
CS525: Advanced Database Organization

Notes 6: Query Processing
Logical Optimization

Yousef M. Elmehdwi

Department of Computer Science

Illinois Institute of Technology

yelmehdwi@iit.edu

October 11, 2018

Slides: adapted from a courses taught by Hector Garcia-Molina, Stanford, Shun Yan
Cheung, Emory University, & Jennifer Welch, Texas A&M, Ramon Lawrence &

Introduction to Database Systems by ITL Education Solutions Limited

1 / 109

yelmehdwi@iit.edu
http://infolab.stanford.edu/people/hector.html
https://www.stanford.edu/
http://www.mathcs.emory.edu/~cheung/Courses/554/
http://www.mathcs.emory.edu/~cheung/Courses/554/
www.emory.edu
https://parasol.tamu.edu/~welch/
http://www.tamu.edu/
https://people.ok.ubc.ca/rlawrenc/

Basic Steps in Processing an SQL Query

2 / 109

Where we are

SQL ⇒ parse tree ⇒ expression of relational algebra
(initial logical query plan)
Today: consider ways of transformations to improve the query plan

Algebraic laws for improving query plans

3 / 109

Optimizing/Improving the Logical Query Plan

The translation rules converting a parse tree to a logical query tree do
not always produce the best logical query tree.
It is often possible to optimize the logical query tree by applying
relational algebra laws to convert the original tree into a more
efficient logical query tree.
Next we’ll survey some of these laws
Optimizing a logical query tree using relational algebra laws is called
heuristic optimization

4 / 109

Query Optimization

Relational algebra level (A)
Detailed query plan level

Estimate Costs (B)
without indexes
with indexes

Generate and compare plans (C)

5 / 109

Relational Algebra Optimization

What are transformation rules?
preserve equivalence

What are good transformations?
reduce query execution costs

6 / 109

Query Equivalence

Two queries q1 and q2 are equivalent:
If for every database instance I (contents of all the tables)
Both queries have the same result

q1 ≡ q2 iff ∀ I: q1(I) = q2(I)

7 / 109

Query Equivalence

StarsIn(title. year, startName)

MovieStar(name, address, gender, birthdate)

πtitle,birthdate

σyear=2018∧gender=′F ′∧starName=name

×

MovieStar StarsIn

πtitle,birthdate

1starName=name

σgender=′F ′ σyear=2018

MovieStar StarsIn

8 / 109

Rules: Natural joins & cross products & union

Join (1) is commutative: R 1 S = S 1 R

Join (1) is associative: (R 1 S) 1 T = R 1 (S 1 T)

9 / 109

Note

Carry attribute names in results, so order is not important
Can also write as trees, e.g.:

1

1

R S

T ≡

1

1

S T

R

Different ordering in the execution of the 1 operation can produce
different intermediate results (often with large difference in size of
result sets)
So one of the topics (problems) in query optimization will be:

Find the optimal join ordering of a set of 1 operations

10 / 109

Rules: Natural joins & cross products & union

Cross product (×) is commutative: R × S = S × R

Cross product (×) is associative: (R × S) × T=R × (S × T)

11 / 109

Rules: Natural joins & cross products & union

Union (∪) is commutative: R ∪ S = S ∪ R

Union (∪) is associative: (R ∪ S) ∪ T = R ∪ (S ∪ T)

12 / 109

Rules: Selections

Selections usually reduce the size of the relation (decrease the number
of rows)
Usually good to do selections early, i.e., “push them down the tree”

Perform selection as early as possible (but take existing indexes on
relations into account)

Also can be helpful to break up a complex selection into parts

13 / 109

Rules: Selections

Selection is idempoten. (multiple applications of the same selection
have no additional effect beyond the first one)

σp(R) = σpσp(R)

Select operations are commutative. (the order selections are applied
in has no effect on the eventual result)

σpσq(R) = σqσp(R)

14 / 109

Rules: Selection Splitting

The selection condition involving conjunction of two or more
predicates can be deconstructed into a sequence of individual select
operations.

σp1∧p2(R) =σp1

(
σp2(R)

)
= σp2

(
σp1(R)

)
This transformation is called cascading of select operator.

15 / 109

Bags vs. Sets

R = {a,a,b,b,b,c}
S = {b,b,c,c,d}
R ∪ S = ?
Option 1: SUM

R ∪ S = {a,a,b,b,b,b,b,c,c,c,d}
Option 2: MAX

R ∪ S = {a,a,b,b,b,c,c,d}

16 / 109

“SUM” is implemented

Use ‘‘SUM’’ option for bag unions
CAREFUL!. Some rules cannot be used for bags

17 / 109

Laws for Bags and Sets Can Differ

Example of an Algebraic Law that holds for set, but not for bags
We know from Set Theory that

A ∩set (B ∪set C) = (A ∩set B) ∪set (A ∩set C)

But, this law does not hold for bags:
Suppose bags A, B, and C were each {x}

A ∩bag (B ∪bag C) = {x} ∩bag ({x} ∪bag {x})
= {x} ∩bag {x , x}
= {x}

(A ∩bag B) ∪bag (A ∩bag C) = ({x} ∩bag {x}) ∪bag ({x} ∩bag {x})
= {x} ∪bag {x}
= {x , x}

18 / 109

Rules σ, ∪, − combined

Push selections through the binary operators: product, union,
intersection, difference, and join.

1. Must push selection to both arguments:
σp(R ∪ S) = σp(R) ∪ σp(S)

2. Must push to first argument, optional for second:
σp(R - S) = σp(R) - σp(S)
σp(R - S) = σp(R) - S

3. Push to at least one argument with all attributes mentioned in p:
product, natural join, theta join, intersection
e.g., σp(R × S) = σp(R) × S, if p contains only attributes from R

19 / 109

Rules: Selections

If the condition p in σp(R ∩ S) is compound (p = p1 and p2), to
split p up, we can use:

σp1∧p2(R) = σp1

(
σp2(R)

)
= σp2

(
σp1(R)

)
Example

R(a,b)

S(c,d)
σa=3∧c=4(R ∩ S) = σa=3

(
σc=4(R ∩ S)

)
= σa=3

(
R ∩ σc=4(S)

)
= σa=3(R) ∩ σc=4(S)

20 / 109

Rules σ, 1 combined

If the selection condition p involves only the attributes of R and q
involves the attributes of S, then the select operation distributes.

σp∧q(R 1 S) = σp(R) 1 σq(S)

Let
p = predicate with only R attributes
q = predicate with only S attributes
m = predicate with R,S attributes
σp(R 1 S) = σp(R) 1 S
σq(R 1 S) = R 1 σp(S)
Some Rules can be Derived:

σp∧q(R 1 S) = σp(R) 1 σq(S)
σp∧q∧m(R 1 S) = σm

(
σp(R) 1 σq(S)

)
Derivation for first one

σp∧q(R 1 S) = σp
(
σq(R 1 S)

)
= σp

(
R 1 σq(S)

)
= σp(R) 1 σq(S)

21 / 109

Pushing Selections

Example
Employee(fname, salary, dno)

Dept(dname, dno)

σdname=′Research′ (Employee 1 Dept) = Employee 1 σdname=′Research′ (Dept)

‘‘Pushing down’’ a selection (σ) will result in a smaller
intermediate result set

σdname=′Research′

1

Employee Dept

⇒

1

Employee σdname=′Research′

Dept

22 / 109

Pushing Selections

Example
Employee(fname, salary, dno)

Dept(dname, dno)

σdname=′Research∧fname=′John′(Employee 1 Dept)

= σfname=′John′
(
σdname=′Research′(Employee 1 Dept)

)
= σfname=′John′

(
Employee 1 σdname=′Research′(Dept)

)
= σfname=′John′(Employee) 1 σdname=′Research′(Dept)

23 / 109

Commonly used query optimization technique involving σ

Simple query optimization
The running time of database operations depends on:

The size of the input relations (operands)
Therefore: It is always beneficial (for running time) to reduce the size
of the input relation(s)

24 / 109

Reducing the size of input relation using σ

The selection operator σ can reduce the size of the input relation of
some operators

Example
πmovieTitle

σbirthdate LIKE ′%1960′

1starName=name

StarsIn MovieStar

Input relations

πmovieTitle

1starName=name

σbirthdate LIKE ′%1960′

StarsIn

MovieStar

Input relations

The input relation of 1 in the second case σbirthday LIKE ′%1960′ (StarsIn) can be
much smaller than the input relation StarsIn

25 / 109

Simple query optimization technique: “push select down”

One of the many query optimization techniques used by the DBMS is
execute a σp as soon as possible.
In terms of a query tree, it means that the σp operation is push as
far down the logical query tree as possible

Example

πmovieTitle

σbirthdate LIKE ′%1960′

1starName=name

StarsIn MovieStar

Push DOWN
⇒

πmovieTitle

1starName=name

σbirthdate LIKE ′%1960′

StarsIn

MovieStar

26 / 109

Note: “push select down” query optimization technique

When a query contains a virtual table, then the σp operation is
pushed down the logical query tree as far as possible is not
sufficient

Example
Relations:

StarsIn(title, year, starName, birthday) // Movie stars
Movies(title, year, genre, studioName) // Movies

View:
CREATE VIEW
MoviesOf1996 AS {

SELECT ∗
FROM Movies
WHERE y e a r = 1996
}

Corresponding logical query
plan

σyear=1996

Movies

27 / 109

Note: “push select down” query optimization technique

Example (Continue)
Query: Find all movie stars and their studio name in
movies of 1996

SELECT starName , studioName
FROM MoviesOf1996 , S t a r s I n
WHERE MoviesOf1996 . t i t l e = S t a r s I n . t i t l e

initial logical query plan
πstarName,studioName

1

StarsInMoviesOf1996

28 / 109

Note: “push select down” query optimization technique
Example (Continue)

After replacing the virtual table with the corresponding query:
πstarName,studioName

1

StarsInσyear=1996

Movies

However, the optimal query plan is as follows:
πstarName,studioName

1

σyear=1996

StarsIn

σyear=1996

Movies
29 / 109

Amendment to the simple query optimization technique

If there are virtual table in the query plan, then to find the optimal
query plan, we must

Push any selection σ operators in the virtual table as far up the query
tree as possible
Push every selection σ operators in the resulting query tree as far down
the query tree as possible

Example
Query plan after incorporating the virtual table query:
πstarName,studioName

1

StarsInσyear=1996

Movies

30 / 109

Amendment to the simple query optimization technique

Example (Continue)
Use this algebraic law in the reverse order:σp(R1S) = σp(R)1S to
push the σyear=1996 operation up the tree

πstarName,studioName

1

StarsInσyear=1996

Movies

⇒

πstarName,studioName

σyear=1996

1

StarsInMovies

31 / 109

Amendment to the simple query optimization technique

Example (Continue)
Both relations have the attribute year

Use this algebraic law in the forward order:
σp(R1S) = σp(R)1σp(S) to push the σyear=1996 operation down
the tree

πstarName,studioName

σyear=1996

1

StarsInMovies

Push DOWN
⇒

πstarName,studioName

1

σyear=1996

StarsIn

σyear=1996

Movies

32 / 109

Laws Involving Projections: Use of π in query optimization

The projection operation π can remove unnecessary attributes from
intermediate results
Common use the project operation π in query optimization:

The projection operator π can be added anywhere in the relational
algebra expression (= logical query plan/tree), as long as:

π will only eliminate attributes that are not used by an operator that is
located high up the tree

Example
R(a,b,c), S(x,y,z)

πb,y

1a=x

R S

⇒

πb,y

1a=x

πa,b πx ,y

SR

33 / 109

Laws Involving Projections

Consider adding in additional projections
Adding a projection lower in the tree can improve performance, since
often tuple size is reduced

Usually not as helpful as pushing selections down
If a projection is inserted in the tree, then none of the eliminated
attributes can appear above this point in the tree

34 / 109

Rules: Projections

If a query contains a sequence of project operations, only the final
operation is needed, the others can be omitted.

πL1

(
πL2

(
. . .

(
πLn (R)

)
. . .

))
= πL1(R), where Li ⊆ Li+1 for i∈[1,n)

This transformation is called cascading of project operator.

35 / 109

Rules: Projections

Let:
X = set of attributes
Y = set of attributes
XY = X ∪ Y

πXY (R) = πX
(
πY (R)

)
Is this correct?

36 / 109

Rules: Projections

Let:
X = set of attributes
Y = set of attributes
XY = X ∪ Y

πXY (R) = πX
(
πY (R)

)

37 / 109

Rules: π, σ combined

It is also possible to push a projection below a selection.
If the selection condition p involves only the attributes a1, a2, . . . , an
that are present in the projection list, the two operations can be
commuted.

πa1,a2,...,an

(
σp(R)

)
= σp

(
πa1,a2,...,an (R)

)
Rule: πL

(
σp(R)

)
= πL

(
σp

(
πM(R)

))
, where M is all attributes used

by L or p

38 / 109

Rules: π, σ combined

Let
x = subset of R attributes
z = attributes in predicate p (subset of R attributes)
πx

(
σp(R)

)
= σp

(
πx (R)

)

39 / 109

Rules: π, σ combined

Let
x = subset of R attributes
z = attributes in predicate p (subset of R attributes)
πx

(
σp(R)

)
= σp

(
πx (R)

)

40 / 109

Rules: π, σ combined

Let
x = subset of R attributes
z = attributes in predicate p (subset of R attributes)
πx

(
σp(R)

)
= πx

(
σp

(
πxz(R)

))

41 / 109

Rules: π, 1 combined

Let
x = subset of R attributes
y = subset of S attributes
z = intersection of R,S attributes
πxy (R 1 S) = πxy

(
πxz(R) 1 πyz(S)

)

42 / 109

Rules: π, 1 combined

Let
x = subset of R attributes
y = subset of S attributes
z = intersection of R,S attributes
πxy

(
σp(R 1 S)

)
= πxy

(
σp

(
πxz′(R) 1 πyz′(S)

))
, where

z ′ = z ∪ {attributes used in p}

43 / 109

Push Projection Below Selection?

Is it a good idea?

Example
Relations:

StarsIn(title, movieYear, starName, birthday) // Movie stars
SELECT starName FROM S t a r s I n WHERE movieYear = 1 9 9 6 ;

πstarName

σmovieYear=1996

StarsIn

πstarName

σmovieYear=1996

πstarName,movieYear

StarsIn

Extra work to scan through StarsIn twice
44 / 109

Rules: Joins and Products

Laws by definition: These are not really laws, but they are the
definition of the 1 operator:

(R 1p S) = σp(R × S) (theta join)
(R 1 S) = πL

(
σp(R × S)

)
(natural join)

where p equates same-name attributes in R and S, and L includes all
attributes of R and S dropping duplicates

To improve a logical query plan, replace a product followed by a
selection with a join

Join algorithms are usually faster than doing product followed by
selection on the (very large) result of the product

45 / 109

Rules: Duplicate Elimination

Moving δ down the tree is potentially beneficial as it can reduce the
size of intermediate relations
Can be eliminated if argument has no duplicates

a relation with a primary key
a relation resulting from a grouping operator

Push the δ operation through product, join,theta-join, selection, and
bag intersection

Ex: δ(R × S) = δ(R) × δ(S)
The result of δ is always a set (i.e.: no duplicates)

Cannot push δ through bag union, bag difference or projection
The cost saving resulting from pushing down δ is usually small.
Therefore, this optimization step is often not implemented

46 / 109

Duplicate Elimination Pitfalls

Example
R has two copies of tuple t

S has one copy of t

T(a,b) contains only (1,2) and (1,3)
Bag Union

δ(R ∪bag S) has one copy of t
δ(R) ∪bag δ(S) has two copies of t

Bag difference
δ(R − S) has one copy of t
δ(R) − δ(S) has no copies of t

Bag projection
δ
(
πa(T)

)
= {1}

πa
(
δ(T)

)
= {1,1}

47 / 109

Rules: Grouping and Aggregation

The grouping operator only interact with very few relation algebra
operations:

1. γL produces a set, therefore the δ operation is unnecessary
δ
(
γL(R)

)
= γL(R)

2. You can project out some attributes as long as you keep the grouping
attributes:

γL(R) = γL
(
πM(R)

)
, where M must contain all attributes used by γL

3. The aggregate functions max and min can tolerate removal of
duplicates:

γL(R) = γL
(
δ(R)

)
, where γL =max or min

max(5,5,3)=max(5,3)

48 / 109

More transformations

Eliminate common sub-expressions
Detect constant expressions

49 / 109

Applying the Algebraic laws for query optimization

Example
MovieStar(name, addr, gender, birthdate)

Starsln(title, year, starName)

Query: For each (movie) year, find the earliest birthday (youngest
movie star) in that (movie) year
SELECT year , max (b i r t h d a y)
FROM movieStar , S t a r s I n
WHERE name = starName
GROUP BY y e a r
The initial logical query plan is as follows:

γyear,max(birthday)

σname=starName

×

MovieStar StarsIn
50 / 109

Applying the Algebraic laws for query optimization

Example (Continue)
Apply: R 1p S = σp(R × S), where p = “name = starName′′

γyear,max(birthday)

σname=starName

×

MovieStar StarsIn

⇒

γyear,max(birthday)

1name=starName

MovieStar StarsIn

51 / 109

Applying the Algebraic laws for query optimization

Example (Continue)
Apply: γL(R) = γL

(
δ(R)

)
, where γL = max or min

γyear,max(birthday)

1name=starName

MovieStar StarsIn

⇒

γyear,max(birthday)

δ

1name=starName

MovieStar StarsIn

52 / 109

Applying the Algebraic laws for query optimization

Example (Continue)
Optionally, you can insert a projection at the top

γyear,max(birthday)

δ

1name=starName

MovieStar StarsIn

⇒

γyear,max(birthday)

πyear,birthday

δ

1name=starName

MovieStar StarsIn

53 / 109

Applying the Algebraic laws for query optimization

Example (Continue)
Optionally, you can insert a couple of projections at the bottom

γyear,max(birthday)

πyear,birthday

δ

1name=starName

MovieStar StarsIn

⇒

γyear,max(birthday)

πyear,birthday

δ

1name=starName

πname,birthday πyear,starName

MovieStar StarsIn

54 / 109

Heuristic Query Optimization

Heuristic query optimization takes a logical query tree as input and
constructs a more efficient logical query tree by applying equivalence
preserving relational algebra laws.
Equivalence preserving transformations insure that the query result is
identical before and after the transformation is applied. Two logical
query trees are equivalent if they produce the same result.
Note that heuristic optimization does not always produce the most
efficient logical query tree as the rules applied are only heuristics!

55 / 109

Rules of Heuristic Query Optimization

1. Deconstruct conjunctive selections into a sequence of single selection
operations.

2. Move selection operations down the query tree for the earliest
possible execution.

3. Replace Cartesian product operations that are followed by a selection
condition by join operations.

4. Execute first selection and join operations that will produce the
smallest relations.

5. Deconstruct and move as far down the tree as possible lists of
projection attributes, creating new projections where needed

56 / 109

Summary

No transformation is always good at the l.q.p level
Selections

push down tree as far as possible
if condition is an AND, split and push separately
sometimes need to push up before pushing down

Projections
can be pushed down
new ones can be added (but be careful)

Duplicate elimination
sometimes can be removed

Selection/product combinations
can sometimes be replaced with join

Many transformations lead to “promising” plans

57 / 109

Outline - Query Processing

Relational algebra level
transformations
good transformations

Detailed query plan level
estimate costs
generate and compare plans

58 / 109

Canonical Query Trees

A canonical logical query tree is a logical query tree where all
associative and commutative operators with more than two operands
are converted into multi-operand operators.

This makes it more convenient and obvious that the operands can be
combined in any order.

This is especially important for joins as the order of joins may make a
significant difference in the performance of the query

59 / 109

Evaluating Logical Query Plans

The transformations discussed so far intuitively seem like good ideas
But how can we evaluate them more scientifically?
Estimate size of relations, also helpful in evaluating physical query
plans

60 / 109

Overview of the Query Optimization process

Logical query plan
a query tree where the nodes consist of relational algebra operators

Physical query plan
a query tree where the nodes consist of relational algebra algorithms

There are different (implementation) algorithms for a relational algebra
operator
Each with different cost (# disk IOs) and memory requirement

61 / 109

Query Optimization Physical Query Plan

Physical query plan is derived from a logical query plan by:
1. Selecting an order and grouping for operations like joins, unions, and

intersections.
2. Deciding on an algorithm for each operator in the logical query plan.

e.g. For joins: Nested-loop join, sort join or hash join
3. Adding additional operators to the logical query tree such as sorting

and scanning that are not present in the logical plan.
4. Determining if any operators should have their inputs materialized for

efficiency.
Whether we perform cost-based or heuristic optimization, we
eventually must arrive at a physical query tree that can be executed
by the evaluator.

62 / 109

Query Optimization Heuristic versus Cost Optimization

To determine when one physical query plan is better than another, we
must have an estimate of the cost of the plan.
Heuristic optimization is normally used to pick the best logical query
plan.
Cost-based optimization is used to determine the best physical query
plan given a logical query plan.
Note that both can be used in the same query processor (and
typically are). Heuristic optimization is used to pick the best logical
plan which is then optimized by cost-based techniques

63 / 109

Recall: Query Optimization

Relational algebra level (A)
Detailed query plan level

Estimate Costs (B)
without indexes
with indexes

Generate and compare plans (C)

64 / 109

Steps in query optimization

1. We start with an initial logical query plan (obtained by transforming
the parse tree into a relational algebra tree)

2. We transform this initial logical query plan into optimal logical
query plan using Algebraic Laws

3. We choose the best feasible algorithm for each relational
operator in the optimal logical query plan to obtain the
optimal physical query plan

we will learn to find optimal logical query plan

65 / 109

Comparing different logical query plans

Before we can improve a query plan, we must have a measure to let
us tell the difference (in cost) between the different logical
query plans
Measuring the cost of logical query plans

1. The ultimate cost measure is Execution time (#disk IOs
performed) of the query plan
However, Execution time is a measure used for implementation
algorithms

I.e.: the physical query plan
We are comparing different logical query plan

2. A good approximation of the excution time (# disk IOs)
measure is the size (# tuples) of the result produced by the
operations

66 / 109

Which query plan is better?

The answer to the question is determined by:
The size (# tuples) of the intermediate result relations
produced by each logical query plan
Because, the size (# tuples) will determine the number of disk
IO performed by the relational operators (algorithms) further
up in the query tree

We need a method to compute (estimate) the size of the
intermediate results of the relational operators on the
logical query plan

67 / 109

Note

The size (# tuples) of the result set of a relational operator
is not dependent on the implementation algorithm.
The differences between the algorithms are

running time
memory requirement

⇒ The size of the result in the intermediate outputs will
Depend only on the order of the operations in the logical query
plan
Does not depend on algorithm used to compute the result

Thus, # tuples in the intermediate result of the query plan is
a good estimate for the cost of the logical query plan

68 / 109

Steps to find optimal (logical) query plan

1. Use the relational algebra Laws to find least cost logical
query plan without considering the ordering of the join operations
(the query plan has a smaller # tuples in the intermediate results)

Example

π

σp1∧p2

1

R S T

⇒

π

1

σp1

R

σp2

S

T

smaller intermediate results

69 / 109

Steps to find optimal (logical) query plan

2. If there are more than 2 input relations, then, find the ordering of
the join operations that results in the smallest # tuples in the
intermediate results in the join tree

Example (Continue)

π

σp

1

1size?

R S

T

π

σp

1

1size?
smallest # tuples

S T

R

π

σp

1

1size?

R T

S

70 / 109

Steps to find optimal (logical) query plan

Notice that the end result of all the joins are equal

Example (Continue)

π

σp

1

1size?

R S

T

π

σp

1

1size?

S T

R

π

σp

1

1size?

R T

S

The only difference is the intermediate result sets

71 / 109

Estimating cost of query plan

Estimates of cost are essential if the optimizer is to determine which
of the many query plans is likely to execute fastest

Estimating size of results (Operation Cost)
Estimating # of IOs

Note that the query optimizer will very rarely know the exact cost of
a query plan because the only way to know is to execute the query
itself!

Since the cost to execute a query is much greater than the cost to
optimize a query, we cannot execute the query to determine its cost!

It is important to be able to estimate the cost of a query plan without
executing it based on statistics and general formulas.

72 / 109

Estimating result size (Operation Cost)

Statistics/Information about relations and attributes
T(R) = number of tuples in the relation R
S(R) = size (# of bytes) of a tuple of R
B(R) = number of blocks used to hold all tuples of relation R
V(R,A) = number of distinct values for attribute A

Example

R

A B C D

cat 1 10 a

cat 1 20 b

dog 1 30 a

dog 1 40 c

bat 1 50 d

A: 20 bytes String

B: 4 bytes integer

C: 8 bytes date

D: 5 bytes String

T(R) = 5

S(R) = 37 bytes
V(R,A) = 3, V(R,B) = 1
V(R,C) = 5, V(R,D) = 4

73 / 109

Estimating the (size of the) result set of a projection (π)

Calculating the size of a relation after the projection operation is easy
because we can compute it directly
Recall: π does not remove duplicate values
This can be exactly computed
Every tuple changes size by a known amount.
Estimating S = πa(R)

T
(
πa(R)

)
= T(R)

Number of tuples is unchanged

74 / 109

Estimating the (size of the) result set of a projection (π)

Example
R(A,B,C) is a relation with A and B integers of 4 bytes each; C a
string of 100 bytes.
Tuple headers are 12 bytes.
Blocks are 1024 bytes and have headers of 24 bytes.
T(R) = 10,000 and B(R) = 1250.
How many blocks do we need to store U = πA,B(R)?

Answer
T(U) =T(R)=10,000

S(U) =12+4+4=20 bytes

We can hence store (1024−24)
20 = 50 tuples in one block.

∴ B(U)=T (U)
50 = 10,000

50 = 200 blocks
This projection shrinks the relation by a factor slightly more than 6

75 / 109

Result size estimation: R1 × R2

T(R1 × R2) = T(R1) × T(R2)

S(R1 × R2) = S(R1) + S(R2)

76 / 109

Result size estimation: Selection σp(R) with p a predicate

Generally reduce the number of tuples, although the sizes of tuples
remain the same
General formula

T
(
σp(R)

)
= T(R) × selp(R), where selp(R) is the estimated

fraction of tuples in R that satisfy predicate p
i.e., selp(R) is the estimated probability that a tuple in R satisfies p.

How we calculate selp(R) depends on what p is.

77 / 109

Result size estimation: 1. σA=c(R) with c a constant

selA=c(R)= 1
V (R,A)

Intuition:
There are V(R,A) distinct A-values in R.
Assuming that A-values are uniformly distributed, the probability that a
tuple has A-value c is 1

V (R,A)

∴ T
(
σA=c(R)

)
= T (R)

V (R,A) , i.e., original number of tuples divided by
number of different values of A

78 / 109

Result size estimation: 1. σA=c(R) with c a constant

Example
R(A,B,C) is a relation.
T(R) = 10,000

V(R,A) = 50

Estimate T
(
σA=10(R)

)
T

(
σA=10(R)

)
= T (R)

V (R,A) = 10,000
50 = 200

79 / 109

Alternate Assumption

Assumption:
Values in select expression A=constant are uniformly distributed over
possible V(R,A) values.

Alternate Assumption:
Values in select expression A=constant are uniformly distributed over
domain with DOM(R,A) values.

80 / 109

Result size estimation: 1. σA=c(R) with c a constant

Better selectivity estimates are possible if we have more detailed
statistics
A DBMS typically collects histograms that detail the distribution of
values.
A histogram can be of two types:

equi-width histogram: the range of values is divided into
equal-sized subranges.
equi-depth histograms: the sub ranges are chosen in such a way
that the number of tuples within each sub range is equal.

Such histograms are only available for base relations, however, not
for sub-results.

81 / 109

Result size estimation: 1. σA=c(R) with c a constant

If a histogram is available for the attribute A, the number of tuples
can be estimated with more accuracy.
The range in which the value c belongs is first located in the
histogram.
|B|: number of values per bucket (# distinct values appearing in
that range)
#B: number of records in bucket
T

(
σA=c(R)

)
= #B
|B|

82 / 109

Result size estimation: 1. σA=c(R) with c a constant

Example
R(A,B,C) is a relation.
T(R) = 10,000

V(R,A) = 50

Estimate T
(
σA=10(R)

)
The DBMS has collected the following equi-width histogram on A

range [1,10] [11,20] [21,30] [31,40] [41,50]

tuples in range 50 2000 2000 3000 2950

T
(
σA=10(R)

)
=#B
|B| = 50

10 = 5

83 / 109

Result size estimation: 2. σA<c(R) with c a constant

selA<c(R)=1
3

Intuition:
On average, you would think that the value should be T (R)

2 . However,
queries with inequalities tend to return less than half the tuples, so the
rule compensates for this fact.
i.e., Queries involving an inequality tend to retrieve a small fraction of
the possible tuples (usually you ask about something that is true of less
than half the tuples)

Example
R(A,B,C) is a relation.

T(R) = 10,000

T
(
σA<10(R)

)
=T(R)× 1

3 ≈ 3334

84 / 109

Result size estimation: Estimate values in range: σA<c(R)
with c a constant

Example
R(A,B,C) is a relation.
T(R) = 10,000

The DBMS statistics show that the values of the A attribute lie within
the range [8, 57], uniformly distributed.
Question: what would be a reasonable estimate of selA<10(R)?

Answer
We see that 57- 8+1 different values of A are possible
however only records with values A=8 or A=9 satisfy the filter A<10.
Therefore, selA<10(R) = 2

(57−8+1) = 2
50 = 0.04

And hence, T
(
σA<10(R)

)
=T(R) ×selA<10(R)= 400

85 / 109

Result size estimation: 3. σA6=c(R) with c a constant

S=σA6=c(R)
Fact:

σA6=c(R) ∪ σA=c(R) = R
⇔ σA6=c(R) = R - σA=c(R)

Therefore,
selA6=c(R)= V (R,A)−1

V (R,A)

T(S) = T(R) × V (R,A)−1
V (R,A)

86 / 109

Result size estimation: 4. σ¬p(R)

sel¬p(R)= 1 - selp(R)

87 / 109

Result size estimation: 5. σP1∧P2(R)

Simple selection clauses can be connected using AND or OR.
selP1∧P2(R)= selp1(R) × selP2(R)
Assumption: The conditions P1 and P2 are (statistically) independent
Treat σP1∧P2(R) as σP1

(
σP2(R)

)
(Cascade of simple selections)

The order does not matter, treating this as σP2

(
σP1(R)

)
gives the

same results.

Example
R(A,B,C) is a relation. T(R) = 10,000. V(R,A) = 50

Estimate the size of the result set S = σA=10∧B<20(R)

Answer
selA=10(R) = 1

50
selB<20(R) = 1

3
T(S) =selA=10 × selB<20 × T(R) = 1

50 ×
1
3× 10,000 = 66.67

88 / 109

Result size estimation: 6. σP1∨P2(R)

P1 ∨ P2 = ¬(¬P1 ∧ ¬P2)
Treat σP1∨P2(R) as σ¬(¬P1∧¬P2)(R)

selP1∨P2(R)= 1-
(
1-selp1(R)

)
×

(
1-selP2(R)

)
Example

R(A,B,C) is a relation. T(R) = 10,000. V(R,A) = 50

Estimate the size of the result set S = σA=10∨B<20(R)

Answer
selA=10(R) = 1

50
selB<20(R) = 1

3
T(S) =

(
1− (1− 1

50)(1− 1
3)

)
× T(R)

89 / 109

Result size estimation: R 1 S

We will only study estimating the size of natural join.
Other types of joins are equivalent or can be translated into a
cross-product followed by a selection.

Assume the relation schema R(X,Y) and S(Y,Z), we join on Y(
R(X,Y) 1 S(Y,Z)

)
.

Question: Estimate the size of
(
R(X,Y) 1 S(Y,Z)

)
The challenge is we do not know how the set of values of Y in R
relate to the values of Y in S . There are some possibilities:

If the Y attribute values in R(X,Y) and S(Y,Z) are disjoint
T
(
R(X,Y) 1 S(Y,Z)

)
= 0

If Y attribute is a key in S and a foreign key of R, so each tuple of R
joins with exactly one tuple of S

T
(
R(X,Y) 1 S(Y,Z)

)
= T(R)

If almost every tuple in R and S has the same Y attribute value
T
(
R(X,Y) 1 S(Y,Z)

)
= T(R) × T(S)

Range of T(R 1 S): 0 ≤ T(R 1 S) ≤ T(R) × T(S)

90 / 109

Result size estimation: R 1 S: Simplifying Assumptions

Without any assumptions on the joining attribute values, it is not
possible to provide an estimation on the result T(R 1 S)
Assumptions that helps use find an estimate of R(X,Y) 1 S(Y,Z)

1. The containment of value sets assumption
An attribute Y in a relation R(. . .,Y) always takes on a prefix of a
fixed list of values: y1 y2 y3 y4 . . .

Example
Relations:

R(. . ., Y)

S(. . ., Y)

U(. . ., Y)

Attr values of Y in R can be one of: y1 y2 yR

Attr values of Y in S can be one of: y1 y2 yS

Attr values of Y in U can be one of: y1 y2 . . . yU

Containment of value sets assumption will help to estimate the size of T(R 1 S)

91 / 109

Result size estimation: R 1 S: Simplifying Assumptions

Assumptions that helps use find an estimate of R(X,Y) 1 S(Y,Z)
2. The preservation of value sets assumption

The join operation R(X,Y) 1 S(Y,Z) will preserve all the possible
values of the non-joining attributes
In other words

The attribute values taken on by X in R(X,Y) 1 S(Y,Z) and R(X,Y)
are same
The attribute values taken on by Z in R(X,Y) 1 S(Y,Z) and S(Y,Z)
are same
preservation of value sets assumption will help to estimate the
size of T(R 1 S 1 U)

92 / 109

Result size estimation: R 1 S when joining on 1 attribute

We can estimate the size of R(X,Y) 1 S(Y,Z) as follows:
Case 1. V(R,Y)≥V(S,Y)

The tuples in relations R and S take on the following attribute values
for the Y attribute:

Attr values of Y in R: y1 y2 yV (R,Y)
Attr values of Y in S: y1 y2 . . . yV (S,Y)

Then every tuple t of S has a chance 1
V (R,Y) of joining with a given

tuple of R.
There are T(R) tuples in R, therefore, one tuple t ∈ S will produce

T (R)
V (R,Y) number of matches
There are T(S) tuples in S, then estimated size of R 1 S is T (R)×T (S)

V (R,Y)

Case 2. V(S,Y)≥V(R,Y)
estimated size of R 1 S is T (R)×T (S)

V (S,Y)

93 / 109

Result size estimation: R 1 S when joining on 1 attribute

In general, we divide by whichever of V(R,Y) and V(S,Y) is larger.
That is:
T(R 1 S) = T (R)×T (S)

max
(

V (R,Y),V (S,Y)
)

94 / 109

Result size estimation: R 1 S when joining on 1 attribute

Example

R(a,b) S(b,c) U(c,d)

T(R)=1000 T(S)=2000 T(U)=5000
V(R,b)=20 V(S,b)=50

V(S,c)=100 V(U,c)=500

Estimate the size of R 1 S 1 U?

95 / 109

Result size estimation: R 1 S when joining on 1 attribute

Method 1: (ordering 1)
R(a,b) 1 S(b,c) 1 U(c,d) =

(
R(a,b) 1 S(b,c)

)
1 U(c,d)

T
(
R(a,b) 1 S(b,c)

)
= T (R)×T (S)

max
(

V (R,b),V (S,b)
) = 1000×2000

max{20,50} = 40, 000

The estimate of the size the join
(
R(a,b) 1 S(b,c)

)
1 U(c,d) is

= T
(

R(a,b)1S(b,c)
)
×T (U)

max
(

V
(

R(a,b)1S(b,c),c
)

,V (U,c)
)

From the preservation of value sets assumption, we have:
V

(
R(a, b) 1 S(b, c), c

)
= V(S,c), where V(S,c)=100 according

to data

∴ T(R1S1U)=
T

(
R(a,b)1S(b,c)

)
×T (U)

max
(

V
(

R(a,b)1S(b,c),c
)

,V (U,c)
) = 40,000×5,000

max(100,500) =400,000

96 / 109

Result size estimation: R 1 S when joining on 1 attribute

Method 2: (ordering 2)
R(a,b) 1 S(b,c) 1 U(c,d) = R(a,b) 1

(
S(b,c) 1 U(c,d)

)
T

(
S(b,c) 1 U(c,d)

)
= T (S)×T (U)

max
(

V (S,c),V (U,c)
) = 2000×5000

max{100,500} = 20, 000

The estimate of the size the join R(a,b) 1
(

S(b,c) 1 U(c,d)
)

is

= T (R)×T
(

S(b,c)1U(c,d)
)

max
(

V (R,b),V
(

S(b,c)1U(c,d),b
))

From the preservation of value sets assumption, we have:
V

(
S(b, c) 1 U(c, d), b

)
= V(S,b), where V(S,b)=50 according

to data

∴ T(R1S1U)=
T (R)×T

(
S(b,c)1U(c,d)

)
max

(
V (R,b),V

(
S(b,c)1U(c,d),b

))= 1,000×20,000
max(20,50) =400,000

97 / 109

Result size estimation: R 1 S when joining on 2 attributes

Assume the relation schema R(X,Y1,Y2) and S(Y1,Y2,Z), i.e., we
join on Y1 and Y2.
General formula:

T
(
R(X,Y1,Y2) 1 S(Y1,Y2,Z)

)
= T (R)×T (S)

max
(

V (R,Y1),V (S,Y1)
)

max
(

V (R,Y2),V (S,Y2)
)

98 / 109

Result size estimation: R 1 S when joining on 2 attributes

Example

R(a,b) S(b,c) U(c,d)

T(R)=1000 T(S)=2000 T(U)=5000
V(R,b)=20 V(S,b)=50

V(S,c)=100 V(U,c)=500

Estimate the size of R 1 S 1 U?
Computed using this ordering:
R(a,b) 1 S(b,c) 1 U(c,d) =

(
R(a,b) 1 U(c,d)

)
1 S(b,c)

A join operation with no common attributes will degenerates into a
Cartesian product

Example: R(a,b) 1 U(c,d) ⇒ R(a,b) × U(c,d)

99 / 109

Result size estimation: R 1 S when joining on 2 attributes

Method 3: (ordering 3)
R(a,b) 1 S(b,c) 1 U(c,d) =

(
R(a,b) 1 U(c,d)

)
1 S(b,c)

T
(
R(a,b)1U(c,d)

)
=T

(
R(a,b)×U(c,d)

)
=1000 × 5000=5,000,000

The estimate of the size the join
(
R(a,b) 1 U(c,d)

)
1 S(b,c) is

= T
(

R(a,b)1U(c,d)
)
×T (S)

max
(

V
(

R(a,b)1U(c,d),b
)

,V (S,b)
)
× max

(
V

(
R(a,b)1U(c,d),c

)
,V (S,c)

)
From the preservation of value sets assumption, we have:

V
(
R(a, b) 1 U(c, d), b

)
= V(R,b), V(R,b)=20 according to data

V
(
R(a, b) 1 U(c, d), c

)
= V(U,c), V(U,c)=500 according to data

∴ T(R1S1U) = 5,000,000×2,000
max(20,50)×max(500,100)=400,000

The 2 assumptions (containment and preservation of value sets)
allows us to re-order the join-order without affecting the size of the
result set estimation

100 / 109

Estimating Join Sizes: Estimating V(R,a)

The database will keep statistics on the number of distinct values for
each attribute a in each relation R , V(R,a) .
When a sequence of operations is applied, it is necessary to estimate
V(R,a) on the intermediate relations.
For our purposes, there will be three common cases:

a is the primary key of R then V(R,a) = T(R)
⇒ The number of distinct values is the same as the # tuples in R .
a is a foreign key of R to another relation S then V(R,a) = T(S)
⇒ In the worst case, the number of distinct values of a cannot be
larger than the number of tuples of S since a is a foreign key to the
primary key of S .
If a selection occurs on relation R before a join, then V(R,a) after the
selection is the same as V(R,a) before selection.
⇒ This is often strange since V(R,a) may be greater than # of tuples
in intermediate result! V(R,a) 6= # of tuples in result.

101 / 109

Result size estimation: R ∪ S

Bag-based: T(R)+T(S)

Set-based:
Range of the result set of R ∪ S:

max
(
T(R),T(S)

)
≤ T(R ∪ S) ≤ T(R) + T(S)

max
(
T(R),T(S)

)
: R ⊆ S or S ⊆ R

T(R) + T(S): R ∩ S = ∅
Recommended estimate for R ∪ S

T(R ∪ S) = max
(
T(R),T(S)

)
+ 1

2 × min
(
T(R),T(S)

)
i.e.: maximum + 1

2 × (smaller size)

102 / 109

Result size estimation: R ∩ S

Range of the result set of R ∩ S
0 ≤ T(R ∩ S) ≤ min

(
T(R),T(S)

)
0: R ∩ S = ∅
min

(
T(R),T(S)

)
: R ⊆ S or S ⊆ R

Recommended estimate for R ∩ S
T(R ∩ S) = 1

2 × min
(
T(R),T(S)

)
i.e.: the average of the min and max

103 / 109

Result size estimation: R−S

Range of the result set of R−S
max

(
0,T(R)−T(S)

)
≤ T(R−S) ≤ T(R)

max
(
0,T(R)−T(S)

)
: R ⊆ S or S ⊆ R

T(R): R ∩ S = ∅
Recommended estimate for R−S

T(R−S) = T(R) - 1
2 × T(S)

(Probabilistically speaking: 50-50 chance that a tuple in S is also in R)
Note: if T(R) - 1

2 × T(S) ≤ 0, then T(R−S) = 0 (estimate)

104 / 109

Result size estimation: δ(R,A)

Range of the result set of δ(R,A)
1 ≤ T

(
δ(R,A)

)
≤ T(R)

1: all tuples have same attribute value
T(R): all tuples have different attribute values

Recommended estimate for δ(R,A)
If the database maintains statistics on the attribute values:

T
(
δ(R,A)

)
= V(R,A)

If no statistics available, then we use this estimate:
T
(
δ(R,A)

)
= 1

2 × T(R)

Recommended estimate for δ(R,A,B)
If the database maintains statistics on the attribute values:

T
(
δ(R,A,B)

)
= V(R,A) × V(R,B)

If no statistics available, then we use this estimate:
T
(
δ(R,A,B)

)
= 1

4 × T(R)

105 / 109

Result size estimation: γL(R)

Range of the result set of γL(R)
1 ≤ T

(
γL(R)

)
) ≤ T(R)

1: all tuples have same attribute value
T(R): all tuples have different attribute values for
attribute L

Recommended estimate for T
(
γL(R)

)
)

If the database maintains statistics on the attribute values:
T
(
γL(R)

)
) = V(R,L)

If no statistics available, then we use this estimate:
T
(
γL(R)

)
) = 1

2
n(L) × T(R), where n(L) = number of attributes in

the attribute list L

106 / 109

Summary

As should be clear by now, result size estimation is not an exact art
Don’t forget: Statistics must be kept up to date. (cost?)

107 / 109

Note: Using Size Estimates in Heuristic Optimization

Size estimates can also be used during heuristic optimization.
In this case, we are not deciding on a physical plan, but rather
determining if a given logical transformation will make sense.
By using statistics, we can estimate intermediate relation sizes
(independent of the physical operator chosen), and thus determine if
the logical transformation is useful.

108 / 109

Outline

Estimating cost of query plan
Estimating size of results
Estimating # of IOs (next)
Operator Implementations

Generate and compare plans

109 / 109

	Class Information
	Course Overview

