minimum overlap between new nodes) is hard (O(2^M))
 - Use linear or quadratic heuristics (original paper: R-trees: a dynamic index structure for spatial searching)
- 4) Adapt parents if necessary

- Assumption: Records in a file/relation occupy a permanent location in the file/relation
 - A records is uniquely identified by a position ID
- Definition: Current value set (F): the current set of values stored in a field f in the records
- Example

- Bitmap index of a field f: is a collection of bit vectors of length n, where n is the number of records
- There is one bit vector for each value v that appears in field f
- The bit vector for the value v is equal to
 - $x_1 x_2 \dots x_i \dots x_n$ • $x_i = 1$ if the ith record's field f = v, otherwise = 0

Bitmap indexes: Example

• A file has 6 records

Fields:	Α	В
record 1:	30	foo
record 2:	30	bar
record 3:	40	baz
record 4:	50	foo
record 5:	40	bar
record 6:	30	baz

• The bitmap index for the field A is

valu	le		1234	156				
36	9		1100	901			< bit	vector
46	9		0010	910				
56	9		0001	100				
Explanat	tion:							
The So:	value bit	30 #1,	appe #2	ears and	in #6	the are	records: set	1, 2, 6

Bitmap indexes: Example

• A file has 6 records

Fields:	Α	В
record 1:	30	foo
record 2:	30	bar
record 3:	40	baz
record 4:	50	foo
record 5:	40	bar
record 6:	30	baz

• The bitmap index for the field B is

value	123456	
foo	100100	< bit vector
bar	010010	
baz	001001	
Explanation:		
The value So: bit	<pre>foo appears : #1 and #4 are</pre>	in the records: 1, 4 e set

Bitmap indexes: Example: people who buy jewelry

• Data on people who buy jewelry

(age, salar	y (in \$1,000)))	
1(25,60)	2(45,60)	3(50,75)	4(50,100)
5(50,120)	6(70,110)	7(85,140)	8(30,260)
9(25,400)	10(45,350)	11(50,275)	12(60,260)

• The bitmap index on age is

Value	123456789012
25	10000001000
30	00000010000
45	010000000100
50	001110000010
60	000000000001
70	000001000000
85	000000 1 00000

Bitmap indexes: Example: people who buy jewelry

• Data on people who buy jewelry

(age, salary (in \$1,000)) 1(25,60) 2(45,60) 3(50,75) 4(50,100) 5(50,120) 6(70,110) 7(85,140) 8(30,260) 9(25,400) 10(45,350) 11(50,275) 12(60,260)

• The bitmap index on salary is

Value	123456789012
60	1 10000000000
75	001000000000
100	000100000000
110	000001000000
120	000010000000
140	000000100000
260	000000010001
275	000000000010
350	000000000100
400	000000001000

• Example query:

```
Find people (who by jewelry) such that age = 50 and salary = 100
```

Answer:

Multi-dimensional nature of Bitmap indexes

• There are some multi-dimensional queries that can be answered efficiently using bitmap indexes

1) Partial Match queries using Bitmap indexes

- Query: Find people (buyers of jewelry) whose age = 50
- Solution:

Bitmap	index for age:			
Value	123456789012			
25	10000001000			
30	00000010000			
45	01000000100			
50	001110000010	<	These	people
60	00000000001			
70	000001000000			
85	000000100000			
Records	: 3, 4, 5 and 11			
2) Range Match queries using Bitmap indexes

- Query: Find people (buyers of jewelry) where $45 \le age \le 55$, $100 \le salary \le 200$
- Solution:

Bitmap	index for age:	
Value	123456789012	
25	10000001000	
30	00000010000	
45	010000000100	45 ≤ age ≤ 50
50	001110000010	
60	000000000000	
70	000001000000	
85	00000100000	
<mark>Or valu</mark>	<mark>e</mark> = 011110000110	

2) Range Match queries using Bitmap indexes

- Query: Find people (buyers of jewelry) where $45 \leq age \leq 55$, $100 \leq salary \leq 200$
- Solution:

Bitmap i	ndex for salary:	
Value	123456789012	
60 75 100 110 120 140	11000000000 00100000000 00010000000 00001000000	100 ≤ salary ≤ 200
260 275 350 400 Or value	000000010001 00000000010 00000000100 000000	

2) Range Match queries using Bitmap indexes

- Query: Find people (buyers of jewelry) where $45 \le age \le 55$, $100 \le salary \le 200$
- Solution:

Observation

- Each record has one value in indexed attribute
- For n records and domain of size |D|
 - Only $\frac{1}{|D|}$ bits are 1
 - \Rightarrow waste of space
- Solution
 - Compress data
 - Need to make sure that and and or is still fast

- Fast for read intensive workloads
 - Used a lot in data warehousing
- Often build on the fly during query processing
 - As we will see later in class