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CS 525 Notes 1 - Introduction 1

CS 525: 

Advanced Database 

Organization

01: Introduction
Boris Glavic

Slides: adapted from a course taught by 
Hector Garcia-Molina, Stanford InfoLab

Advanced Database 

Organization?

• =Database Implementation

• =How to implement a database system

• … and have fun doing it ;-)
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Isn’t Implementing a 
Database System Simple?
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Relations Statements Results
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Introducing the

Database Management System

• The latest from Megatron Labs
• Incorporates latest relational technology

• UNIX compatible
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Megatron 3000 

Implementation Details

First sign non-disclosure agreement
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Megatron 3000 

Implementation Details

• Relations stored in files (ASCII)

e.g., relation R is in /usr/db/R

Smith # 123 # CS

Jones # 522 # EE
.
.
.
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Megatron 3000 

Implementation Details

• Directory file (ASCII) in /usr/db/directory

R1 # A # INT # B # STR …

R2 # C # STR # A # INT …
.
.
.
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Megatron 3000

Sample Sessions

% MEGATRON3000

Welcome to MEGATRON 3000!

&

& quit

%

.

.

.
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Megatron 3000

Sample Sessions

& select *

from R #

Relation R

A B C

SMITH  123   CS

&
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Megatron 3000

Sample Sessions

& select A,B

from R,S

where R.A = S.A and S.C > 100 #

A B

123  CAR

522  CAT

&

CS 525 Notes 1 - Introduction 11

Megatron 3000

Sample Sessions

& select *

from R | LPR #

&

Result sent to LPR (printer).
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Megatron 3000

Sample Sessions

& select *

from R

where R.A < 100 | T #

&

New relation T created.
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Megatron 3000

• To execute “select * from R where condition”:

(1) Read dictionary to get R attributes

(2) Read R file, for each line:

(a) Check condition

(b) If OK, display
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Megatron 3000

• To execute “select * from R
where condition | T”:

(1) Process select as before

(2) Write results to new file T

(3) Append new line to dictionary

CS 525 Notes 1 - Introduction 15

Megatron 3000

• To execute “select A,B from R,S where condition”:

(1) Read dictionary to get R,S attributes

(2) Read R file, for each line:

(a) Read S file, for each line:

(i) Create join tuple

(ii) Check condition

(iii) Display if OK
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What’s wrong with the 
Megatron 3000 DBMS?
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What’s wrong with the 
Megatron 3000 DBMS?

• Tuple layout on disk
e.g., - Change string from ‘Cat’ to ‘Cats’ and we 

have to rewrite file

- ASCII storage is expensive

- Deletions are expensive
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What’s wrong with the 
Megatron 3000 DBMS?

• Search expensive; no indexes
e.g., - Cannot find tuple with given key quickly

- Always have to read full relation
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What’s wrong with the 
Megatron 3000 DBMS?

• Brute force query processing
e.g., select *

from R,S

where R.A = S.A and S.B > 1000

- Do select first?

- More efficient join?
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What’s wrong with the 
Megatron 3000 DBMS?

• No buffer manager
e.g., Need caching
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What’s wrong with the 
Megatron 3000 DBMS?

• No concurrency control
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What’s wrong with the 
Megatron 3000 DBMS?

• No reliability
e.g., - Can lose data

- Can leave operations half done
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What’s wrong with the 
Megatron 3000 DBMS?

• No security
e.g., - File system insecure

- File system security is coarse
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What’s wrong with the 
Megatron 3000 DBMS?

• No application program interface (API)
e.g., How can a payroll program get at the data?
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What’s wrong with the 
Megatron 3000 DBMS?

• Cannot interact with other DBMSs.
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What’s wrong with the 
Megatron 3000 DBMS?

• Poor dictionary facilities
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What’s wrong with the 
Megatron 3000 DBMS?

• No GUI
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What’s wrong with the 
Megatron 3000 DBMS?

• Lousy salesman!!
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Course Overview

• File & System Structure
Records in blocks, dictionary, buffer management,…

• Indexing & Hashing
B-Trees, hashing,…

• Query Processing
Query costs, join strategies,…

• Crash Recovery
Failures, stable storage,…
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Course Overview

• Concurrency Control
Correctness, locks,…

• Transaction Processing
Logs, deadlocks,…

• Security & Integrity
Authorization, encryption,…

• Advanced Topics
Distribution, More Fancy Optimizations, …
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System Structure

Buffer Manager

Query Parser User

User Transaction Transaction Manager

Strategy Selector

Recovery ManagerConcurrency Control

File Manager LogLock Table M.M. Buffer

Statistical Data
Indexes

User Data System Data
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Some Terms

• Database system

• Transaction processing system

• File access system

• Information retrieval system
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Course Information

• Webpage: http://www.cs.iit.edu/~cs525/

• Instructor: Boris Glavic
– http://www.cs.iit.edu/~glavic/

– DBGroup: http://www.cs.iit.edu/~dbgroup/

– Office Hours: Mondays, 12pm-1pm

– Office: Stuart Building, Room 226 C

• TA: TBA

• Time: Mon + Wed 1:50pm – 3:05pm

Google Group

• https://groups.google.com/forum/#!forum/cs525-2017-spring-group
• Mailing-list for announcements

• Discussion forum

– Student - Instructor/TA

– Student – Student

• ->please join the group to keep up to date
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Workload and Grading

• Schedule and Important Dates

– On webpage & updated there

• Programming Assignments (50%)
– 4 Assignments

– Groups of 3 students

– Plagiarism -> 0 points and administrative action

• Quizzes (10%)

• Mid Term (20%) and Final Exam (20%)

CS 525 Notes 1 - Introduction 35

Textbooks

• Elmasri and Navathe , Fundamentals of Database Systems, 
6th Edition , Addison-Wesley , 2003 

• Garcia-Molina, Ullman, and Widom, Database Systems: The 
Complete Book, 2nd Edition, Prentice Hall, 2008

• Ramakrishnan and Gehrke , Database Management 
Systems, 3nd Edition , McGraw-Hill , 2002

• Silberschatz, Korth, and Sudarshan , Database System 
Concepts, 6th Edition , McGraw Hill , 2010

CS 525 Notes 1 - Introduction 36
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Programming Assignments

• 4 assignments one on-top of the other

• Optional 5th assignment for extra credit

• Code has to compile & run on server account

– Email-ID@fourier.cs.iit.edu

– Linux machine

– SSH with X-forwarding

• Source code managed in git repository on Bitbucket.org

– Handing in assignments = submit (push) to repository

– One repository per student

– You should have gotten an invitation (if not, contact me/TA)

– Git tutorials linked on course webpage!
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Next:

• Hardware
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CS 525: Advanced Database 
Organization 

02: Hardware 

Boris Glavic 

 
Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  
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Outline 

•  Hardware: Disks 

•  Access Times 

•  Example - Megatron 747 

•  Optimizations 

•  Other Topics: 

–   Storage costs 

–   Using secondary storage 

–   Disk failures 
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Hardware 

DBMS 

Data Storage 

CS 525 Notes 2 - Hardware 4 

P 

M C 

Typical 
Computer 

Secondary 
Storage 

... ... 
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Processor 
 Fast, slow, reduced instruction set, 
  with cache, pipelined… 

 Speed: 100 →  500  →  1000 MIPS 

Memory 
 Fast, slow, non-volatile, read-only,… 
 Access time: 10-6  →   10-9  sec. 

    1 µs  →   1 ns 
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Secondary storage 
 Many flavors: 
  - Disk:  Floppy (hard, soft) 
    Removable Packs 
    Winchester 
    Ram disks 

    Optical, CD-ROM… 
    Arrays 
  - Tape  Reel, cartridge 
    Robots 
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Focus on: “Typical Disk” 

Terms:  Platter, Head, Actuator 
  Cylinder, Track 
  Sector (physical), 
  Block (logical), Gap 

…
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Top View 
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“Typical” Numbers 
 Diameter:  1 inch → 15 inches 
 Cylinders:  100  →  2000 
 Surfaces:  1 (CDs) → 
 (Tracks/cyl)    2 (floppies) → 30 
 Sector Size:  512B →  50K 

 Capacity:  360 KB (old floppy) 
    → 1 TB (I use) 
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Disk Access Time  

block x 
in memory 

? 

I want 
block X 
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Time =  Seek Time + 
  Rotational Delay + 
  Transfer Time + 
  Other 
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Seek Time 

3 or 5x 

x 

1 N 

Cylinders Traveled 

Time 
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Average Random Seek Time 
 

    ∑    ∑   SEEKTIME (i → j) 

S = 

           N(N-1) 

 N  N 

i=1 j=1 
j≠i 
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Average Random Seek Time 
 

    ∑    ∑   SEEKTIME (i → j) 

S = 

           N(N-1) 

 N  N 

i=1 j=1 
j≠i 

“Typical” S: 10 ms → 40 ms 
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Rotational Delay 

Head Here 

Block I Want 
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Average Rotational Delay 

R = 1/2 revolution 
 
“typical” R = 8.33 ms (3600 RPM) 
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Transfer Rate: t 

•  “typical” t:  10’s  →  100’s  MB/second 

•  transfer time:  block size 

     t 
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Other Delays 

•  CPU time to issue I/O 

•  Contention for controller 

•  Contention for bus, memory 
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Other Delays 

•  CPU time to issue I/O 

•  Contention for controller 

•  Contention for bus, memory 

“Typical” Value: 0 

Other Delays (now and near future) 

•  Increasing amount of parallelism 

•  Contention can become a problem 

•  -> need rethink approach to scale 
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•  So far: Random Block Access 

•  What about: Reading “Next” block? 
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If we do things right  (e.g., Double Buffer, 

          Stagger 
Blocks…) 

Time to get   =  Block Size  + Negligible 

    block        t 

 

      - skip gap 

      - switch track 

      - once in a while, 

          next cylinder 
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Rule of   Random I/O: Expensive 
Thumb         Sequential I/O: Much less 

•  Ex:  1 KB Block 
» Random I/O:    ∼  20 ms. 

» Sequential I/O: ∼ 1 ms. 
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Cost for Writing similar to Reading 

…. unless we want to verify! 
    need to add (full) rotation + Block size 

          t 
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•   To Modify a Block? 
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•   To Modify a Block? 

To Modify Block: 

 (a) Read Block 

 (b) Modify in Memory 

 (c) Write Block 

 [(d) Verify?] 
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Block Address: 

•  Physical Device 

•  Cylinder # 

•  Surface # 

•  Sector 
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Complication: Bad Blocks 

•  Messy to handle 
•  May map via software to 

integer sequence 
1 
2 
.   Map     Actual Block Addresses 

. 
m 
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•  3.5 in diameter 

•  3600 RPM 

•  1 surface 

•  16 MB usable capacity (16 X 220) 

•  128 cylinders 

•  seek time: average = 25 ms. 

      adjacent cyl = 5 ms. 

An Example        Megatron 747 Disk (old) 
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•  1 KB blocks = sectors 

•  10% overhead between blocks 

•  capacity = 16 MB = (220)16 = 224 

•  # cylinders = 128 = 27 

•  bytes/cyl = 224/27 = 217 = 128 KB 

•  blocks/cyl = 128 KB / 1 KB = 128 
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3600 RPM     60 revolutions / sec 
  1 rev. = 16.66 msec.  

One track: 
... 

CS 525 Notes 2 - Hardware 32 

3600 RPM     60 revolutions / sec 
  1 rev. = 16.66 msec.  

One track: 
... 

Time over useful data:(16.66)(0.9)=14.99 ms. 
Time over gaps: (16.66)(0.1) = 1.66 ms. 
Transfer time 1 block = 14.99/128=0.117 ms. 

Trans. time 1 block+gap=16.66/128=0.13ms. 
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Burst Bandwith 
  1 KB in 0.117 ms. 

BB = 1/0.117 = 8.54 KB/ms. 
 
or 

 
BB =8.54KB/ms x 1000 ms/1sec x 1MB/1024KB  

     = 8540/1024 = 8.33 MB/sec 
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Sustained bandwith (over track) 

 128 KB in 16.66 ms. 

SB = 128/16.66 = 7.68 KB/ms 
 
or  

 
SB = 7.68 x 1000/1024 = 7.50 MB/sec. 
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T1 = Time to read one random block 

T1 = seek + rotational delay + TT  

   = 25 + (16.66/2) + .117 = 33.45 ms. 
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Suppose OS deals with 4 KB blocks 

T4 = 25 + (16.66/2) + (.117) x 1  

            + (.130) X 3 = 33.83 ms 

[Compare to T1 = 33.45 ms] 

... 1 2 3 4 

1 block 
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TT = Time to read a full track  

  (start at any block) 

TT = 25 + (0.130/2) + 16.66* = 41.73 ms 

 

        to get to first block 

 

* Actually, a bit less; do not have to read last gap. 
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The NEW Megatron 747 

•  8 Surfaces, 3.5 Inch diameter 

–   outer 1 inch used 

•  213 = 8192 Tracks/surface 

•  256   Sectors/track 

•  29  = 512 Bytes/sector 
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•  8 GB Disk 
•  If all tracks have 256 sectors 

•  Outermost density: 100,000 bits/inch 

•  Inner density: 250,000 bits/inch 

1

. 
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•  Outer third of tracks: 320 sectors 

•  Middle third of tracks: 256 

•  Inner third of tracks: 192 

•  Density: 114,000  →   182,000 bits/inch 
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Timing for new Megatron 747  (Ex 2.3) 

•  Time to read 4096-byte block: 

– MIN: 0.5 ms 

– MAX: 33.5 ms 

– AVE: 14.8 ms 
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Outline 

•  Hardware: Disks 

•  Access Times 

•  Example: Megatron 747 

•  Optimizations 

•  Other Topics 

– Storage Costs 

– Using Secondary Storage 

– Disk Failures 

 

here 
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Optimizations (in controller or O.S.) 

•  Disk Scheduling Algorithms 
–  e.g., elevator algorithm 

•  Track (or larger) Buffer 

•  Pre-fetch 

•  Arrays 

•  Mirrored Disks 

•  On Disk Cache 
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Double Buffering 

Problem: Have a File 
»  Sequence of Blocks B1, B2  

      

  Have a Program 

»  Process B1 

»  Process B2 

»  Process B3 

     ..
. 
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Single Buffer Solution 

(1) Read B1 →   Buffer 

(2) Process Data in Buffer 

(3) Read B2 → Buffer 

(4) Process Data in Buffer ... 
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Say  P = time to process/block 

  R = time to read in 1 block 

  n = # blocks 

 

Single buffer time = n(P+R) 
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Double Buffering 

Memory: 

 

 

 

Disk:  A B C D G E F 

process 
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Double Buffering 

Memory: 

 

 

 

Disk:  A B C D G E F 

B 

done 

process 

A 
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Double Buffering 

Memory: 

 

 

 

Disk:  A B C D G E F 

A C 

process 

B 

done 
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Double Buffering 

Memory: 

 

 

 

Disk:  A B C D G E F 

A B 

done 

process 

A C 

process 

B 

done 
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Say P ≥ R  

What is processing time? 

P = Processing time/block 
R = IO time/block 
n = # blocks 
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Say P ≥ R  

What is processing time? 

P = Processing time/block 
R = IO time/block 
n = # blocks 

•  Double buffering time   = R + nP 

•  Single buffering time   = n(R+P) 
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Disk Arrays 

•  RAIDs (various flavors) 

•  Block Striping 

•  Mirrored 

logically one disk 
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On Disk Cache 

P 

M C ... ... 

cache 

cache 
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Block Size Selection? 

•  Big Block  →  Amortize I/O Cost, Less 
Management Overhead 

•  Big Block  ⇒  Read in more useless stuff! 

     and takes longer to read 

Unfortunately... 
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Trend 

•  As memory prices drop,  

 blocks get bigger ... 

Trend 
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Storage Cost 

10-9 10-6 10-3 10-0 103 
access time (sec) 

1015 

1013 

1011 

109 

107 

105 

103 
cache 

electronic 

main 

electronic 

secondary 

magnetic 

optical 

disks 
online 

tape 

nearline 

tape & 

optical 

disks 

offline 

tape 

ty
p
ic

al
 c

ap
ac

it
y
 (

b
y
te

s)
 

from Gray & Reuter 
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Storage Cost 

10-9 10-6 10-3 10-0 103 
access time (sec) 

104 

102 

100 

10-2 

10-4 

cache 

electronic 

main 
electronic 

secondary magnetic 

optical 

disks 

online 

tape 

nearline 

tape & 

optical 

disks 
offline 

tape 

d
o
ll

ar
s/

M
B

 
from Gray & Reuter 
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Using secondary storage effectively 

•  Example: Sorting data on disk 

•  Conclusion:  

–  I/O costs dominate 

– Design algorithms to reduce I/O 
 

•  Also: How big should blocks be? 
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Five Minute Rule 

•  THE  5  MINUTE  RULE  FOR  TRADING  
MEMORY FOR  DISC  ACCESSES 
Jim Gray & Franco Putzolu 

May 1985 

•  The Five Minute Rule, Ten Years Later 
Goetz Graefe & Jim Gray 

December 1997 
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Five Minute Rule 

•  Say a page is accessed every X seconds 

•  CD = cost if we keep that page on disk 

– $D = cost of disk unit 

–  I = numbers IOs that unit can perform per 

second 

–  In X seconds, unit can do XI IOs 

– So   CD = $D / XI 
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Five Minute Rule 

•  Say a page is accessed every X seconds 

•  CM = cost if we keep that page on RAM 

– $M = cost of 1 MB of RAM 

– P = numbers of pages in 1 MB RAM 

– So   CM = $M / P 
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Five Minute Rule 

•  Say a page is accessed every X seconds 

•  If CD is smaller than CM, 

– keep page on disk 

– else keep in memory 

•  Break even point when CD = CM, or 
            $D  P 
             I   $M X = 
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Using ‘97 Numbers 

•  P = 128 pages/MB  (8KB pages) 

•  I = 64 accesses/sec/disk 

•  $D = 2000 dollars/disk (9GB + controller) 

•  $M = 15 dollars/MB of DRAM 

•  X = 266 seconds (about 5 minutes) 
(did not change much from 85 to 97) 
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Disk Failures 

•  Partial  →   Total 

•  Intermittent   →   Permanent 
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Coping with Disk Failures 

•  Detection 

– e.g. Checksum 

 

•  Correction 

    ⇒ Redundancy 
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At what level do we cope? 

•  Single Disk 

– e.g., Error Correcting Codes 

•  Disk Array 

 

Logical Physical 
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     Operating System 
     e.g.,  Stable Storage 

Logical Block   Copy A    Copy B 
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 Database System 

•   e.g., 

 

 

 

      Log 

Current DB    Last week’s DB 
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Summary 

•  Secondary storage, mainly disks 

•  I/O times + formulas 

– Sequential vs. random 

•  I/Os should be avoided, 

   especially random ones….. 

•  OS optimizations 

•  Disk errors 

 

Summary 
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Outline 

•  Hardware: Disks 

•  Access Times 

•  Example: Megatron 747 

•  Optimizations 

•  Other Topics 

– Storage Costs 

– Using Secondary Storage 

– Disk Failures 

 here 

Outlook - Hardware 

•  Disk Access is the main limiting factor 

•  However, to implement fast DBMS 
–  need to understand other parts of the hardware  

•  Memory hierarchy 

•  CPU architecture: pipelining, vector instructions, OOE, … 

•  SSD storage 

–  need to understand how OS manages hardware 

•  File access, VM, Buffering, … 

CS 525 Notes 2 - Hardware 72 
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Memory Hierarchy 

CPU Register 
( < 1KB, 1 

cycle)  

L1 Cache ( 10 
KB’s, few cycles) 

L2 Cache (e.g., 512 KB, 
2-10 x L1) 

L3 Cache (MB) 

Main Memory (GB, 100’s cycles) 
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Memory Hierarchy 

•  Compare: Disk vs. Main Memory 

•  Reduce accesses to main memory   

•  Cache conscious algorithms 

CS 525 Notes 2 - Hardware 74 

Increasing Amount of 
Parallelism 

•  Contention on, e.g.,  Memory 

•  NUMA 

•  Algorithmic Challenges 

– How to parallelize algorithms? 

– Sometime: Completely different approach 

required 

–  -> Rewrite large parts of DBMS 

CS 525 Notes 2 - Hardware 75 

New Trend: 
Software/Hardware Co-design 

•  Actually, revived trend: database 
machines (80’s) 

•  New goals: power consumption 

•  Design specific hardware and write 
special software for it 

•  E.g., Oracle Exadata, Oracle Labs 

CS 525 Notes 2 - Hardware 76 
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CS 525: Advanced Database 

Organization
03: Disk Organization

Boris Glavic

Slides: adapted from a course taught by 
Hector Garcia-Molina, Stanford InfoLab
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• How to lay out data on disk

• How to move it to/from memory

Topics for today

CS 525 Notes 3 3

What are the data items we want to store?

• a salary

• a name

• a date

• a picture

CS 525 Notes 3 4

What are the data items we want to store?

• a salary

• a name

• a date

• a picture

What we have available: Bytes

8

bits

CS 525 Notes 3 5

To represent:

• Integer (short): 2 bytes

e.g., 35 is 

00000000 00100011

• Real, floating point
n bits for mantissa, m for exponent….

Endian! Could as well be

0000000000100011

CS 525 Notes 3 6

• Characters

® various coding schemes suggested,

most popular is ASCII (1 byte encoding)

To represent:

Example:

A:    1000001
a:     1100001

5:     0110101
LF:   0001010

http://www-db.stanford.edu/~hector/cs245/notes.htm
http://infolab.stanford.edu/people/hector.html
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• Boolean

e.g., TRUE

FALSE

1111 1111

0000 0000

To represent:

• Application specific
e.g., enumeration

RED ® 1     GREEN ® 3
BLUE ® 2    YELLOW ® 4  …
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• Boolean

e.g., TRUE

FALSE

1111 1111

0000 0000

To represent:

• Application specific
e.g.,  RED ® 1 GREEN ® 3

BLUE ® 2    YELLOW ® 4  …

Can we use less than 1 byte/code?

Yes, but only if desperate...

CS 525 Notes 3 9

• Dates

e.g.:  - Integer, # days since Jan 1, 1900

- 8 characters, YYYYMMDD

- 7 characters, YYYYDDD

(not YYMMDD! Why?)

• Time

e.g.   - Integer, seconds since midnight

- characters, HHMMSSFF

To represent:

CS 525 Notes 3 10

• String of characters

– Null terminated

e.g.,

– Length given

e.g.,

- Fixed length

c ta

c ta3

To represent:

CS 525 Notes 3 11

• Bag of bits

Length Bits

To represent:

CS 525 Notes 3 12

Key Point

• Fixed length items

• Variable length items
- usually length given at beginning
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• Type of an item:  Tells us how to 

interpret

(plus size if fixed)

Also

CS 525 Notes 3 14

Data Items

Records

Blocks

Files

Memory

Overview

CS 525 Notes 3 15

Record - Collection of related data

items (called FIELDS)

E.g.: Employee record:

name field,

salary field,

date-of-hire field, ...

CS 525 Notes 3 16

Types of records:

• Main choices:

– FIXED vs VARIABLE FORMAT

– FIXED vs VARIABLE LENGTH

CS 525 Notes 3 17

A SCHEMA (not record) contains

following information

- # fields

- type of each field

- order in record

- meaning of each field

Fixed format

CS 525 Notes 3 18

Example: fixed format and length

Employee record

(1) E#, 2 byte integer

(2) E.name, 10 char. Schema

(3) Dept, 2 byte code

55 s m i  t   h 02

83 j o n  e  s 01

Records
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• Record itself contains format

Self Describing

Variable format

CS 525 Notes 3 20

Example: variable format and length

4I52 4S DROF46

Field name codes could also be strings, i.e. TAGS
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Variable format useful for:

• sparse records

• repeating fields

• evolving formats

But may waste space...

Additional indirection…

CS 525 Notes 3 22

• EXAMPLE: var format record with

repeating fields

Employee  ® one or more  ® children

3 E_name: Fred Child: Sally Child: Tom

CS 525 Notes 3 23

Note: Repeating fields does not imply

- variable format, nor

- variable size

John Sailing Chess --

CS 525 Notes 3 24

Note: Repeating fields does not imply

- variable format, nor

- variable size

John Sailing Chess --

• Key is to allocate maximum number of

repeating fields (if not used  ® null)
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Many variants between

fixed - variable format:

Example: Include record type in record

record type  record length

tells me what

to expect

(i.e. points to schema)

5 27 . . . . 

CS 525 Notes 3 26

Record header - data at beginning

that describes record

May contain:

- record type

- record length

- time stamp

- null-value bitmap

- other stuff ...

CS 525 Notes 3 27

Other interesting issues:

• Compression

– within record - e.g. code selection

– collection of records - e.g. find common 

patterns

• Encryption

• Splitting of large records

– E.g., image field, store pointer

Record Header – null-map

• SQL: NULL is special value for every 
data type

– Reserve one value for each data type as 
NULL?

• Easier solution

– Record header has a bitmap to store 

whether field is NULL

– Only store non-NULL fields in record

CS 525 Notes 3 28

Separate Storage of Large 

Values
• Store fields with large values separately

– E.g., image or binary document

– Records have pointers to large field 

content

• Rationale

– Large fields mostly not used in search 
conditions

– Benefit from smaller records

CS 525 Notes 3 29 CS 525 Notes 3 30

Next: placing records into blocks

blocks ...

a file
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Next: placing records into blocks

blocks ...

a file

assume fixed
length blocks

assume a single file (for now)

CS 525 Notes 3 32

(1) separating records

(2) spanned vs. unspanned

(3) sequencing

(4) indirection

Options for storing records in blocks:

CS 525 Notes 3 33

Block

(a) no need to separate - fixed size recs.

(b) special marker

(c) give record lengths (or offsets)

- within each record

- in block header

(1) Separating records

R2R1 R3

CS 525 Notes 3 34

• Unspanned: records must be within one 
block

block 1 block 2

...

• Spanned
block 1 block 2

...

(2) Spanned vs. Unspanned

R1 R2

R1

R3 R4 R5

R2
R3

(a)

R3

(b)
R6R5R4

R7

(a)

CS 525 Notes 3 35

need indication need indication

of partial record of continuation

pointer to rest (+ from where?)

R1 R2
R3

(a)

R3

(b) R6R5R4
R7

(a)

With spanned records:

CS 525 Notes 3 36

• Unspanned is much simpler, but may 
waste space…

• Spanned essential if 

record size > block size

Spanned vs. unspanned:
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• Ordering records in file (and block) by 
some key value

Sequential file (  Þ sequenced)

(3) Sequencing

CS 525 Notes 3 38

Why sequencing?

Typically to make it possible to efficiently 
read records in order

(e.g., to do a merge-join  — discussed later)

CS 525 Notes 3 39

Sequencing Options

(a) Next record physically contiguous

...

(b) Linked

Next (R1)R1

R1 Next (R1)

CS 525 Notes 3 40

(c) Overflow area

Records

in sequence

R1

R2

R3

R4

R5

Sequencing Options

CS 525 Notes 3 41

(c) Overflow area

Records

in sequence

R1

R2

R3

R4

R5

Sequencing Options

header

R2.1

R1.3

R4.7

CS 525 Notes 3 42

• How does one refer to records?

(4) Indirection

Rx
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• How does one refer to records?

(4) Indirection

Rx

Many options:

Physical Indirect

CS 525 Notes 3 44

Purely Physical

Device ID

E.g.,  Record Cylinder #

Address = Track #

or ID Block #

Offset in block

Block ID

CS 525 Notes 3 45

Fully Indirect

E.g.,  Record ID is arbitrary bit string

map

rec ID

r address

a

Physical
addr.Rec ID

CS 525 Notes 3 46

Tradeoff

Flexibility           Cost

to move records of indirection

(for deletions, insertions)

CS 525 Notes 3 47

Physical Indirect

Many options
in between …

CS 525 Notes 3 48

Block header - data at beginning that

describes block

May contain:
- File ID (or RELATION or DB ID)

- This block ID

- Record directory

- Pointer to free space

- Type of block (e.g. contains recs type 4; 

is overflow, …)

- Pointer to other blocks like it

- Timestamp ...
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Example: Indirection in block

Header

A block: Free space

R3

R4

R1 R2

Tuple Identifier (TID)

• TID is

– Page identifier

– Slot number

• Slot stores either record or pointer 
(TID)

• TID of a record is fixed for all time

CS 525 Notes 3 50

TID Operations

• Insertion

– Set TID to record location (page, slot)

• Moving record 

– e.g., update variable-size or reorganization

– Case 1: TID points to record

• Replace record with pointer (new TID)

– Case 2: TID points to pointer (TID)

• Replace pointer with new pointer

CS 525 Notes 3 51 CS 525 Notes 3 52

Block 1 Block 2

TID: Block 1, Slot 2 

CS 525 Notes 3 53

Block 1 Block 2

TID: Block 1, Slot 2 

Move record to Block 2 slot 3 -> TID does not change!

Block 2, Slot 3

CS 525 Notes 3 54

Block 1 Block 2

TID: Block 1, Slot 2 

Move record again to Block 2 slot 2 
-> still one level of indirection

Block 2, Slot 2
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TID Properties

• TID of record never changes

– Can be used safely as pointer to record 

(e.g., in index)

• At most one level of indirection

– Relatively efficient

– Changes to physical address - changing 
max 2 pages

CS 525 Notes 3 55 CS 525 Notes 3 56

(1) separating records

(2) spanned vs. unspanned

(3) sequencing

(4) indirection

Options for storing records in blocks:

CS 525 Notes 3 57

(1) Insertion/Deletion

(2) Buffer Management

(3) Comparison of Schemes

Other Topics

CS 525 Notes 3 58

Block

Deletion

Rx

CS 525 Notes 3 59

Options:

(a) Immediately reclaim space

(b) Mark deleted

CS 525 Notes 3 60

Options:

(a) Immediately reclaim space

(b) Mark deleted

– May need chain of deleted records

(for re-use)

– Need a way to mark:

• special characters

• delete field

• in map
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As usual, many tradeoffs...

• How expensive is it to move valid 
record to free space for immediate 

reclaim?

• How much space is wasted?

– e.g.,  deleted records, delete fields, free 
space chains,...

CS 525 Notes 3 62

Dangling pointers

Concern with deletions

R1 ?

CS 525 Notes 3 63

Solution #1: Do not worry

CS 525 Notes 3 64

E.g., Leave MARK in map or old 

location

Solution #2: Tombstones

CS 525 Notes 3 65

E.g., Leave MARK in map or old 

location

Solution #2: Tombstones

• Physical IDs

A block

This space This space can
never re-used be re-used

CS 525 Notes 3 66

• Logical IDs

ID LOC

7788

map

Never reuse
ID 7788 nor 
space in map...

E.g., Leave MARK in map or old location

Solution #2: Tombstones
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Easy case: records not in sequence

® Insert new record at end of file or 

in deleted slot

® If records are variable size, not 
as easy...

Insert

CS 525 Notes 3 68

Hard case: records in sequence

® If free space close by , not too bad...

® Or use overflow idea...

Insert

CS 525 Notes 3 69

Interesting problems:

• How much free space to leave in each 
block, track, cylinder?

• How often do I reorganize file + overflow?

CS 525 Notes 3 70

Free

space

CS 525 Notes 3 71

• For Caching of Disk Blocks

• Buffer Replacement Strategies

– E.g., LRU, clock

• Pinned blocks

• Forced output

• Double buffering

• Swizzling

Buffer Management

in Notes02

Buffer Manager

• Manages blocks cached from disk in 
main memory

• Usually -> fixed size buffer (M pages)

• DB requests page from Buffer Manager

– Case 1: page is in memory -> return 

address

– Case 2: page is on disk -> load into 
memory, return address

CS 525 Notes 3 72
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Goals

• Reduce the amount of I/O

• Maximize the hit rate

– Ratio of number of page accesses that are 

fulfilled without reading from disk

• -> Need strategy to decide when to 

CS 525 Notes 3 73

Buffer Manager Organization

• Bookkeeping

– Need to map (hash table) page-ids to 

locations in buffer (page frames)

– Per page store fix count, dirty bit, …

– Manage free space

• Replacement strategy

– If page is requested but buffer is full

– Which page to emit remove from buffer
CS 525 Notes 3 74

FIFO

• First In, First Out

• Replace page that has been in the 
buffer for the longest time

• Implementation: E.g., pointer to oldest 

page (circular buffer)

– Pointer->next = Pointer++ % M

• Simple, but not prioritizing frequently 

accessed pages

CS 525 Notes 3 75

LRU
• Least Recently Used

• Replace page that has not been 

accessed for the longest time

• Implementation:

– List, ordered by LRU

– Access a page, move it to list tail

• Widely applied and reasonable 

performance

CS 525 Notes 3 76

Clock

• Frames are organized clock-wise 

• Pointer S to current frame

• Each frame has a reference bit

– Page is loaded or accessed -> bit = 1

• Find page to replace (advance pointer)

– Return first frame with bit = 0

– On the way set all bits to 0

CS 525 Notes 3 77

Clock Example

CS 525 Notes 3 78

0 Page 0

1 Page 1

1 Page 2

0 Page 3

1 Page 4

S

Reference 
bit
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Other Replacement Strategies

• LRU-K

• GCLOCK

• Clock-Pro

• ARC

• LFU

CS 525 Notes 3 79 CS 525 Notes 3 80

Swizzling

Memory Disk

Rec A

block 1

block 2

block 1

CS 525 Notes 3 81

Swizzling

Memory Disk

Rec A

block 1

Rec A
block 2 block 2

block 1

CS 525 Notes 3 82

Row vs Column Store

• So far we assumed that fields of a 
record are stored contiguously (row 

store)...

• Another option is to store all values of a 

field together (column store)

CS 525 Notes 3 83

• Example: Order consists of

– id, cust, prod, store, price, date, qty

Row Store

id1 cust1 prod1 store1 price1 date1 qty1

id2 cust2 prod2 store2 price2 date2 qty2

id3 cust3 prod3 store3 price3 date3 qty3

CS 525 Notes 3 84

• Example: Order consists of

– id, cust, prod, store, price, date, qty

Column Store

id1 cust1

id2 cust2

id3 cust3

id4 cust4

... ...

id1 prod1

id2 prod2

id3 prod3

id4 prod4

... ...

id1 price1 qty1

id2 price2 qty2

id3 price3 qty3

id4 price4 qty4

... ... ...

ids may or may not be stored explicitly
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Row vs Column Store

• Advantages of Column Store

– more compact storage (fields need not 

start at byte boundaries)

– Efficient compression, e.g., RLE

– efficient reads on data mining operations

• Advantages of Row Store

– writes (multiple fields of one record)more 

efficient

– efficient reads for record access (OLTP)
CS 525 Notes 3 86

• When should I compress

– Compression reduces storage size

• Less space on disk

• More “content” can be read/written with less 
I/O

– (De-)Compression takes time

• CPU occupied with compressing de-
compressing data -> not available for other 
operations

Compression

CS 525 Notes 3 87

The Laws of Compression ;-)

• If I/O is the performance bottleneck 
then compression improves 

performance

• If CPU is the bottleneck then 

compression may hurt performance

CS 525 Notes 3 88

Types of compression

• Dictionary compression

• Run-length encoding (more later)

• Deltacoding (more later)

• Bitpacking

• …

CS 525 Notes 3 89

Scope of compression

• Global

– Global dictionary encoding for strings

• Replace individual strings with integers using a 
invertible map

• Per table / column

– Run-length encode the values of a column

• Per page (group of pages)

– Compress pages before writing to disk

CS 525 Notes 3 90

Processing compressed data

• Can we evaluate operations directly 
over compressed data?

• In some cases yes

• Example: dictionary compressed strings

–WHERE name = ‘Peter’

– => WHERE name = 1 

String Code

Peter 1

Bob 2

Alice 3
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Example: Apache Parquet

• Parquet is a columnar/compressed 
storage format developed in the context 

of the Hadoop ecosystem

• Supported by many big data systems 

like Spark or MR

• Support nested relational data (we 

ignore this here)

CS 525 Notes 3 92

Parquet - Structure

• Row group: A logical horizontal 
partitioning of the data into rows 

• Column chunk: A chunk of the data 
for a particular column. 

– Guaranteed to be contiguous in the file

• Page: Column chunks are divided up 

into pages, indivisible units for 

compression and coding 

CS 525 Notes 3 93

Parquet - Structure

• Row group: GBs in size

• Column chunk: typically 100s of MBs

• Page: recommended 8KB

– Pages are compressed and maybe RLE

CS 525 Notes 3 94

Parquet - Structure

CS 525 Notes 3 95

Parquet - Analysis

• Columnar

• Hierarchical organization

• Metadata separable from data

• I/O granularity (chunks) different from 

compression/lookup granularity (pages)

CS 525 Notes 3 96

• There are 10,000,000 ways to organize 
my data on disk…

Which is right for me?

Comparison
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Issues:

Flexibility Space Utilization

Complexity Performance

CS 525 Notes 3 98

To evaluate a given strategy, compute      
following parameters:
-> space used for expected data
-> expected time to

- fetch record given key

- fetch record with next key
- insert record
- append record

- delete record
- update record
- read complete file
- reorganize file

CS 525 Notes 3 99

Example

How would you design Megatron 3000 
storage system? (for a relational DB, low end)

– Variable length records?

– Spanned?

– What data types?

– Fixed format?
– Record IDs ?

– Sequencing?
– How to handle deletions?

CS 525 Notes 3 100

• How to lay out data on disk

Data Items

Records

Blocks

Files

Memory

DBMS

Summary

CS 525 Notes 3 101

How to find a record quickly,

given a key

Next
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CS 525: Advanced Database 
Organization 
04: Indexing 

Boris Glavic 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  
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Indexing & Hashing 

 

 value 

Part 04 

?	

 value 

record 

CS 525 Notes 4 - Indexing 3 

Query Types: 

•  Point queries: 

–  Input: value v of attribute A 

– Output: all objects (tuples) with that value 

in attribute A 

•  Range queries: 

–  Input: value interval [low,high] of attr A 

– Output: all tuples with a value  

     low <= v < high in attribute A  

CS 525 Notes 4 - Indexing 4 

Index Considerations: 

•  Supported Query Types 

•  Secondary-storage capable 

•  Storage size 

–  Index Size / Data Size 

•  Complexity of Operations 

– E.g., insert is O(log(n)) worst-case 

•  Efficient Concurrent Operations? 

CS 525 Notes 4 - Indexing 5 

Topics 

•  Conventional indexes 

•  B-trees 

•  Hashing schemes 

•  Advanced Index Techniques 

CS 525 Notes 4 - Indexing 6 

Sequential File 

20 
10 
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60 
50 

80 
70 
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90 
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Sequential File 
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Sequential File 
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Sequential File 
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•  Comment: 

 {FILE,INDEX} may be contiguous  

      or not (blocks chained) 

CS 525 Notes 4 - Indexing 11 

Question: 

•  Can we build a dense, 2nd level index 
for a dense index? 

CS 525 Notes 4 - Indexing 12 

Notes on pointers: 

(1) Block pointer (sparse index) can be  
 smaller than record pointer 

 

 BP 

 

 RP 
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(2) If file is contiguous, then we can omit 

  pointers (i.e., compute them) 

Notes on pointers: 

CS 525 Notes 4 - Indexing 14 

K1 

K3 

K4 

K2 

R1 

R2 

R3 

R4 
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K1 

K3 

K4 

K2 

R1 

R2 

R3 

R4 

say: 
1024 B 
per block 

•  if we want K3 block: 
    get it at offset 
    (3-1)1024 
    = 2048 bytes 

CS 525 Notes 4 - Indexing 16 

Sparse vs. Dense Tradeoff 

•  Sparse: Less index space per record 
          can keep more of index 

in memory 

•  Dense:  Can tell if any record exists
          without accessing file 

 

(Later:  
–  sparse better for insertions 
–  dense needed for secondary indexes) 

CS 525 Notes 4 - Indexing 17 

Terms 

•  Index sequential file 

•  Search key ( ≠ primary key) 

•  Primary index (on Sequencing field) 

•  Secondary index 

•  Dense index (all Search Key values in) 

•  Sparse index 

•  Multi-level index 

CS 525 Notes 4 - Indexing 18 

Next: 

•  Duplicate keys 

•  Deletion/Insertion 

•  Secondary indexes 
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Duplicate keys 
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Dense index, one way to implement? 

Duplicate keys 
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Dense index, better way? 

Duplicate keys 
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Sparse index, one way? 

Duplicate keys 
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Sparse index, one way? 

Duplicate keys 
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Sparse index, another way? 

Duplicate keys 

–  place first new key from block 
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Sparse index, another way? 

Duplicate keys 

–  place first new key from block 

should 
this be 

40? 
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   Duplicate values,  
        primary index 

•  Index may point to first instance of  
 each value only 

       File 

        Index   

Summary 

a 

a 
a 

b 

.	



.	
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Deletion from sparse index 
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Deletion from sparse index 
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–  delete record 40 
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Deletion from sparse index 
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–  delete record 40 
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Deletion from sparse index 
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–  delete record 30 
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Deletion from sparse index 
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–  delete record 30 
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40 
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Deletion from sparse index 
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–  delete records 30 & 40 
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Deletion from sparse index 
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–  delete records 30 & 40 

CS 525 Notes 4 - Indexing 34 

Deletion from sparse index 
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–  delete records 30 & 40 
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70 
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Deletion from dense index 
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Deletion from dense index 
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–  delete record 30 
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Deletion from dense index 
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–  delete record 30 

40 
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Deletion from dense index 
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–  delete record 30 

40 40 
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Insertion, sparse index case 
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Insertion, sparse index case 

 

 

 
20 
10 

30 

50 
40 

60 

10 
30 
40 
60 

–  insert record 34 
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Insertion, sparse index case 
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–  insert record 34 

34 

•  our lucky day! 
   we have free space 
   where we need it! 
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Insertion, sparse index case 
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Insertion, sparse index case 
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Insertion, sparse index case 

 

 

 
20 
10 

30 

50 
40 

60 

10 
30 
40 
60 

–  insert record 15 

15 
20 

30 

20 

•  Illustrated: Immediate reorganization 
•  Variation: 

–  insert new block (chained file) 
–  update index 
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Insertion, sparse index case 

 

 

 20 
10 

30 

50 
40 

60 

10 
30 
40 
60 

–  insert record 25 
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Insertion, sparse index case 

 

 

 20 
10 

30 

50 
40 

60 

10 
30 
40 
60 

–  insert record 25 

25 

overflow blocks 
(reorganize later...) 
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Insertion, dense index case 

•  Similar 

•  Often more expensive . . .  
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Secondary indexes 
Sequence 
field 

50 
30 

70 
20 

40 
80 

10 
100 

60 
90 
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Secondary indexes 
Sequence 
field 

50 
30 

70 
20 

40 
80 

10 
100 

60 
90 

•  Sparse index 

30 
20 
80 
100 

90 
... 
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Secondary indexes 
Sequence 
field 

50 
30 

70 
20 

40 
80 

10 
100 

60 
90 

•  Sparse index 

30 
20 
80 
100 

90 
... 

does not make sense! 
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Secondary indexes 
Sequence 
field 

50 
30 

70 
20 

40 
80 

10 
100 

60 
90 

•  Dense index 
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Secondary indexes 
Sequence 
field 

50 
30 

70 
20 

40 
80 

10 
100 

60 
90 

•  Dense index 

10 
20 
30 
40 

50 
60 
70 
... 
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Secondary indexes 
Sequence 
field 

50 
30 

70 
20 

40 
80 

10 
100 

60 
90 

•  Dense index 

10 
20 
30 
40 

50 
60 
70 
... 

10 
50 
90 
... 

sparse 
high 

level 
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With secondary indexes: 

•  Lowest level is dense 

•  Other levels are sparse 

Also: Pointers are record pointers 

 (not block pointers; not computed) 



10 

CS 525 Notes 4 - Indexing 55 

Duplicate values & secondary indexes 

10 
20 

40 
20 

40 
10 

40 
10 

40 
30 
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Duplicate values & secondary indexes 

10 
20 

40 
20 

40 
10 

40 
10 

40 
30 

10 
10 
10 
20 

20 
30 
40 
40 

40 
40 
... 

one option... 
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Duplicate values & secondary indexes 

10 
20 

40 
20 

40 
10 

40 
10 

40 
30 

10 
10 
10 
20 

20 
30 
40 
40 

40 
40 
... 

one option... 

Problem: 
excess overhead! 

•  disk space 

•  search time 
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Duplicate values & secondary indexes 

10 
20 

40 
20 

40 
10 

40 
10 

40 
30 

10 

another option... 

40 

30 

20 
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Duplicate values & secondary indexes 

10 
20 

40 
20 

40 
10 

40 
10 

40 
30 

10 

another option... 

40 

30 

20 Problem: 
variable size 
records in 

index! 
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Duplicate values & secondary indexes 

10 
20 

40 
20 

40 
10 

40 
10 

40 
30 

10 
20 
30 
40 

50 
60 
... 

λ 

λ 

λ 

λ 

Another idea: 
Chain records with same key? 
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Duplicate values & secondary indexes 

10 
20 

40 
20 

40 
10 

40 
10 

40 
30 

10 
20 
30 
40 

50 
60 
... 

λ 

λ 

λ 

λ 

Another idea (suggested in class): 
Chain records with same key? 

Problems: 
•  Need to add fields to records 
•  Need to follow chain to know records 

CS 525 Notes 4 - Indexing 62 

Duplicate values & secondary indexes 

10 
20 

40 
20 

40 
10 

40 
10 

40 
30 

10 
20 
30 
40 

50 
60 
... 

buckets 
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Why “bucket” idea is useful 

Indexes    Records 

Name: primary  EMP (name,dept,floor,...) 

Dept: secondary 

Floor: secondary 

 

CS 525 Notes 4 - Indexing 64 

Query: Get employees in  
  (Toy Dept) ^ (2nd floor) 

Dept. index    EMP     Floor index 

Toy     2nd 

CS 525 Notes 4 - Indexing 65 

Query: Get employees in  
  (Toy Dept) ^ (2nd floor) 

Dept. index    EMP     Floor index 

Toy     2nd 

→ Intersect toy bucket and 2nd Floor         
    bucket to get set of matching EMP’s 
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This idea used in  
 text information retrieval 

Documents 

...the cat is  
     fat ... 

...was raining 
 cats and dogs... 

...Fido the  
     dog ... 
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This idea used in  
 text information retrieval 

Documents 

...the cat is  
     fat ... 

...was raining 
 cats and dogs... 

...Fido the  
     dog ... 

Inverted lists 

cat 

dog 
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IR QUERIES 

•  Find articles with “cat” and “dog” 

•  Find articles with “cat” or “dog” 

•  Find articles with “cat” and not “dog” 

CS 525 Notes 4 - Indexing 69 

Summary so far 

•  Conventional index 

– Basic Ideas: sparse, dense, multi-level… 

– Duplicate Keys 

– Deletion/Insertion 

– Secondary indexes 
–  Buckets of Postings List 
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Conventional indexes 

Advantage: 

   - Simple 
   - Index is sequential file 
     good for scans 

Disadvantage: 
   - Inserts expensive, and/or 
   - Lose sequentiality & balance 
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Example   Index (sequential) 

 

 

 

  continuous 

 

 

  free space 

10 
20 
30 

40 
50 
60 

70 
80 
90 
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Example   Index (sequential) 

 

 

 

  continuous 

 

 

  free space 

10 
20 
30 

40 
50 
60 

70 
80 
90 

39 
31 
35 
36 

32 
38 
34 

33 

overflow area 
(not sequential) 
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Outline:  

•  Conventional indexes 

•  B-Trees                   ⇒ NEXT 

•  Hashing schemes 

•  Advanced Index Techniques 
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•  NEXT: Another type of index 

– Give up on sequentiality of index 

– Try to get “balance” 

B+-tree Motivation 

•  Tree indices are pretty efficient 

– E.g., binary search tree 

• Average case O(log(n)) lookup 

•  However 

– Unclear how to map to disk (index larger 
than main memory, loading partial index) 

– Worst-case O(n) lookup 
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B+-tree Properties 
•  Large nodes: 

–  Node size is multiple of block size 

•  -> small number of levels 

•  -> simple way to map index to disk 

•  -> many keys per node 

•  Balance: 

–  Require all nodes to be more than X% full 

–  -> for n records guaranteed only logarithmically 

many levels 

–  -> log(n) worst-case performance 
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Root 

 

B+Tree Example     n=3 
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Sample non-leaf 

 

 

 

 
to keys  to keys   to keys   to keys 

< 57   57≤ k<81   81≤k<95   ≥95 

 

5
7
 

 8
1
 

 9
5
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Sample leaf node: 

     From non-leaf node 

 

       to next leaf 

       in sequence 5
7
 

 8
1
 

 9
5
 

To
 r

e
co

rd
  

w
it
h
 k

e
y
 5

7
 

 
To

 r
e
co

rd
  

w
it
h
 k

e
y
 8

1
 

 
To

 r
e
co

rd
  

w
it
h
 k

e
y
 8

5
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In textbook’s notation   n=3 

Leaf: 

 

 

Non-leaf: 

 

3
0
 

3
5
 

3
0
 

30 35 

30 
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Size of nodes:   n+1 pointers 

     n keys   
(fixed) 
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Don’t want nodes to be too empty 

•  Use at least (balance) 

Non-leaf:  ⎡(n+1)/2⎤ pointers 

 

Leaf:   ⎣(n+1)/2⎦  pointers to data 
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    Full node   min. node 

 

Non-leaf 

 

 

Leaf 

n=3 

1
2
0
 

1
5
0
 

1
8
0
 

3
0
 

3
 

5
 

1
1
 

3
0
 

3
5
 

co
u
n
ts

 e
v
e
n
 i
f 

n
u
ll 
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B+tree rules tree of order n 

(1) All leaves at same lowest level   
  (balanced tree) 

-> guaranteed worst-case complexity for 

operations on the index 

(2) Pointers in leaves point to records  
  except for “sequence pointer” 
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(3) Number of pointers/keys for B+tree 

 

Non-leaf 
(non-root) n+1 n ⎡(n+1)/2⎤  ⎡(n+1)/2⎤- 1 

Leaf 
(non-root) n+1 n 

Root n+1 n 1 1 

Max   Max  Min             Min  
ptrs   keys  ptrs→data    keys 

⎣(n+1)/2⎦  ⎣(n+1)/2⎦ 

Search Algorithm 

•  Search for key k 

•  Start from root until leaf is reached 

•  For current node find i so that 

– Key[i] <= k < Key[i + 1] 

– Follow i+1th pointer 

•  If current node is leaf return pointer to 
record or fail (no such record in tree) 
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Root 

 

Search Example     n=3 
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1
8
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2
0
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k= 120 
Remarks Search 

•  If n is large, e.g., 500 

•  Keys inside node are sorted 

•  -> use binary search to find I 

•  Performance considerations 

– Linear search O(n) 

– Binary search O(log2(n)) 
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Insert into B+tree 

(a) simple case 
–  space available in leaf 

(b) leaf overflow 

(c) non-leaf overflow 

(d) new root 

   

CS 525 Notes 4 - Indexing 90 

(a) Insert key = 32 n=3 

3
 

5
 

1
1
 

3
0
 

3
1
 

 

3
0
 

1
0
0
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(a) Insert key = 32 n=3 
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(a) Insert key = 7 n=3 
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(a) Insert key = 7 n=3 
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(a) Insert key = 7 n=3 
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(c) Insert key = 160 
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(c) Insert key = 160 
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(c) Insert key = 160 
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(c) Insert key = 160 
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(d) New root,  insert 45 n=3 

1
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2
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3
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3
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(d) New root,  insert 45 n=3 
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(d) New root,  insert 45 n=3 

1
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(d) New root,  insert 45 n=3 
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new root 
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Insertion Algorithm 

•  Insert Record with key k 

•  Search leaf node for k 

– Leaf node has at least one space 

•  Insert into leaf 

– Leaf is full 

• Split leaf into two nodes (new leaf) 

•  Insert new leaf’s smallest key into parent 
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Insertion Algorithm cont. 

– Non-leaf node is full 

• Split parent 

•  Insert median key into parent 

– Root is full 

• Split root 

• Create new root with two pointers and single 

key 

•  -> B-trees grow at the root 
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(a) Simple case - no example 

(b) Coalesce with neighbor (sibling) 

(c) Re-distribute keys 

(d) Cases (b) or (c) at non-leaf 

Deletion from B+tree 
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(b) Coalesce with sibling 

– Delete 50 

1
0
 

4
0
 

1
0
0
 

1
0
 

2
0
 

3
0
 

 4
0
 

5
0
 

n=4 
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(b) Coalesce with sibling 

– Delete 50 

1
0
 

4
0
 

1
0
0
 

1
0
 

2
0
 

3
0
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0
 

5
0
 

n=4 

4
0
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(c) Redistribute keys 

– Delete 50 

1
0
 

4
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1
0
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1
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2
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3
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3
5
 

 4
0
 

5
0
 

n=4 
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(c) Redistribute keys 

– Delete 50 

1
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4
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(d) Non-leaf coalese 

– Delete 37 
n=4 

2
5
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(d) Non-leaf coalese 

– Delete 37 
n=4 

3
0
 

2
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(d) Non-leaf coalese 

– Delete 37 
n=4 
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2
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4
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(d) Non-leaf coalese 

– Delete 37 
n=4 

4
0
 

3
0
 

2
5
 

2
5
 

new root 

Deletion Algorithm 
•  Delete record with key k 

•  Search leaf node for k 

– Leaf has more than min entries 

• Remove from leaf 

– Leaf has min entries 

• Try to borrow from sibling 

– One direct sibling has more min entries 

• Move entry from sibling and adapt key in 

parent 
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Deletion Algorithm cont. 

•  Both direct siblings have min entries 

– Merge with one sibling 

– Remove node or sibling from parent 

–  ->recursive deletion 

•  Root has two children that get merged 

– Merged node becomes new root 
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B+tree deletions in practice 

– Often, coalescing is not implemented 
–  Too hard and not worth it! 

–  Assumption: nodes will fill up in time again 
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Comparison: B-trees vs. static  
   indexed sequential file 

Ref #1:   Held & Stonebraker 

   “B-Trees Re-examined” 

   CACM, Feb. 1978 
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Ref # 1 claims: 

 - Concurrency control harder in B-Trees 

   - B-tree consumes more space 

 

For their comparison: 

 block = 512 bytes 
 key = pointer = 4 bytes 
 4 data records per block 
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Example: 1 block static index 

          
 

127 keys 

 

 

 

(127+1)4 = 512 Bytes 

-> pointers in index implicit!   up to 127 

       blocks 

 

 

k1 

k2 

k3 

k1 
 
  
 k2 
 
  
 k3 
 
  
 

1 data 
block 
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Example: 1 block B-tree 

          
 

63 keys 

 

 

 

63x(4+4)+8 = 512 Bytes 

-> pointers needed in B-tree   up to 63 
 blocks because index is    blocks 
 not contiguous 

k1 

k2 

... 

k63 

k1 
 
  
 k2 
 
  
 k3 
 
  
 

1 data 
block 

next 

- 
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Size comparison        Ref. #1 

     Static Index                   B-tree 

# data     # data 
blocks     height       blocks     height 

 
2 -> 127   2     2 -> 63        2 

128 -> 16,129   3       64 -> 3968             3 

16,130 -> 2,048,383  4     3969 -> 250,047          4 

        250,048 -> 15,752,961    5 
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Ref. #1 analysis claims 

•  For an 8,000 block file,    
 after 32,000 inserts 

  after 16,000 lookups 

  ⇒ Static index saves enough accesses  
 to allow for reorganization 
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Ref. #1 analysis claims 

•  For an 8,000 block file,    
 after 32,000 inserts 

  after 16,000 lookups 

  ⇒ Static index saves enough accesses  
 to allow for reorganization 

Ref. #1 conclusion Static index better!! 
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Ref #2:   M. Stonebraker,  

   “Retrospective on a database  
   system,”   TODS, June 1980 

Ref. #2 conclusion B-trees better!! 
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•  DBA does not know when to reorganize 

•  DBA does not know how full to load  
 pages of new index 

Ref. #2 conclusion B-trees better!! 
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•  Buffering 

– B-tree: has fixed buffer requirements 

– Static index: must read several overflow

    blocks to be efficient
     (large & variable 

size       buffers 
needed for this) 

Ref. #2 conclusion B-trees better!! 
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•  Speaking of buffering… 

  Is LRU a good policy  for B+tree buffers? 
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•  Speaking of buffering… 

  Is LRU a good policy  for B+tree buffers? 

→ Of course not! 

→ Should try to keep root in memory 
  at all times 

(and perhaps some nodes from second level) 
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Interesting problem: 

 For B+tree, how large should n be? 

 

… 

n is number of keys / node 
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Sample assumptions: 

(1) Time to read node from disk is   
 (S+Tn) msec. 
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Sample assumptions: 

(1) Time to read node from disk is   
 (S+Tn) msec. 

(2) Once block in memory, use binary  
 search to locate key:     
 (a + b LOG2 n) msec. 

  For some constants a,b;   Assume a << S 
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Sample assumptions: 

(1) Time to read node from disk is   
 (S+Tn) msec. 

(2) Once block in memory, use binary  
 search to locate key:     
 (a + b LOG2 n) msec. 

  For some constants a,b;   Assume a << S 

(3) Assume B+tree is full, i.e.,   
 # nodes to examine is LOGn N  
 where N = # records 
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➸Can get: 
   f(n) = time to find a record 

f(n)  

 

 

      

       nopt    n 
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➸ FIND nopt by f’(n) = 0 

 Answer is nopt = “few hundred” 
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➸ FIND nopt by f’(n) = 0 

 Answer is nopt = “few hundred” 

   

➸ What happens to nopt  as 

•  Disk gets faster? 

•  CPU get faster? 

•  Memory hierarchy? 
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Variation on B+tree: B-tree (no +) 

•  Idea: 

– Avoid duplicate keys 

– Have record pointers in non-leaf nodes 
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        to record      to record       to record 
        with K1      with K2       with K3 

  to keys         to keys         to keys      to keys 
 < K1        K1<x<K2       K2<x<k3                >k3 

K1 P1 K2 P2 K3 P3 
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B-tree example     n=2 
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B-tree example     n=2 
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•  sequence pointers 
  not useful now! 
  (but keep space for simplicity) 
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Note on inserts 

•  Say we insert record with key = 25 

1
0
 

2
0
 

3
0
 n=3 

leaf 

CS 525 Notes 4 - Indexing 141 

Note on inserts 

•  Say we insert record with key = 25 

1
0
 

2
0
 

3
0
 n=3 

leaf 

1
0
 

–
 

2
0
 

–
 

2
5
 

3
0
 

•  Afterwards: 
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So, for B-trees: 

    MAX   MIN 

   Tree    Rec  Keys    Tree    Rec          Keys 
   Ptrs  Ptrs      Ptrs     Ptrs 

Non-leaf 
non-root  n+1  n  n       ⎡(n+1)/2⎤   ⎡(n+1)/2⎤-1  ⎡(n+1)/2⎤-1 

Leaf 
non-root  1  n  n    1       ⎣n/2⎦             ⎣n/2⎦ 

Root 
non-leaf  n+1  n  n    2          1                1 

Root 
Leaf   1  n  n    1          1                1 
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Tradeoffs: 

J B-trees have faster lookup than B+trees 

 

L in B-tree, non-leaf & leaf different sizes 

L in B-tree, deletion more complicated 
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Tradeoffs: 

J B-trees have faster lookup than B+trees 

 

L in B-tree, non-leaf & leaf different sizes 

L in B-tree, deletion more complicated 

➨ B+trees preferred! 
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But note: 

•  If blocks are fixed size     
 (due to disk and buffering restrictions) 

   Then lookup for B+tree is    
 actually better!! 
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Example: 

 - Pointers  4 bytes 

 - Keys   4 bytes 

 - Blocks  100 bytes (just example) 

 - Look at full 2 level tree 
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Root has 8 keys + 8 record pointers  
    + 9 son pointers 

   = 8x4 + 8x4 + 9x4 = 100 bytes 

B-tree:  
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Root has 8 keys + 8 record pointers  
    + 9 son pointers 

   = 8x4 + 8x4 + 9x4 = 100 bytes 

B-tree:  

Each of 9 sons: 12 rec. pointers (+12 keys) 

   = 12x(4+4) + 4 = 100 bytes 
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Root has 8 keys + 8 record pointers  
    + 9 son pointers 

   = 8x4 + 8x4 + 9x4 = 100 bytes 

B-tree:  

Each of 9 sons: 12 rec. pointers (+12 keys) 

   = 12x(4+4) + 4 = 100 bytes 

2-level B-tree, Max # records = 

   12x9 + 8 = 116 
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Root has 12 keys + 13 son pointers 

   = 12x4 + 13x4 = 100 bytes 

B+tree:  
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Root has 12 keys + 13 son pointers 

   = 12x4 + 13x4 = 100 bytes 

B+tree:  

Each of 13 sons: 12 rec. ptrs (+12 keys) 

   = 12x(4 +4) + 4 = 100 bytes 
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Root has 12 keys + 13 son pointers 

   = 12x4 + 13x4 = 100 bytes 

B+tree:  

Each of 13 sons: 12 rec. ptrs (+12 keys) 

   = 12x(4 +4) + 4 = 100 bytes 

  
2-level B+tree, Max # records 

   = 13x12 = 156 
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So... 

 

 
 

  ooooooooooooo        ooooooooo 
         156 records     108 records 

      Total = 116 

B+ B 

8 records 
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So... 

 

 
 

  ooooooooooooo        ooooooooo 
         156 records     108 records 

      Total = 116 

B+ B 

8 records 

•  Conclusion: 

– For fixed block size, 

– B+ tree is better because it is bushier 

Additional B-tree Variants 

•  B*-tree 

–  Internal notes have to be 2/3 full 
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An Interesting Problem... 

•  What is a good index structure when: 

–  records tend to be inserted with keys 
that are larger than existing values? 
(e.g., banking records with growing data/time) 

– we want to remove older data 
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One Solution: Multiple Indexes 

•  Example: I1, I2 

day         days indexed       days indexed 
                     I1                      I2 

10   1,2,3,4,5   6,7,8,9,10 
11   11,2,3,4,5   6,7,8,9,10 

12   11,12,3,4,5  6,7,8,9,10 

13   11,12,13,4,5  6,7,8,9,10 

• advantage: deletions/insertions from smaller index 
• disadvantage: query multiple indexes 
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Another Solution (Wave Indexes) 

day   I1   I2   I3   I4 
10   1,2,3   4,5,6   7,8,9   10 
11   1,2,3   4,5,6   7,8,9   10,11 
12   1,2,3   4,5,6   7,8,9   10,11, 12 
13   13   4,5,6   7,8,9   10,11, 12 
14   13,14   4,5,6   7,8,9   10,11, 12 
15   13,14,15  4,5,6   7,8,9   10,11, 12 
16   13,14,15  16   7,8,9   10,11, 12 

• advantage: no deletions 
• disadvantage: approximate windows 

Concurrent Access To B-trees 

•  Multiple processes/threads accessing 
the B-tree 

– Can lead to corruption 

•  Serialize access to complete tree for 
updates 

– Simple 

– Unnecessary restrictive 

– Not feasible for high concurrency 
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Lock Nodes 

•  One solution 

– Read and exclusive locks 

– Safe and unsafe updates of nodes 

• Safe: No ancestor of node will be effected by 
update 

• Unsafe: Ancestor may be affected 

• Can be determined locally 

–  E.g., deletion is safe is node has more than n/2 
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Read Write 

Read X - 

Write - - 

Lock Nodes 

•  Reading 

– Use standard search algorithm 

– Hold lock on current node 

– Release when navigating to child 

•  Writing 

– Lock each node on search for key 

– Release all locks on parents of node if the 

node is safe 
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Improvements? 

•  Try locking only the leaf for update 

– Let update use read locks and only lock 
leaf node with write lock 

–  If leaf node is unsafe then use previous 
protocol 

•  Many more locking approaches have 
been proposed 

CS 525 Notes 4 - Indexing 162 
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Outline/summary 

•  Conventional Indexes 
• Sparse vs. dense 

• Primary vs. secondary 

•  B trees 
• B+trees vs. B-trees 

• B+trees vs. indexed sequential 

•  Hashing schemes   -->  Next 

•  Advanced Index Techniques 
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CS 525: Advanced Database 
Organization 

Boris Glavic 

05: Hashing and More 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  
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key → h(key) 

Hashing 

<key> 

. 

. 

. 

Buckets 
(typically 1 
disk block) 
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. 

. 

. 

Two alternatives 

records 

. 

. 

. 

(1) key → h(key) 
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(2) key → h(key) 

Index 

record 
key 1 

Two alternatives 
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(2) key → h(key) 

Index 

record 
key 1 

Two alternatives 

•  Alt (2) for “secondary” search key 
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Example hash function 

•  Key = ‘x1 x2 … xn’   n byte character 
string 

•  Have b buckets 

•  h:  add x1 + x2 + ….. xn 

–     compute sum modulo b 
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➽ This may not be best function … 

➽ Read Knuth Vol. 3 if you really   
 need to select a good function. 
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➽ This may not be best function … 

➽ Read Knuth Vol. 3 if you really   
 need to select a good function. 

Good hash  ? Expected number of 

  function:   keys/bucket is the 

     same for all buckets 
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Within a bucket: 

•  Do we keep keys sorted? 

•  Yes, if CPU time critical 

   & Inserts/Deletes not too frequent 
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Next: example to illustrate
     inserts, 

overflows, deletes 
   

   h(K) 
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EXAMPLE  2 records/bucket 

INSERT: 

h(a) = 1 

h(b) = 2 

h(c) = 1 

h(d) = 0 

0 

1 

 

2 

 

3 
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EXAMPLE  2 records/bucket 

INSERT: 

h(a) = 1 

h(b) = 2 

h(c) = 1 

h(d) = 0 

0 

1 

 

2 

 

3 

d 

a 

c 

b 

h(e) = 1 
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EXAMPLE  2 records/bucket 

INSERT: 

h(a) = 1 

h(b) = 2 

h(c) = 1 

h(d) = 0 

0 

1 

 

2 

 

3 

d 

a 

c 

b 

h(e) = 1 

e 
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0 

1 

 

2 

 

3 

a 

b 

c 

e 

d 

EXAMPLE:  deletion 

Delete: 
e 
f 

f 

g 
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0 

1 

 

2 

 

3 

a 

b 

c 

e 

d 

EXAMPLE:  deletion 

Delete: 
e 
f 

f 

g 
maybe move 

“g” up 

c 
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0 

1 

 

2 

 

3 

a 

b 

c 

e 

d 

EXAMPLE:  deletion 

Delete: 
e 
f 

f 

g 
maybe move 

“g” up 

c 

d 
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Rule of thumb: 

•  Try to keep space utilization 

 between 50% and 80% 

      Utilization =    # keys used 
               total # keys that fit 
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Rule of thumb: 

•  Try to keep space utilization 

 between 50% and 80% 

      Utilization =    # keys used 
               total # keys that fit 

•  If < 50%, wasting space 

•  If > 80%, overflows significant   
  depends on how good hash   
 function is & on # keys/bucket 
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How do we cope with growth? 

•  Overflows and reorganizations 

•  Dynamic hashing 
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How do we cope with growth? 

•  Overflows and reorganizations 

•  Dynamic hashing 

•  Extensible 

•  Linear 
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Extensible hashing: two ideas 

(a) Use i of b bits output by hash function 

      b 

   h(K) →  

 

     use i → grows over time…. 

00110101 
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(b) Use directory 

 

 h(K)[i ]        to bucket 

. 

. 

. 

. 

. 

. 
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Example: h(k) is 4 bits; 2 keys/bucket 

i = 1 

1 

1 

0001 

1001 
1100 

Insert 1010 
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Example: h(k) is 4 bits; 2 keys/bucket 

i = 1 

1 

1 

0001 

1001 
1100 

Insert 1010 
1 

1100 

1010 
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Example: h(k) is 4 bits; 2 keys/bucket 

i = 1 

1 

1 

0001 

1001 
1100 

Insert 1010 
1 

1100 

1010 

New directory 

2 

00 

01 

10 

11 

i = 

2 

2 
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1 

0001 

2 

1001 
1010 
2 

1100 

Insert: 

0111 

0000 

00 

01 

10 

11 

2 i = 

Example continued 
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1 

0001 

2 

1001 
1010 
2 

1100 

Insert: 

0111 

0000 

00 

01 

10 

11 

2 i = 

Example continued 

0111 

0000 

0111 

0001 
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1 

0001 

2 

1001 
1010 
2 

1100 

Insert: 

0111 

0000 

00 

01 

10 

11 

2 i = 

Example continued 

0111 

0000 

0111 

0001 

2 

2 

CS 525 Notes 5 - Hashing 29 

00 

01 

10 

11 

2 i = 

2 1001 
1010 

2 1100 

2 0111 

2 0000 
0001 

Insert: 

1001 

Example continued 
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00 

01 

10 

11 

2 i = 

2 1001 
1010 

2 1100 

2 0111 

2 0000 
0001 

Insert: 

1001 

Example continued 

1001 
1001 

1010 



6 

CS 525 Notes 5 - Hashing 31 

00 

01 

10 

11 

2 i = 

2 1001 
1010 

2 1100 

2 0111 

2 0000 
0001 

Insert: 

1001 

Example continued 

1001 
1001 

1010 

000 

001 

010 

011 

100 

101 

110 

111 

3 i = 

3 

3 
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Extensible hashing:  deletion 

•  No merging of blocks 

•  Merge blocks  
     and cut directory if possible 

  (Reverse insert procedure) 
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Deletion example: 

•  Run thru insert example in reverse! 
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Note: Still need overflow chains 

•  Example: many records with duplicate keys 

1 

1101 
1100 

2 

2 

1100 

insert 1100 

1100 

if we split: 
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Solution: overflow chains 

1 

1101 
1100 

1 

1100 

insert 1100 add overflow block: 

1101 
1101 
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   Extensible hashing 

 Can handle growing files 

  - with less wasted space 

  - with no full reorganizations 

Summary 

+ 
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   Extensible hashing 

 Can handle growing files 

  - with less wasted space 

  - with no full reorganizations 

Summary 

+ 

 Indirection 

  (Not bad if directory in memory) 

 Directory doubles in size 

  (Now it fits, now it does not) 

- 

- 
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Linear hashing 

•  Another dynamic hashing scheme 

Two ideas: 
(a) Use i  low order bits of hash 

01110101 

grows 

b 

i 
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Linear hashing 

•  Another dynamic hashing scheme 

Two ideas: 
(a) Use i  low order bits of hash 

01110101 

grows 

b 

i 

(b) File grows linearly 
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Example   b=4 bits,    i =2,   2 keys/bucket 

00              01             10   11 

0101 

1111 

0000 

1010 

m = 01 (max used block) 

Future 
growth 
buckets 
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Example   b=4 bits,    i =2,   2 keys/bucket 

00              01             10   11 

0101 

1111 

0000 

1010 

m = 01 (max used block) 

Future 
growth 
buckets 

If h(k)[i ] ≤ m, then 

      look at bucket h(k)[i ] 

   else, look at bucket h(k)[i ] - 2i -1

    
 

Rule 
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Example   b=4 bits,    i =2,   2 keys/bucket 

00              01             10   11 

0101 

1111 

0000 

1010 

m = 01 (max used block) 

Future 
growth 
buckets 

If h(k)[i ] ≤ m, then 

      look at bucket h(k)[i ] 

   else, look at bucket h(k)[i ] - 2i -1

    
 

Rule 

•  insert 0101 
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Example   b=4 bits,    i =2,   2 keys/bucket 

00              01             10   11 

0101 

1111 

0000 

1010 

m = 01 (max used block) 

Future 
growth 
buckets 

If h(k)[i ] ≤ m, then 

      look at bucket h(k)[i ] 

   else, look at bucket h(k)[i ] - 2i -1

    
 

Rule 

0101 
•  can have overflow chains! 

•  insert 0101 
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Note 
•  In textbook, n is used instead of m 

•  n=m+1 

00              01             10   11 

0101 

1111 

0000 

1010 

m = 01 (max used block) 

Future 
growth 
buckets 

n=10 
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Example   b=4 bits,    i =2,   2 keys/bucket 

00              01              10  11 

0101 

1111 

0000 

1010 

m = 01 (max used block) 

Future 
growth 
buckets 
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Example   b=4 bits,    i =2,   2 keys/bucket 

00              01              10  11 

0101 

1111 

0000 

1010 

m = 01 (max used block) 

Future 
growth 
buckets 

10 

1010 
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Example   b=4 bits,    i =2,   2 keys/bucket 

00              01              10  11 

0101 

1111 

0000 

1010 

m = 01 (max used block) 

Future 
growth 
buckets 

10 

1010 

0101 •  insert 0101 
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Example   b=4 bits,    i =2,   2 keys/bucket 

00              01              10  11 

0101 

1111 

0000 

1010 

m = 01 (max used block) 

Future 
growth 
buckets 

10 

1010 

0101 •  insert 0101 

11 
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Example   b=4 bits,    i =2,   2 keys/bucket 

00              01              10  11 

0101 

1111 

0000 

1010 

m = 01 (max used block) 

Future 
growth 
buckets 

10 

1010 

0101 •  insert 0101 

11 

1111 
0101 
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Example Continued: How to grow beyond this? 

00              01              10  11 

1111 1010 0101 

0101 

0000 

m = 11 (max used block) 

i = 2 

. . . 
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Example Continued: How to grow beyond this? 

00              01              10  11 

1111 1010 0101 

0101 

0000 

m = 11 (max used block) 

i = 2 

0 0 0 0 
100           101             110        111 

3 

. . . 
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Example Continued: How to grow beyond this? 

00              01              10  11 

1111 1010 0101 

0101 

0000 

m = 11 (max used block) 

i = 2 

0 0 0 0 
100           101             110        111 

3 

. . . 

100 

100 
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Example Continued: How to grow beyond this? 

00              01              10  11 

1111 1010 0101 

0101 

0000 

m = 11 (max used block) 

i = 2 

0 0 0 0 
100           101             110        111 

3 

. . . 

100 

100 

101 

101 

0101 

0101 
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☛ When do we expand file? 

•  Keep track of:     # used slots    
          total # of slots 

= U 
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•  If U > threshold then increase m 

   (and maybe i ) 

☛ When do we expand file? 

•  Keep track of:     # used slots    
          total # of slots 

= U 
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 Linear Hashing 

  Can handle growing files 

  - with less wasted space 

  - with no full reorganizations 

  

  No indirection like extensible hashing 

 

Summary 

+ 

+ 

  Can still have overflow chains - 
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Example: BAD CASE 

    Very full 

 

 

  Very empty     Need to move 

       m here… 

       Would waste 

       space... 
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 Hashing 

  - How it works 

  - Dynamic hashing 

   - Extensible 

   - Linear 

Summary 
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Next: 

•  Indexing vs Hashing 

•  Index definition in SQL 

•  Multiple key access 
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•  Hashing good for probes given key 

  e.g.,    SELECT … 

      FROM R 

    WHERE R.A = 5 

-> Point Queries 

Indexing vs Hashing 
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•  INDEXING (Including B Trees) good for 

  Range Searches: 

  e.g.,   SELECT 

    FROM R 

    WHERE R.A > 5 
 

-> Range Queries 

Indexing vs Hashing 
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Index definition in SQL 

•  Create index name on rel (attr) 

•  Create unique index name on rel (attr) 

defines candidate key 

•  Drop INDEX name 

CS 525 Notes 5 - Hashing 63 

     CANNOT SPECIFY TYPE OF INDEX 

   (e.g. B-tree, Hashing, …) 

     OR PARAMETERS 

   (e.g. Load Factor, Size of Hash,...) 

 

     ... at least in standard SQL... 

 

          Vendor specific extensions allow  

          that 

Note 
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       ATTRIBUTE LIST ⇒ MULTIKEY INDEX 

       (next) 

   e.g., CREATE INDEX foo ON R(A,B,C) 

Note 
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Motivation: Find records where 

      DEPT = “Toy” AND SAL > 50k 

Multi-key Index 
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Strategy I: 

•  Use one index, say Dept. 

•  Get all Dept = “Toy” records 
            and check their salary 

I1 
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•  Use 2 Indexes; Manipulate Pointers 

Toy        Sal 
        > 50k

  

Strategy II: 
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•  Multiple Key Index 

One idea:   

Strategy III: 

I1 

I2 

I3 
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Example 

       Example 
       Record 

 

Dept 
Index 
 
    Salary 
    Index 

Name=Joe 
DEPT=Sales 
SAL=15k 

Art 
Sales 
Toy 

10k 
15k 
17k 
21k 

12k 
15k 
15k 
19k 
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For which queries is this index good? 

Find RECs Dept = “Sales”      SAL=20k 

Find RECs Dept = “Sales”      SAL > 20k 

Find RECs Dept = “Sales” 

Find RECs SAL = 20k 
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Interesting application: 

•  Geographic Data 

      DATA: 

       <X1,Y1, Attributes> 

       <X2,Y2, Attributes> 

 

x 

y 

. 
. 

. 
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Queries: 

•  What city is at <Xi,Yi>? 

•  What is within 5 miles from <Xi,Yi>? 

•  Which is closest point to <Xi,Yi>? 
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h 

n 
b 

i 
a 

c o 

d 
Example 

e 

g 

f 

m 

l 

k 
j 
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h 

n 
b 

i 
a 

c o 

d 

10      20 

10      20 

Example 
e 

g 

f 

m 

l 

k 
j 
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h 

n 
b 

i 
a 

c o 

d 

10      20 

10      20 

Example 
e 

g 

f 

m 

l 

k 
j 25 15  35 20 

40 

30 

20 

10 
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h 

n 
b 

i 
a 

c o 

d 

10      20 

10      20 

Example 
e 

g 

f 

m 

l 

k 
j 25 15  35 20 

40 

30 

20 

10 

5 

15 15 
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h 

n 
b 

i 
a 

c o 

d 

10      20 

10      20 

Example 
e 

g 

f 

m 

l 

k 
j 25 15  35 20 

40 

30 

20 

10 

h  i a  b c d  e f g 

n  o m l j  k 

5 

15 15 
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h 

n 
b 

i 
a 

c o 

d 

10      20 

10      20 

Example 
e 

g 

f 

m 

l 

k 
j 25 15  35 20 

40 

30 

20 

10 

h  i a  b c d  e f g 

n  o m l j  k 

•  Search points near f 
•  Search points near b 

5 

15 15 
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Queries 

•  Find points with Yi > 20 

•  Find points with Xi < 5 

•  Find points “close” to i = <12,38> 

•  Find points “close” to b = <7,24> 

Next 

•  Even more index structures J 

CS 525 Notes 5 - Hashing 80 
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1

CS 525: Advanced Database 
Organization

Boris Glavic

06: Even more index

structures

Slides: adapted from a course taught by 

Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 6 - More Indices 1

Recap

• We have discussed

– Conventional Indices

– B-trees

– Hashing

– Trade-offs

–Multi-key indices

–Multi-dimensional indices

• … but no example

CS 525 Notes 6 - More Indices 2

Today

• Multi-dimensional index structures

– kd-Trees (very similar to example before)

– Grid File (Grid Index)

– Quad Trees

– R Trees

– Partitioned Hash

– ...

• Bitmap-indices

• Tries

CS 525 Notes 6 - More Indices 3 CS 525 Notes 5 - Hashing 4

Grid Index

Key 2

X1  X2 ……                Xn

V1

V2

Key 1

Vn

To records with key1=V3, key2=X2

CS 525 Notes 5 - Hashing 5

CLAIM

• Can quickly find records with

– key 1 = Vi Ù Key 2 = Xj

– key 1 = Vi

– key 2 = Xj

CS 525 Notes 5 - Hashing 6

CLAIM

• Can quickly find records with

– key 1 = Vi Ù Key 2 = Xj

– key 1 = Vi

– key 2 = Xj

• And also ranges….

– E.g.,   key 1 ³ Vi Ù key 2 < Xj

http://www-db.stanford.edu/~hector/cs245/notes.htm
http://infolab.stanford.edu/people/hector.html
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• How do we find entry i,j in linear structure?

CS 525 Notes 5 - Hashing 7

0, 0

0, 1

0, 2

0, 3

1, 0

1, 1

1, 2

1, 3

2, 0

2, 1

2, 2

2, 3

3, 0

i, j position S+0

position S+1

position S+2

position S+3

position S+4

position S+9

pos(i, j) = 

max number of
i values N=4

• How do we find entry i,j in linear structure?

CS 525 Notes 5 - Hashing 8

0, 0

0, 1

0, 2

0, 3

1, 0

1, 1

1, 2

1, 3

2, 0

2, 1

2, 2

2, 3

3, 0

i, j position S+0

position S+1

position S+2

position S+3

position S+4

position S+9

pos(i, j) = S + iN + j 

max number of
i values N=4

Issue: Cells must be same size,
and N must be constant!

Issue: Some cells may overflow,
some may be sparse...

CS 525 Notes 5 - Hashing 9

Solution: Use Indirection

Buckets

V1

V2

V3 *Grid only

V4 contains
pointers to
buckets

Buckets
--
--
--

--
--
--

--
--
--

--
--
--

--
--
--

X1   X2   X3

CS 525 Notes 5 - Hashing 10

With indirection:

• Grid can be regular without wasting space

• We do have price of indirection

CS 525 Notes 5 - Hashing 11

Can also index grid on value ranges

Salary Grid

Linear Scale

1 2 3

Toy Sales Personnel

0-20K 1

20K-50K 2

50K- 38

CS 525 Notes 5 - Hashing 12

Grid files

Good for multiple-key search

Space, management overhead
(nothing is free)

Need partitioning ranges that evenly
split keys

+

-

-
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Idea:

Key1 Key2

Partitioned hash function

h1 h2

010110 1110010

CS 525 Notes 5 - Hashing 14

<Fred,toy,10k>,<Joe,sales,10k>
<Sally,art,30k>

EX:

Insert

000
001
010
011
100
101
110
111

h1(toy) =0

h1(sales) =1

h1(art) =1

.

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
.

CS 525 Notes 5 - Hashing 15

EX:

Insert

000
001
010
011
100
101
110
111

<Fred>

<Joe><Sally>

<Fred,toy,10k>,<Joe,sales,10k>
<Sally,art,30k>

h1(toy) =0

h1(sales) =1

h1(art) =1

.

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
.
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EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

.

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
.

Find Emp. with Dept. = Sales  Ù Sal=40k

<Fred>

<Mary>

<Tom><Bill>

<Andy>
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EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

.

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
.

Find Emp. with Dept. = Sales  Ù Sal=40k

<Fred>

<Mary>

<Tom><Bill>

<Andy>
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EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

.

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
.

Find Emp. with Sal=30k

<Fred>

<Mary>

<Tom><Bill>

<Andy>
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EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

.

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
.

Find Emp. with Sal=30k

<Fred>

<Mary>

<Tom><Bill>

<Andy>
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EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

.

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
.

Find Emp. with Dept. = Sales

<Fred>

<Mary>

<Tom><Bill>

<Andy>
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EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

.

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
.

Find Emp. with Dept. = Sales

<Fred>

<Mary>

<Tom><Bill>

<Andy>

R-tree

• Nodes can store up to M entries

–Minimum fill requirement (depends on variant)

• Each node rectangle in n-dimensional space

–Minimum Bounding Rectangle (MBR) of its 

children

• MBRs of siblings are allowed to overlap

– Different from B-trees

• balanced

CS 525 Notes 6 - More Indices 22
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Data Space

[5-7] [9-15] [13-19]

[20-24] [12-16] [2-4]

[5] [6] [7]

[24] [20] [24]

[9] [11] [15]

[15] [16] [12]

[13] [14] [18] [19]

[4] [2] [2] [3]

R-tree - Search

• Point Search

– Search for p = <xi, yi>

– Keep list of potential nodes

• Needed because of overlap

– Traverse to child if MBR of 

child contains p

CS 525 Notes 6 - More Indices 24
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R-tree - Search

• Point Search

– Search for points in region = 

<[xmin- xmax], [ymin -ymax]>

– Keep list of potential nodes

– Traverse to child if MBR of 

child overlaps with query 

region

CS 525 Notes 6 - More Indices 25 CS 525 Notes 6 - More Indices 26

Data Space

[5-7] [9-15] [13-19]

[20-24] [12-16] [2-4]

[5] [6] [7]

[24] [20] [24]

[9] [11] [15]

[15] [16] [12]

[13] [14] [18] [19]

[4] [2] [2] [3]

Search <5,24>

R-tree - Insert

• Similar to B-tree, but more complex

– Overlap -> multiple choices where to add entry

– Split harder because more choice how to split 

node (compare B-tree = 1 choice)

• 1) Find potential subtrees for current node

– Choose one for insert (heuristic, e.g., the one the 

would grow the least)

– Continue until leaf is found

CS 525 Notes 6 - More Indices 27

R-tree - Insert

• 2) Insert into leaf

• 3) Leaf is full? -> split 

– Find best split (minimum overlap between new 

nodes) is hard (O(2M))

– Use linear or quadratic heuristics (original paper)

• 4) Adapt parents if necessary

CS 525 Notes 6 - More Indices 28

R-tree - Delete

• 1) Find leaf node that contains entry

• 2) Delete entry

• 3) Leaf node underflow? 

– Remove leaf node and cache entries

– Adapt parents

– Reinsert deleted entries

CS 525 Notes 6 - More Indices 29

Bitmap Index

• Domain of values D = {d1, …, dn}

– Gender {male, female}

– Age {1, …, 120?}

• Use one vector of bits for each value

– One bit for each record

• 0: record has different value in this attribute

• 1: record has this value

CS 525 Notes 6 - More Indices 30
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Bitmap Index Example

CS 525 Notes 6 - More Indices 31

Name Age Gender

Peter 1 male

Gertrud 2 female

Joe 1 male

Marry 3 female

male female

1 0

0 1

1 0

0 1

1 2 3

1 0 0

0 1 0

1 0 0

0 0 1

Age GenderTodlers

Bitmap Index Example
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Name Age Gender

Peter 1 male

Gertrud 2 female

Joe 1 male

Marry 3 female

male female

1 0

0 1

1 0

0 1

1 2 3

1 0 0

0 1 0

1 0 0

0 0 1

Age GenderTodlers

Find all todlers with age 2 and sex female:

Bitwise-and between vectors

0

1

0

0

Bitmap Index Example
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Name Age Gender

Peter 1 male

Gertrud 2 female

Joe 1 male

Marry 3 female

male female

1 0

0 1

1 0

0 1

1 2 3

1 0 0

0 1 0

1 0 0

0 0 1

Age GenderTodlers

Find all todlers with age 2 or sex female:

Bitwise-or between vectors

0

1

0

1

Compression

• Observation:

– Each record has one value in indexed attribute

– For N records and domain of size |D|

• Only 1/|D| bits are 1

– -> waste of space

• Solution

– Compress data

– Need to make sure that and and or is still fast

CS 525 Notes 6 - More Indices 34

Run length encoding (RLE)

• Instead of actual 0-1 sequence encode length 

of 0 or 1 runs

• One bit to indicate whether 0/1 run + several 

bits to encode run length

• But how many bits to use to encode a run 

length?

– Gamma codes or similar to have variable number 

of bits

CS 525 Notes 6 - More Indices 35

RLE Example

CS 525 Notes 6 - More Indices 36

• 0001 0000 1110 1111 (2 bytes)

• 3,   1,4,       3,   1,4 (6 bytes)

• -> if we use one byte to encode a run we have 

7 bits for length = max run length is 128(127)
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Elias Gamma Codes

CS 525 Notes 6 - More Indices 37

• X = 2N + (x mod 2N)

–Write N as N zeros followed by one 1

–Write (x mod 2N) as N bit number

• 18 = 24 + 2 = 000010010

• 0001 0000 1110 1111 (2 bytes)

• 3,   1,4,       3,   1,4 (6 bytes)

• 0111 0010 0011 1001 00 (3 bytes)

Hybrid Encoding

CS 525 Notes 6 - More Indices 38

• Run length encoding

– Can waste space

– And/or run length not aligned to byte/word 
boundaries

• Encode some bytes of sequence as is and only 

store long runs as run length

– EWAH

– BBC (that’s what Oracle uses)

Extended Word aligned Hybrid (EWAH)

CS 525 Notes 6 - More Indices 39

• Segment sequence in machine words (64bit)

• Use two types of words to encode

– Literal words, taken directly from input sequence

– Run words

• ½ word is used to encode a run

• ½ word is used to encode how many literals follow

0000 0000 0000 0000 0010 1000 1111 1111 1100 0010

0010 0001 0010 1000 1001 0001 1100 0010

Bitmap Indices

CS 525 Notes 6 - More Indices 40

• Fast for read intensive workloads

– Used a lot in datawarehousing

• Often build on the fly during query processing

– As we will see later in class

Trie

• From Retrieval

• Tree index structure

• Keys are sequences of values from a domain D

– D = {0,1}

– D = {a,b,c,….,z}

• Key size may or may not be fixed

– Store 4-byte integers using D = {0,1} (32 elements)

– Strings using D={a,…,z} (arbitrary length)

CS 525 Notes 6 - More Indices 41

Trie

• Each node has pointers to |D| child nodes

– One for each value of D

• Searching for a key k = [d1, …, dn]

– Start at the root

– Follow child for value di

CS 525 Notes 6 - More Indices 42
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Trie Example

CS 525 Notes 6 - More Indices 43

b

a

r l

l

i

n

Words: bar, ball, in

1

2

3

Search for bald

Fail !

Tries Implementation

• 1) Each node has an array of child pointers

• 2) Each node has a list or hash table of child 

pointers

• 3) array compression schemes derived from 

compressed DFA representations

CS 525 Notes 6 - More Indices 44

Index structures in the Main Memory 

DBMS era

• Larger and large portions of the data fit into 
main memory

– Disk I/O no longer the (only) bottleneck

– Highly optimized and specialized operator code

• Difference of the constant factor for full scan versus 
index increase

– Increasing amounts of parallelism
• Traditional methods for parallel access to indexes no 

longer effective enough

• => Do not use indexes anymore?

CS 525 Notes 6 - More Indices 45

Index structures in the Main Memory 

DBMS era

• Solutions

–More Light-weight and coarse-grained data 

structures

– Use data-structures that have less parallelization 

bottle-necks

CS 525 Notes 6 - More Indices 46

Index structures in the Main Memory 

DBMS era

• Solutions

–More Light-weight and coarse-grained data 

structures, e.g.:

• Data skipping (small materialized aggregates)

• Database cracking 

– Use data-structures that have less parallelization 

bottle-necks, e.g., 

• Skip lists

• Bw-trees

CS 525 Notes 6 - More Indices 47

Data skipping

• Consider a relation stored in an unsorted 
page file
– Regular DBMS

– HDFS parquet file

– …

• Main idea of data skipping

– For each page store min/max values of 
each attribute

• To evaluate a selection predicate on 
attribute A say c1 <= A <= c2
– if for page P: Amax < c1 or Amin > c2 then 

none of the tuples on that page will qualify 
and we can skip reading this page

CS 525 Notes 6 - More Indices 48

R

A  B  C

a  1  10

b  5 20

c  2  10

d  2  35

e  3  45

f   4  40
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Database cracking

• Main rationale

– Originally designed for columnar databases

– The amount of indexing effort we spend for a part of the 
key space should be based on how frequently this part of 
the keyspace is accessed

• Basic idea

– Start with an unsorted file

– Whenever a query applies a selection condition on a
column A, say A< 50, then split the current partition 
containing 50 into two fragments one with data < 50 and 
one with the remaining data (partial sort)

– Keep a small in-memory tree index for these fragments

CS 525 Notes 6 - More Indices 49

Database cracking

CS 525 Notes 6 - More Indices 50

From Database Cracking – CIDR 2007

Skip lists

• Probabilistic datastructure

– Behavior depends on randomization

– Gives only probabilistic guarantees

• => with high probability will guarantee good 

performance

– Approximates a search tree using the much 

simpler (and easier to parallelize linked list 

datastructure)

CS 525 Notes 6 - More Indices 51

Skip lists

CS 525 Notes 6 - More Indices 52

• Search:

• Start from the top list

• 1) Move through list until element is found or we are at a larger 

element/end of the list

• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level

• 3) Goto 1)

Skip lists
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• Search:

• Start from the top list

• 1) Move through list until element is found or we are at a larger 

element/end of the list

• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level

• 3) Goto 1)

Search 5

Skip lists

CS 525 Notes 6 - More Indices 54

• Search:

• Start from the top list

• 1) Move through list until element is found or we are at a larger 

element/end of the list

• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level

• 3) Goto 1)

Search 5



9/12/18

10

Skip lists

CS 525 Notes 6 - More Indices 55

• Search:

• Start from the top list

• 1) Move through list until element is found or we are at a larger 

element/end of the list

• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level

• 3) Goto 1)

Search 5

Skip lists
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• Search:

• Start from the top list

• 1) Move through list until element is found or we are at a larger 

element/end of the list

• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level

• 3) Goto 1)

Search 5

Skip lists
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• Search:

• Start from the top list

• 1) Move through list until element is found or we are at a larger 

element/end of the list

• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level

• 3) Goto 1)

Search 5

Skip lists
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• Search:

• Start from the top list

• 1) Move through list until element is found or we are at a larger 

element/end of the list

• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level

• 3) Goto 1)

Search 5

Skip lists
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• Search:

• Start from the top list

• 1) Move through list until element is found or we are at a larger 

element/end of the list

• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level

• 3) Goto 1)

Search 5

Skip lists

CS 525 Notes 6 - More Indices 60

• Insert:

• Use search to find insertion position at the lowest level (keep pointers at the 

higher levels)

• Insert element in the lowest list

• Then for every level throw a dice and insert key with probability p (typically 

½)

Observation: in expectation each level has p as many nodes as the next lower 

level  
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Skip lists

• Characteristics

– O(log(n)) expected performance (insert, delete, 

search)

– Easy to parallelize (linked lists)

– Simpler to implement (also less CPU ops) than B-trees

• Example implementations

– MemSQL (main memory database system)

– Lucene

– leveldb

CS 525 Notes 6 - More Indices 61

Improving insert/update performance

• B-tree

– O(log(n)) I/O

• Hash-index

– O(1) I/O, but potential reorg cost

• Consider Key-value store (e.g., Cassandra) 

application

– Need fast write-throughput

– Need fast point-lookup
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One Solution: LSM-trees

• Log-structured merge (LSM) trees

– Have small index that is memory resident (memtable)

– When memtable exceeds a size threshold write it as one sorted run to 
disk (will explain algorithm when talking about query execution)
• Sequential I/O!

• Runs are immutable after being written (exception compaction)

• Runs may contain outdated values for keys that exist in newer runs of the 

memtable

• Over time me we have multiple sorted runs

– Inserts/Updates
• Always applied to memtable

– Lookup

• If we find a key in the memtable then return it

• Otherwise lookup keys in the sorted runs in reverse chronological order
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LSM-trees

• Performance

– Inserts/Updates

• O(1)!

– Lookup

• O(#runs)

• => want to make sure the number of runs does not 
grow indefinitely

• Compaction

–Merge sorted runs on disks to reduce #runs => 

improve lookup performance

CS 525 Notes 6 - More Indices 64

Basic Compaction

CS 525 Notes 6 - More Indices 65

• Have levels

– Once there are more then x runs on a level these

are merged into one larger run

– Run sizes increase exponentially per level

• E.g., threshold is 4 runs

– first level: runs are of same size as memtable

– 2nd level: 4 * size of memtable

– 3rd level: 4 * 4 * size of memtable

– …

LSM-trees

• Other lookup improvements

– Block index in memory (similar to sparse index)

– Bloomfilters

• A bloom filter is a small over-approximation of set

– Can be used to test if a key K is contained in a set S

» Returns yes, then the key may be in the set 

» Returns no, then the key is guaranteed to not be in the 

set

• => fast way to avoid looking a runs that are guaranteed 

to not contain a key

CS 525 Notes 6 - More Indices 66
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Bw-trees

• Motivation

– Improve concurrency properties of B-trees

– Improve cache effectiveness of B-trees

– Designed for flash-storage

• Fast random/sequential reads

• Fast sequential writes

• Comparably slower random writes (albeit smaller factor

CS 525 Notes 6 - More Indices 67

Bw-trees

• Overview

– Updateable B-tree without latches

• Threads almost never block

– => Improved instruction cache performance

– Backed up by log-structured storage

– Updates never modify pages but append deltas to 

a page

• Deltas are “installed” using CAS (atomic compare and 

swap)
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Bw-trees

• Mapping table
• Pages are logical identified by a LPID which is stable

• Locations and size of pages can change over time

• Updates create a delta record that points to the previous 
address of the page

• The delta record’s address is swapped for the current 
address in the mapping table using CAS

CS 525 Notes 6 - More Indices 69

Bw-trees

• Making page splits atomic 

CS 525 Notes 6 - More Indices 70

CS 525 Notes 5 - Hashing 71

Discussion:
- Conventional Indices
- B-trees

- Hashing (extensible, linear)
- SQL Index Definition
- Index vs. Hash
- Multiple Key Access
- Multi Dimensional Indices

Variations: Grid, R-tree, 
- Partitioned Hash
- Bitmap indices and compression
- Tries

- Database cracking
- Data skipping (small materialized aggregates/zone maps)
- Skip-lists

- Log-structured merge trees (LSM)

Summary
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CS 525: Advanced Database 
Organisation 

07: Query Processing 
Overview 

Boris Glavic 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  
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Query Processing 

Q  →   Query Plan 

CS 525 Notes 7 - Query Processing 3 

Query Processing 

Q  →   Query Plan 

Focus: Relational Systems 

•  Others? 

CS 525 Notes 7 - Query Processing 4 

Example 

 Select B,D 

 From R,S 

 Where R.A = “c”  ∧  S.E = 2   ∧  
R.C=S.C 
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   R  A  B  C      S  C  D  E 

 a  1  10   10  x  2 

 b  1  20   20  y  2 

 c  2  10   30  z  2 

 d  2  35   40  x  1 

 e  3  45   50  y  3 
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   R  A  B  C      S  C  D  E 

 a  1  10   10  x  2 

 b  1  20   20  y  2 

 c  2  10   30  z  2 

 d  2  35   40  x  1 

 e  3  45   50  y  3 

Answer  B     D 

  2      x 



2 
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•  How do we execute query? 

      

    - Do Cartesian product 

    - Select tuples 

    - Do projection 
One idea 
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RXS  R.A  R.B  R.C  S.C  S.D  S.E 

    a    1   10   10    x    2 

    a    1   10   20    y    2 

    . 
    . 

    C    2   10   10    x    2 
    . 
    . 
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RXS  R.A  R.B  R.C  S.C  S.D  S.E 

    a    1   10   10    x    2 

    a    1   10   20    y    2 

    . 
    . 

    C    2   10   10    x    2 
    . 
    . 

Bingo! 

Got one... 
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Relational Algebra - can be used to 
       describe plans... 

Ex: Plan I 

    ΠB,D 
     

     σR.A=“c”∧ S.E=2 ∧ R.C=S.C	



	


	

 	

 	

 	

 X 

   R   S 
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Relational Algebra - can be used to 
       describe plans... 

Ex: Plan I 

    ΠB,D 
     

     σR.A=“c”∧ S.E=2 ∧ R.C=S.C	



	


	

 	

 	

 	

 X 

   R   S 

 
OR:  ΠB,D [ σR.A=“c”∧ S.E=2 ∧ R.C = S.C (RXS)]	
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Another idea: 

 

    ΠB,D  

 

    σR.A = “c”   σS.E = 2 

 

   R     S 

Plan II 

            natural join 
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   R              S 

A  B  C  σ (R)   σ(S)      C  D  E 

a  1  10        A   B  C       C  D  E      10  x  2 

b  1  20  c   2  10     10  x  2     20  y  2 

c  2  10          20  y  2     30  z  2 

d  2  35          30  z  2     40  x  1 

e  3  45                                         50  y  3 
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Plan III  
 Use R.A and S.C Indexes 

 (1) Use R.A index to select R tuples  
   with R.A = “c” 

 (2) For each R.C value found, use S.C  
   index to find matching tuples 
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Plan III  
 Use R.A and S.C Indexes 

 (1) Use R.A index to select R tuples  
   with R.A = “c” 

 (2) For each R.C value found, use S.C  
   index to find matching tuples 

 (3) Eliminate S tuples S.E ≠ 2 

 (4) Join matching R,S tuples, project   

    B,D attributes and place in result 
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   R              S 

A  B  C         C  D  E 

a  1  10                    10  x  2 

b  1  20         20  y  2 

c  2  10                30  z  2 

d  2  35                40  x  1 

e  3  45                                         50  y  3 

 	



A C 

I1 I2 
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   R              S 

A  B  C         C  D  E 

a  1  10                    10  x  2 

b  1  20         20  y  2 

c  2  10                30  z  2 

d  2  35                40  x  1 

e  3  45                                         50  y  3 

 	



A C 

I1 I2 

=“c” 

<c,2,10> 
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   R              S 

A  B  C         C  D  E 

a  1  10                    10  x  2 

b  1  20         20  y  2 

c  2  10                30  z  2 

d  2  35                40  x  1 

e  3  45                                         50  y  3 

 	



A C 

I1 I2 

=“c” 

<c,2,10> <10,x,2> 



4 
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   R              S 

A  B  C         C  D  E 

a  1  10                    10  x  2 

b  1  20         20  y  2 

c  2  10                30  z  2 

d  2  35                40  x  1 

e  3  45                                         50  y  3 

 	



A C 

I1 I2 

=“c” 

<c,2,10> <10,x,2> 

check=2? 

output: <2,x> 
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   R              S 

A  B  C         C  D  E 

a  1  10                    10  x  2 

b  1  20         20  y  2 

c  2  10                30  z  2 

d  2  35                40  x  1 

e  3  45                                         50  y  3 

 	



A C 

I1 I2 

=“c” 

<c,2,10> <10,x,2> 

check=2? 

output: <2,x> 

next tuple: 
<c,7,15> 
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Overview of Query Optimization 
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parse 

convert 

apply laws 

estimate result sizes 

consider physical plans estimate costs 

pick best 

execute 

{P1,P2,…..} 

{(P1,C1),(P2,C2)...} 

Pi 

   answer 

SQL query 

parse tree 

logical query plan 

“improved” l.q.p 

l.q.p. +sizes 

statistics 
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Example:   SQL query 

SELECT title 

FROM StarsIn 

WHERE starName IN ( 

  SELECT name 

  FROM MovieStar 

  WHERE birthdate LIKE ‘%1960’ 

); 

 

(Find the movies with stars born in 1960) 
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Example:   Parse Tree 
<Query> 

<SFW> 

SELECT   <SelList>    FROM    <FromList>     WHERE     <Condition> 

<Attribute>              <RelName>                 <Tuple>  IN  <Query> 

title                       StarsIn               <Attribute>      (  <Query>  ) 

starName       <SFW> 

SELECT      <SelList>    FROM     <FromList>     WHERE     <Condition> 

<Attribute>           <RelName>         <Attribute>  LIKE  <Pattern> 

name                 MovieStar              birthDate            ‘%1960’ 



5 
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Example:   Generating Relational Algebra 

Πtitle 

σ 

StarsIn                    <condition> 

<tuple>      IN   Πname 

<attribute>      σbirthdate LIKE ‘%1960’ 

starName             MovieStar 

Fig. 7.15: An expression using a two-argument σ, midway between a parse tree 
and relational algebra  
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Example:   Logical Query Plan 

Πtitle 

σstarName=name 

StarsIn       Πname              

σbirthdate LIKE ‘%1960’ 

 MovieStar 

Fig. 7.18: Applying the rule for IN conditions 

× 
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Example:   Improved Logical Query Plan 

Πtitle 

starName=name 

StarsIn       Πname              

σbirthdate LIKE ‘%1960’ 

 MovieStar 

Fig. 7.20: An improvement on fig. 7.18. 

Question: 
Push project to 

StarsIn? 
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Example:    Estimate Result Sizes 

 

 

        Need expected size 

 

      StarsIn  

 

 

      MovieStar               

Π	



σ	
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Example:    One Physical Plan 

          
              Parameters: join order, 

       memory size, project attributes,... 
Hash join 

SEQ scan index scan Parameters: 
Select Condition,... 

StarsIn   MovieStar 
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Example: Estimate costs 

    L.Q.P 

 

  P1      P2     ….   Pn 

 

  C1      C2     ….   Cn 

       

     Pick best! 
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CS 525: Advanced Database 
Organisation 

08: Query Processing 
Parsing and Analysis 

Boris Glavic 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  
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parse 

convert 

apply laws 

estimate result sizes 

consider physical plans estimate costs 

pick best 

execute 

{P1,P2,…..} 

{(P1,C1),(P2,C2)...} 

Pi 

   answer 

SQL query 

parse tree 

logical query plan 

“improved” l.q.p 

l.q.p. +sizes 

statistics 
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Parsing, Analysis, Conversion 

1.  Parsing 
–  Transform SQL text into syntax tree 

2.  Analysis 
–  Check for semantic correctness 

–  Use database catalog 

–  E.g., unfold views, lookup functions and 
attributes, check scopes 

3.  Conversion 
–  Transform into internal representation 

–  Relational algebra or QBM 

Analysis and Conversion 

•  Usually intertwined 

•  The internal representation is used to 
store analysis information 

•  Create an initial representation and 
complete during analysis 
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Parsing, Analysis, Conversion 

1.  Parsing 

2.  Analysis 

3.  Conversion 
 

Parsing 

•  SQL -> Parse Tree 

•  Covered in compiler courses and books 

•  Here only short overview 

CS 525 Notes 8 - Parsing and Analysis 6 
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SQL Standard 

•  Standardized language 

– 86, 89, 92, 99, 03, 06, 08, 11 

•  DBMS vendors developed their own 
dialects 

CS 525 Notes 8 - Parsing and Analysis 7 CS 525 Notes 8 - Parsing and Analysis 8 

Example:   SQL query 

SELECT title !

FROM StarsIn!

WHERE starName IN ( !

" "SELECT name !

" "FROM MovieStar!

" "WHERE birthdate LIKE ‘%1960’!

); !

 

(Find the movies with stars born in 1960) 
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Example:   Parse Tree 
<Query> 

<Query Block> 

SELECT   <SelList>    FROM    <FromList>     WHERE     <Condition> 

<Attribute>              <RelName>                 <Tuple>  IN  <Query> 

title                       StarsIn               <Attribute>      (  <Query>  ) 

starName       <Query Block> 

SELECT      <SelList>    FROM     <FromList>     WHERE     <Condition> 

<Attribute>           <RelName>         <Attribute>  LIKE  <Pattern> 

name                 MovieStar              birthDate            ‘%1960’ 

SQL Query Structure 

•  Organized in Query blocks 

SELECT <select_list> !

FROM <from_list> !

WHERE <where_condition> !

GROUP BY <group_by_expressions> !

HAVING <having_condition> !

ORDER BY <order_by_expressions> !
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Query Blocks 

•  Only SELECT clause is mandatory 

– Some DBMS require FROM 

 

SELECT (1 + 2) AS result 
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result 

3 

SELECT clause 

•  List of expressions and optional name 
assignment + optional DISTINCT 

– Attribute references: R.a, b 

– Constants: 1, ‘hello’, ‘2008-01-20’ 

– Operators: (R.a + 3) * 2 

– Functions (maybe UDF): substr(R.a, 1,3) 

• Single result or set functions 

– Renaming: (R.a + 2) AS x 
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SELECT clause - example 

SELECT substring(p.name,1,1) AS initial !

       p.name!

FROM person p !

!

"     !
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name gender 

Joe male 

Jim male 

person 
initial name 

J Joe 

J Jim 

result 

SELECT clause – set functions 

•  Function extrChar(string) !

 

SELECT extrChar(p.name) AS n !

FROM person p !
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name gender 

Joe male 

Jim male 

person 

n 

J 

o 

e 

J 

i 

m 

result 

SELECT clause – DISTINCT 

SELECT DISTINCT gender !

FROM person p !
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name gender 

Joe male 

Jim male 

person 
gender 

male 

result 

FROM clause 

•  List of table expressions 

– Access to relations 

– Subqueries (need alias) 

– Join expressions 

– Table functions 

– Renaming of relations and columns 
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FROM clause examples 

FROM R !

 -access table R 

FROM R, S !

 -access tables R and S 

FROM R JOIN S ON (R.a = S.b) !

 -join tables R and S on condition (R.a = S.b) 

FROM R x !

FROM R AS x !

 -Access table R and assign alias ‘x’ 
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FROM clause examples 

FROM R x(c,d) !

FROM R AS x(c,d) !

 -using aliases x for R and c,d for its attribues 

FROM (R JOIN S t ON (R.a = t.b)), T !

 -join R and S, and access T 

FROM (R JOIN S ON (R.a = S.b)) JOIN T !

 -join tables R and S and result with T 

FROM create_sequence(1,100) AS seq(a) !

 -call table function 
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FROM clause examples 

FROM !

"(SELECT count(*) FROM employee) 
"AS empcnt(cnt) !

 

-count number of employee in subquery 
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FROM clause examples 

SELECT * !

FROM create_sequence(1,3) AS seq(a) !
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a 

1 

2 

3 

result 

FROM clause examples 
SELECT dep, headcnt!

FROM (SELECT count(*) AS headcnt, dep!

"FROM employee !

"GROUP BY dep) !

WHERE headcnt > 100 !
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result 

name dep 

Joe IT 

Jim Marketing 

… … 

employee 
dep headcnt 

IT 103 

Support 2506 

… … 

FROM clause - correlation 

•  Correlation 

– Reference attributes from other FROM 
clause item 

– Attributes of ith entry only available in j > i 

– Semantics:  

•  For each row in result of ith entry: 

• Substitute correlated attributes with value from 

current row and evaluate query 
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Correlation - Example 
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SELECT name, chr!

FROM employee AS e, !

"extrChar(e.name) AS c(chr) !

 result 

name dep 

Joe IT 

Jim Marketing 

… … 

employee 

name chr 

Joe J 

Joe o 

Joe e 

Jim J 

Jim i 

… … 

Correlation - Example 
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SELECT name !

FROM (SELECT max(salary) maxsal!

" FROM employee) AS m, !

" (SELECT name !

" FROM employee x !

" WHERE x.salary = m.maxsal) AS e !

 

result 
name salary 

Joe 20,000 

Jim 30,000 

… … 

employee 

name 

Jim 
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WHERE clause 

•  A condition 

– Attribute references 

– Constants 

– Operators (boolean) 

– Functions 

– Nested subquery expressions 

•  Result has to be boolean 
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WHERE clause examples 

WHERE R.a = 3 !

 -comparison between attribute and constant 

WHERE (R.a > 5) AND (R.a < 10) !

 -range query using boolean AND 

WHERE R.a = S.b !

 -comparison between two attributes 

WHERE (R.a * 2) > (S.b – 3) !

 -using operators 
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Nested Subqueries 

•  Nesting a query within an expression 

•  Correlation allowed 

– Access FROM clause attributes 

•  Different types of nesting 

– Scalar subquery 

– Existential quantification 

– Universal quantification 
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Nested Subqueries Semantics 

•  For each tuple produced by the FROM 
clause execute the subquery 

–  If correlated attributes replace them with 

tuple values 
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Scalar subquery 

•  Subquery that returns one result tuple 

– How to check? 

–  -> Runtime error 

!

SELECT * !

FROM R !

WHERE R.a = (SELECT count(*) FROM S) !
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Existential Quantification 

• <expr> IN <subquery> !
– Evaluates to true if <expr> equal to at 

least one of the results of the subquery 

 
SELECT * !

FROM users !

WHERE name IN (SELECT name FROM !

              blacklist) !
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Existential Quantification 

• EXISTS <subquery> !
– Evaluates to true if <subquery> returns at 

least one tuple 

 

SELECT * !

FROM users u !

WHERE EXISTS (SELECT * FROM !

              blacklist b !

             WHERE b.name = u.name) !

 CS 525 Notes 8 - Parsing and Analysis 31 

Existential Quantification 

• <expr> <op> ANY <subquery> !
– Evaluates to true if <expr> <op> <tuple> 

evaluates to true for at least one result 

tuple 

– Op is any comparison operator: =, <, >, … 

SELECT * !

FROM users !

WHERE name = ANY (SELECT name FROM !

                 blacklist) !
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Universal Quantification 

• <expr> <op> ALL <subquery> !
– Evaluates to true if <expr> <op> <tuple> 

evaluates to true for all result tuples 

– Op is any comparison operator: =, <, >, … 

SELECT * !

FROM nation !

WHERE nname = ALL (SELECT nation FROM !

                 blacklist) !
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Nested Subqueries Example 

SELECT dep,name!

FROM employee e !

WHERE salary >= ALL (SELECT salary !

                    FROM employee d !

"               WHERE e.dep = d.dep) !
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name dep salary 

Joe IT 2000 

Jim IT 300 

Bob HR 100 

Alice HR 10000 

Patrice HR 10000 

employee 

dep Name 

IT Joe 

HR Alice 

HR Patrice 

result 

GROUP BY clause 

•  A list of expressions 

– Same as WHERE 

– No restriction to boolean 

– DBMS has to know how to compare = for 
data type 

•  Results are grouped by values of the 

expressions 

•  -> usually used for aggregation 

CS 525 Notes 8 - Parsing and Analysis 35 

GROUP BY restrictions 

•  If group-by is used then 

– SELECT clause can only use group by 
expressions or aggregation functions 
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GROUP BY clause examples 

GROUP BY R.a!

 -group on single attribute 

GROUP BY (1+2) !

 -allowed but useless (single group) 

GROUP BY salary / 1000 !

 -groups of salary values in buckets of 1000 

GROUP BY R.a, R.b !

 -group on two attributes 
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SELECT count(*) AS numP, !

"(SELECT count(*) !

     FROM friends o !

"WHERE o.with = f.name) AS numF!

FROM (SELECT DISTINCT name FROM friends) f !

GROUP BY (SELECT count(*) !

         FROM friends o !

         WHERE o.with = f.name) 
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numP numF 

1 1 

2 2 

result 

name with 

Joe Jim 

Joe Peter 

Jim Joe 

Jim Peter 

Peter Joe 

friends 

HAVING clause 

•  A boolean expression 

•  Applied after grouping and aggregation 

– Only references aggregation expressions 
and group by expressions 
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HAVING clause examples 

… !

HAVING sum(R.a) > 100 !

"-only return tuples with sum bigger than 100!

!

… !

GROUP BY dep!

HAVING dep = ‘IT’ AND sum(salary) > 1000000 

 -only return group ‘IT’ and sum threshold 
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ORDER BY clause 

•  A list of expressions 

•  Semantics: Order the result on these 
expressions 
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ORDER BY clause examples 

ORDER BY R.a ASC !

ORDER BY R.a!

 -order ascending on R.a 

ORDER BY R.a DESC !

 -order descending on R.a 

ORDER BY salary + bonus !

 -order by sum of salary and bonus 
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New and Non-standard 
SQL features (excerpt) 

•  LIMIT / OFFSET 

– Only return a fix maximum number of rows 

– FETCH FIRST n ROWS ONLY (DB2) 

–  row_number() (Oracle) 

•  Window functions 

– More flexible grouping 

– Return both aggregated results and input 

values 
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Parsing, Analysis, Conversion 

1.  Parsing 

2.  Analysis 

3.  Conversion 
 

Analysis Goals 

•  Semantic checks 

– Table column exists 

– Operator, function exists 

– Determine type casts 

– Scope checks 

•  Rewriting 

– Unfolding views 
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Semantic checks 
SELECT * !

FROM R !

WHERE R.a + 3 > 5 !

•  Table R exists? 

•  Expand *: which attributes in R? 

•  R.a is a column? 

•  Type of constants 3, 5? 

•  Operator + for types of R.a and 3 exists? 

•  Operator > for types of result of + and 5 exists? 
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Database Catalog 

•  Stores information about database 
objects 

•  Aliases: 

–  Information Schema 

– System tables 

– Data Dictionary 
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Typical Catalog Information 

•  Tables 

– Name, attributes + data types, constraints 

•  Schema, DB 

– Hierarchical structuring of data 

•  Data types 

– Comparison operators 

– physical representation 

– Functions to (de)serialize to string 
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Typical Catalog Information 

•  Functions (including aggregate/set) 

– Build-in 

– User defined (UDF) 

•  Triggers 

•  Stored Procedures 

•  … 
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Type Casts 
•  Similar to automatic type conversion in 

programming languages 

•  Expression: R.a + 3.0 

– Say R.a is of type integer 

• Search for a function +(int,float) 

– Does not exist? 

• Try to find a way to cast R.a, 3.0 or both to 
new data type 

• So that a function + exists for new types 
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Scope checks 

•  Check that references are in correct 
scope 

•  E.g., if GROUP BY is present then 
SELECT clause expression can only 

reference group by expressions or 
aggregated values 
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View Unfolding 

•  SQL allows for stored queries using 
CREATE VIEW 

•  Afterwards a view can be used in 
queries 

•  If view is not materialized, then need to 
replace view with its definition 

 

CS 525 Notes 8 - Parsing and Analysis 52 

View Unfolding Example 

CREATE VIEW totalSalary AS !

SELECT name, salary + bonus AS total !

FROM employee !

!

SELECT * !

FROM totalSalary!

WHERE total > 10000 !
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View Unfolding Example 

CREATE VIEW totalSalary AS !

SELECT name, salary + bonus AS total !

FROM employee !

!

SELECT * !

FROM (SELECT name, !

" "   salary + bonus AS total !

     FROM employee) AS totalSalary!

WHERE total > 10000 !
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Analysis Summary 

•  Perform semantic checks 

– Catalog lookups (tables, functions, types) 

– Scope checks 

•  View unfolding 

•  Generate internal representation during 
analysis 
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Parsing, Analysis, Conversion 

1.  Parsing 

2.  Analysis 

3.  Conversion 
 

Conversion 

•  Create an internal representation 

– Should be useful for analysis 

– Should be useful optimization 

•  Internal representation 

– Relational algebra 

– Query tree/graph models 

• E.g., QGM (Query Graph Model) in Starburst 
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Relational Alegbra 

•  Formal language 

•  Good for studying logical optimization 
and query equivalence (containment) 

•  Not informative enough for analysis 

– No datatype representation in algebra 

expressions 

– No meta-data 
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Other Internal 
Representations 

•  Practical implementations 

– Mostly following structure of SQL query 
blocks 

– Store data type and meta-data (where 
necessary) 
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Canonical Translation to 
Relational Algebra 

•  TEXTBOOK version of conversion 

•  Given an SQL query 

•  Return an equivalent relational algebra 
expression 
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Relational Algebra Recap 

•  Formal query language 

•  Consists of operators 

–  Input(s): relation 

– Output: relation 

–  -> Composable 

•  Set and Bag semantics version 
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•  Relation Schema 

– A set of attribute name-datatype pairs 

•  Relation (instance) 

– A (multi-)set of tuples with the same 

schema 

•  Tuple 

– List of attribute value pairs (or function 

from attribute name to value) 
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Set- vs. Bag semantics 

•  Set semantics: 

– Relations are Sets 

– Used in most theoretical work 

•  Bag semantics 

– Relations are Multi-Sets 

• Each element (tuple) can appear more than 

once 

– SQL uses bag semantics 
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Bag semantics notation 

•  We use tm to denote tuple t appears 
with multiplicity m 

CS 525 Notes 8 - Parsing and Analysis 64 

Set- vs. Bag semantics 
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Name Purchase 

Peter Guitar 

Peter Guitar 

Joe Drum 

Alice Bass 

Alice Bass 

Name Purchase 

Peter Guitar 

Joe Drum 

Alice Bass 

Set Bag 

Operators 
•  Selection 

•  Renaming 

•  Projection 

•  Joins 

– Theta, natural, cross-product, outer, anti 

•  Aggregation 

•  Duplicate removal 

•  Set operations 
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Selection 

–  Syntax:σc (R) 
•  R is input 

•  C is a condition 

– Semantics: 
•  Return all tuples that match condition C 

•  Set: { t | t εR AND t fulfills C } 

•  Bag: { tn | tnεR AND t fulfills C } 
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Selection Example 

•  σa>5  (R) 
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a b 

1 13 

3 12 

6 14 

R Result 

a b 

6 14 

Renaming 

–  Syntax:ρA (R) 
•  R is input 

•  A is list of attribute renamings b ← a  

– Semantics: 
•  Applies renaming from A to inputs 

•  Set: { t.A | t εR } 

•  Bag: { (t.A)n | tnεR } 
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Renaming Example 

•  ρc ← a  (R) 
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a b 

1 13 

3 12 

6 14 

R Result 

c b 

1 13 

3 12 

6 14 

Projection 

–  Syntax:ΠA (R) 
•  R is input 

•  A is list of projection expressions 

•  Standard: only attributes in A 

– Semantics: 
•  Project all inputs on projection expressions 

•  Set: { t.A | t εR } 

•  Bag: { (t.A)n | tnεR } 
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Projection Example 

•  Πb  (R) 
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a b 

1 13 

3 12 

6 14 

R Result 

b 

13 

12 

14 
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Cross Product 

–  Syntax: R X S 
•  R and S are inputs 

– Semantics: 
•  All combinations of tuples from R and S 

•  = mathematical definition of cross product 

•  Set: { (t,s) | t εR AND sεS } 

•  Bag: { (t,s)n*m | tnεR AND smεS } 
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Cross Product Example 

•  R X S 
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a b 

1 13 

3 12 

R Result 

c d 

a 5 

b 3 

c 4 

S 

a b c d 

1 13 a 5 

1 13 b 3 

1 13 c 4 

3 12 a 5 

3 12 b 3 

3 12 c 4 

Join 

–  Syntax: R     C S 
•  R and S are inputs 

•  C is a condition 

– Semantics: 
•  All combinations of tuples from R and S that 

match C 

•  Set: { (t,s) | t εR AND sεS AND (t,s) matches C} 

•  Bag: { (t,s)n*m | tnεR AND smεS AND (t,s)  

           matches C} 
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Join Example 

•  R     a=d S 
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a b 

1 13 

3 12 

R Result 

c d 

a 5 

b 3 

c 4 

S 

a b c d 

3 12 b 3 

Natural Join 

–  Syntax: R      S 
•  R and S are inputs 

– Semantics: 
•  All combinations of tuples from R and S that 

match on common attributes 

•  A = common attributes of R and S 

•  C = exclusive attributes of S 

•  Set: { (t,s.C) | t εR AND sεS AND t.A=s.A} 

•  Bag: { (t,s.C)n*m | tnεR AND smεS AND t.A=s.A} 
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Natural Join Example 

•  R      S 
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a b 

1 13 

3 12 

R Result 

c a 

a 5 

b 3 

c 4 

S 

a b c 

3 12 b 
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Left-outer Join 

–  Syntax: R      C S 
•  R and S are inputs 

•  C is condition 

– Semantics: 
•  R join S 

•  t εR without match, fill S attributes with NULL 

{ (t,s) | t εR AND sεS AND (t,s) matches C} 

union 

{ (t, NULL(S)) | t εR AND NOT exists sεS: (t,s) 

matches C } 

 
CS 525 Notes 8 - Parsing and Analysis 79 

Left-outer Join Example 

•  R      a=d S 

CS 525 Notes 8 - Parsing and Analysis 80 

a b 

1 13 

3 12 

R Result 

c d 

a 5 

b 3 

c 4 

S 

a b c d 

1 13 NULL NULL 

3 12 b 3 

Right-outer Join 
–  Syntax: R      C S 

•  R and S are inputs 

•  C is condition 

– Semantics: 
•  R join S 

•  s εS without match, fill R attributes with NULL 

{ (t,s) | t εR AND sεS AND (t,s) matches C} 

union 

{ (NULL(R),s) | s εS AND NOT exists tεR: (t,s) 

matches C } 

CS 525 Notes 8 - Parsing and Analysis 81 

Right-outer Join Example 

CS 525 Notes 8 - Parsing and Analysis 82 

a b 

1 13 

3 12 

R Result 

c d 

a 5 

b 3 

c 4 

S 

a b c d 

NULL NULL a 5 

3 12 b 3 

NULL NULL c 4 

•  R      a=d S 

Full-outer Join 
–  Syntax: R       C S 

•  R and S are inputs and C is condition 

– Semantics: 
{ (t,s) | t εR AND sεS AND (t,s) matches C} 

union 

{ (NULL(R),s) | s εS AND NOT exists tεR: (t,s) 
matches C } 

union 

{ (t, NULL(S)) | t εR AND NOT exists sεS: (t,s) 
matches C } 
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Full-outer Join Example 

CS 525 Notes 8 - Parsing and Analysis 84 

a b 

1 13 

3 12 

R Result 

c d 

a 5 

b 3 

c 4 

S 

a b c d 

1 13 NULL NULL 

NULL NULL a 5 

3 12 b 3 

NULL NULL c 4 

•  R      a=d S 
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Semijoin 
–  Syntax: R ⋉ S  and R ⋊ S 

•  R and S are inputs  

– Semantics: 
•  All tuples from R that have a matching tuple from 

relation S on the common attributes A 

{ t | t εR AND exists sεS: t.A = s.A} 

 

CS 525 Notes 8 - Parsing and Analysis 85 

Semijoin Example 

CS 525 Notes 8 - Parsing and Analysis 86 

a b 

1 13 

3 12 

R Result 

c a 

a 5 

b 3 

c 4 

S 
a b 

3 12 

•  R ⋉ S 

Antijoin 
–  Syntax: R ▷ S 

•  R and S are inputs  

– Semantics: 
•  All tuples from R that have no matching tuple from 

relation S on the common attributes A 

{ t | t εR AND NOT exists sεS: t.A = s.A} 
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Antijoin Example 

CS 525 Notes 8 - Parsing and Analysis 88 

a b 

1 13 

3 12 

R Result 

c a 

a 5 

b 3 

c 4 

S 
a b 

1 13 

•  R ▷ S 

Aggregation 

–  Syntax:GαA (R) 
•  A is list of aggregation functions 

•  G is list of group by attributes 

– Semantics: 
•  Build groups of tuples according G and compute 

the aggregation functions from each group 

•   { (t.G, agg(G(t)) | tεR } 

•  G(t) = { t’ | t’ εR AND t’.G = t.G } 
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Aggregation Example 

•  bαsum(a)  (R) 

CS 525 Notes 8 - Parsing and Analysis 90 

a b 

1 1 

3 1 

6 2 

3 2 

R Result 

sum(a) b 

4 1 

9 2 



16 

Duplicate Removal 

–  Syntax:δ(R) 
•  R is input 

– Semantics: 
•  Remove duplicates from input  

•  Set: N/A 

•  Bag: { t1 | tnεR } 

CS 525 Notes 8 - Parsing and Analysis 91 

Duplicate Removal Example 

•  δ (R) 

CS 525 Notes 8 - Parsing and Analysis 92 

a b 

1 13 

1 13 

6 14 

R Result 

a b 

1 13 

6 14 

Set operations 

–  Input: R and S  
•  Have to have the same schema 

–  Union compatible 

•  Modulo attribute names 

–  Types 

•  Union 

•  Intersection 

•  Set difference 

CS 525 Notes 8 - Parsing and Analysis 93 

Union 

–  Syntax: R U S 
•  R and S are union-compatible inputs 

– Semantics: 
•  Set: { (t) | t εR OR tεS} 

•  Bag: { (t,s)n+m | tnεR AND smεS } 

–  Assumption tn with n < 1 for tuple not in relation 

CS 525 Notes 8 - Parsing and Analysis 94 

Union Example 

•  R U S 

CS 525 Notes 8 - Parsing and Analysis 95 

a 

1 

3 

R Result 

b 

1 

2 

3 

S 

a 

1 

2 

3 

1 

3 

Intersection 

–  Syntax: R ∩ S 
•  R and S are union-compatible inputs 

– Semantics: 
•  Set: { (t) | t εR AND tεS} 

•  Bag: { (t,s)min(n,m) | tnεR AND smεS } 

 

CS 525 Notes 8 - Parsing and Analysis 96 
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Intersection Example 

•  R ∩ S 

CS 525 Notes 8 - Parsing and Analysis 97 

a 

1 

3 

R Result 

b 

1 

2 

3 

S 

a 

1 

3 

Set Difference 

–  Syntax: R - S 
•  R and S are union-compatible inputs 

– Semantics: 
•  Set: { (t) | t εR AND NOT tεS} 

•  Bag: { (t,s)n - m | tnεR AND smεS } 
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Set Difference Example 

•  R - S 
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a 

1 

5 

R Result 

b 

1 

2 

3 

S 

a 

5 

Canonical Translation to 
Relational Algebra 

•  TEXTBOOK version of conversion 

•  Given an SQL query 

•  Return an equivalent relational algebra 
expression 

CS 525 Notes 8 - Parsing and Analysis 100 

Canonical Translation 
•  FROM clause into joins and cross-

products 

– Cross-product between list items 

– Joins into their algebra counter-part 

•  WHERE clause into selection 

•  SELECT clause into projection and 
renaming 

–  If it has aggregation functions use 

aggreation 

– DISTINCT into duplicate removal 

CS 525 Notes 8 - Parsing and Analysis 101 

Canonical Translation 

•  GROUP BY clause into aggregation 

•  HAVING clause into selection 

•  ORDER BY – no counter-part 

•  Then turn joins into crossproducts and 
selections 

CS 525 Notes 8 - Parsing and Analysis 102 
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Set Operations 

•  UNION ALL into union 

•  UNION duplicate removal over union 

•  INTERSECT ALL into intersection 

•  INTERSECT add duplicate removal 

•  EXCEPT ALL into set difference 

•  EXCEPT apply duplicate removal to 
inputs and then apply set difference 

CS 525 Notes 8 - Parsing and Analysis 103 CS 525 Notes 8 - Parsing and Analysis 104 

Example:   Relational Algebra Translation 

SELECT sum(R.a) !

FROM R !

GROUP BY b 

Πsum(a) 

Bαsum(a) 

R 

CS 525 Notes 8 - Parsing and Analysis 105 

Example:   Relational Algebra Translation 

SELECT dep, headcnt!

FROM (SELECT count(*) AS headcnt, dep !

"FROM employee !

"GROUP BY dep) !

WHERE headcnt > 100 !

Πdep, headcnt 

ρheadcnt ← count(*) 

Employee 

σheadcnt > 100 

depαcount(*) 

CS 525 Notes 8 - Parsing and Analysis 106 

Example:   Relational Algebra Translation 

SELECT * !

FROM R JOIN S ON (R.a = S.b) !

R 

X 

S R 

a=b 

S 

σa =b 

Parsing and Analysis Summary 

•  SQL text -> Internal representation 

•  Semantic checks 

•  Database catalog 

•  View unfolding 

CS 525 Notes 8 - Parsing and Analysis 107 
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CS 525 Notes 9 - Logical Optimization 1 

CS 525: Advanced Database 
Organisation 

09: Query Optimization - 
Logical 

Boris Glavic 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  

CS 525 Notes 8 - Parsing and Analysis 2 

parse 

convert 

apply laws 

estimate result sizes 

consider physical plans estimate costs 

pick best 

execute 

{P1,P2,…..} 

{(P1,C1),(P2,C2)...} 

Pi 

   answer 

SQL query 

parse tree 

logical query plan 

“improved” l.q.p 

l.q.p. +sizes 

statistics 

CS 525 Notes 9 - Logical Optimization 3 

Query Optimization 

•  Relational algebra level 

•  Detailed query plan level 

CS 525 Notes 9 - Logical Optimization 4 

Query Optimization 

•  Relational algebra level 

•  Detailed query plan level 

– Estimate Costs 

• without indexes 

• with indexes 

– Generate and compare plans 

CS 525 Notes 9 - Logical Optimization 5 

Relational algebra optimization 

•  Transformation rules 

 (preserve equivalence) 

•  What are good transformations? 

– Heuristic application of transformations 

Query Equivalence 

•  Two queries q and q’ are equivalent:  

–  If for every database instance I 

• Contents of all the tables 

– Both queries have the same result 

q≡q’ iff ∀I: q(I) = q’(I) 

CS 525 Notes 9 - Logical Optimization 6 
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Rules: Natural joins & cross products & union 

R   S  =  S  R 

(R   S)    T  = R     (S      T)  

CS 525 Notes 9 - Logical Optimization 8 

Note: 

•  Carry attribute names in results, so  
 order is not important 

•  Can also write as trees, e.g.: 

  

         T    R    

R     S     S  T 

CS 525 Notes 9 - Logical Optimization 9 

R x S = S x R 

(R x S) x T = R x (S x T) 

 

R U S = S U R 

R U (S U T) = (R U S) U T 

Rules: Natural joins & cross products & union 

R   S  =  S  R 

(R   S)    T  = R     (S      T)  

CS 525 Notes 9 - Logical Optimization 10 

Rules: Selects 

σp1∧p2(R) = 

σp1vp2(R) =  

CS 525 Notes 9 - Logical Optimization 11 

Rules: Selects 

σp1∧p2(R) = 

σp1vp2(R) =  

σp1  [ σp2 (R)] 

[ σp1 (R)] U  [ σp2 (R)] 

  

CS 525 Notes 9 - Logical Optimization 12 

Bags vs. Sets 

R = {a,a,b,b,b,c} 

S = {b,b,c,c,d} 

RUS = ? 
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Bags vs. Sets 

R = {a,a,b,b,b,c} 

S = {b,b,c,c,d} 

RUS = ? 

•  Option 1    SUM 

 RUS = {a,a,b,b,b,b,b,c,c,c,d} 

•  Option 2    MAX 

 RUS = {a,a,b,b,b,c,c,d} 

CS 525 Notes 9 - Logical Optimization 14 

Option 2 (MAX) makes this rule work: 

σp1vp2 (R) = σp1(R)  U σp2(R)  

Example: R={a,a,b,b,b,c} 

 P1 satisfied by a,b;  P2 satisfied by b,c 

CS 525 Notes 9 - Logical Optimization 15 

Option 2 (MAX) makes this rule work: 

σp1vp2 (R) = σp1(R)  U σp2(R)  

Example: R={a,a,b,b,b,c} 

 P1 satisfied by a,b;  P2 satisfied by b,c 

  σp1vp2 (R) = {a,a,b,b,b,c} 

σp1(R) = {a,a,b,b,b} 

σp2(R) = {b,b,b,c} 

σp1(R) U σp2 (R) = {a,a,b,b,b,c} 

CS 525 Notes 9 - Logical Optimization 16 

“Sum” option makes more sense: 

Senators (……)   Rep (……) 

T1 = πyr,state Senators;   T2 = πyr,state Reps 

T1   Yr   State         T2   Yr   State 
   97   CA      99   CA 
   99   CA      99   CA 
   98   AZ      98   CA 

  
Union? 

CS 525 Notes 9 - Logical Optimization 17 

Executive Decision 

-> Use “SUM” option for bag unions 

-> Some rules cannot be used for bags 

CS 525 Notes 9 - Logical Optimization 18 

Rules: Project 

Let: X = set of attributes 

  Y = set of attributes 

  XY = X U Y 

πxy (R) =  
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CS 525 Notes 9 - Logical Optimization 19 

Rules: Project 

Let: X = set of attributes 

  Y = set of attributes 

  XY = X U Y 

πxy (R) =  

 

πx [πy (R)]  

 

CS 525 Notes 9 - Logical Optimization 20 

Rules: Project 

Let: X = set of attributes 

  Y = set of attributes 

  XY = X U Y 

πxy (R) =  

 

πx [πy (R)]  

 

CS 525 Notes 9 - Logical Optimization 21 

Let p = predicate with only R attribs 

   q = predicate with only S attribs 

   m = predicate with only R,S attribs 

 

σp (R      S) =  

σq (R      S) =    

Rules:  σ +      combined  

CS 525 Notes 9 - Logical Optimization 22 

Let p = predicate with only R attribs 

   q = predicate with only S attribs 

   m = predicate with only R,S attribs 

 

σp (R      S) =  

σq (R      S) =    

Rules:  σ +      combined  

 [σp (R)]      S 

  R      [σq (S)]   

CS 525 Notes 9 - Logical Optimization 23 

Some Rules can be Derived: 

σp∧q (R      S) = 

σp∧q∧m (R      S) = 

σpvq (R      S) = 

 

Rules:  σ +      combined  (continued)  

CS 525 Notes 9 - Logical Optimization 24 

Do one: 

σp∧q (R      S)  = [σp (R)]      [σq (S)] 

σp∧q∧m (R      S) =  

   σm [(σp R)      (σq S)] 

σpvq (R      S) =  

  [(σp R)     S] U [R    (σq S)]  
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--> Derivation for first one: 

σp∧q (R      S)  = 

σp [σq (R      S) ] = 

σp [ R      σq (S) ] = 

[σp (R)]      [σq (S)] 

CS 525 Notes 9 - Logical Optimization 26 

Rules:   π,σ  combined 

Let x = subset of R attributes 

    z = attributes in predicate P   
  (subset of R attributes) 

 

πx[σp (R) ] =   
 

CS 525 Notes 9 - Logical Optimization 27 

Rules:   π,σ  combined 

Let x = subset of R attributes 

    z = attributes in predicate P   
  (subset of R attributes) 

 

πx[σp (R) ] =   
 

     {σp [ πx  (R) ]}  
 

CS 525 Notes 9 - Logical Optimization 28 

Rules:   π,σ  combined 

Let x = subset of R attributes 

    z = attributes in predicate P   
  (subset of R attributes) 

 

πx[σp (R) ] =   
 

     {σp [ πx  (R) ]}  
 

 πx  
 

 πxz 

 

CS 525 Notes 9 - Logical Optimization 29 

Rules:   π,      combined 

Let  x = subset of R attributes 

      y = subset of S attributes 

     z = intersection of R,S attributes 

πxy (R      S)  =  

CS 525 Notes 9 - Logical Optimization 30 

Rules:   π,      combined 

Let  x = subset of R attributes 

      y = subset of S attributes 

     z = intersection of R,S attributes 

πxy (R      S)  =  

πxy{[πxz (R) ]     [πyz (S) ]}  
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CS 525 Notes 9 - Logical Optimization 31 

πxy {σp (R      S)}  = 

CS 525 Notes 9 - Logical Optimization 32 

πxy {σp (R      S)}  = 

πxy {σp [πxz’ (R)     πyz’ (S)]}  

 z’ = z U {attributes used in P } 

CS 525 Notes 9 - Logical Optimization 33 

Rules   for σ, π combined with X  

    similar... 

e.g.,    σp (R X S) =  ?	



CS 525 Notes 9 - Logical Optimization 34 

σp(R U S) = σp(R) U σp(S)  

σp(R - S) = σp(R) - S = σp(R) - σp(S)  

Rules    σ, U  combined: 

CS 525 Notes 9 - Logical Optimization 35 

σp1∧p2 (R) → σp1 [σp2 (R)]  

σp (R     S) → [σp (R)]       S 

R      S  →   S       R 

πx [σp (R)] → πx {σp [πxz (R)]} 

Which are “good” transformations? 

CS 525 Notes 9 - Logical Optimization 36 

Conventional wisdom:  
   do projects early 

Example: R(A,B,C,D,E)    x={E}   
           P: (A=3) ∧ (B=“cat”) 

 

πx {σp (R)}    vs.   πE {σp{πABE(R)}}   
 

 
 



7 

CS 525 Notes 9 - Logical Optimization 37 

 What if we have A, B indexes? 

B = “cat”                                A=3 

 

 

 

    Intersect pointers to get 

    pointers to matching tuples 

    e.g., using bitmaps 

But 

CS 525 Notes 9 - Logical Optimization 38 

Bottom line: 

•  No transformation is always good 

•  Usually good: early selections 

– Exception: expensive selection conditions 

– E.g., UDFs 

CS 525 Notes 9 - Logical Optimization 39 

More transformations 

•  Eliminate common sub-expressions 

•  Detect constant expressions 

•  Other operations: duplicate elimination 

Pushing Selections 

•  Idea: 

– Join conditions equate attributes 

– For parts of algebra tree (scope) store 

which attributes have to be the same 

• Called Equivalence classes 

•  Example: R(a,b), S(c,d) 

σb=3 (R     b=c S) = σb=3 (R)     b=c σc=3 (S)  

CS 525 Notes 9 - Logical Optimization 40 

Outer-Joins 

•  Not commutative 

– R ⟕ S ≠ S ⟕ R 

•  p – condition over attributes in A 

•  A list of attributes from R 

σp (R ⟕A=B S) ≣ σp (R) ⟕A=B S   

Not σp (R ⟕A=B S) ≣ R ⟕A=B σp (S)   

 

CS 525 Notes 9 - Logical Optimization 41 

Summary Equivalences 

•  Associativity:  (R ⊙ S) ⊙ T ≣ R ⊙ (S ⊙ T) 

•  Commutativity: R ⊙ S ≣ S ⊙ R 

•  Distributivity: (R ⊙ S) ⊗ T ≣ (R ⊗ T) ⊙ (S ⊗ T) 

•  Difference between Set and Bag Equivalences 

•  Only some equivalence are useful 

CS 525 Notes 9 - Logical Optimization 42 
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Outline  -  Query Processing 

•  Relational algebra level 

–  transformations 

– good transformations 

•  Detailed query plan level 

– estimate costs 

– generate and compare plans 

CS 525 Notes 9 - Logical Optimization 44 

•  Estimating cost of query plan 

(1) Estimating size of results 

(2) Estimating # of IOs 

CS 525 Notes 9 - Logical Optimization 45 

Estimating result size 

•  Keep statistics for relation R 

– T(R) : # tuples in R 

– S(R) : # of bytes in each R tuple 

– B(R): # of blocks to hold all R tuples 

– V(R, A) : # distinct values in R 

    for attribute A 

CS 525 Notes 9 - Logical Optimization 46 

Example 

        R     A: 20 byte string 

      B: 4 byte integer 

      C: 8 byte date 

      D: 5 byte string 

A B C D 

cat 1 10 a 

cat 1 20 b 

dog 1 30 a 

dog 1 40 c 

bat 1 50 d 

CS 525 Notes 9 - Logical Optimization 47 

Example 

        R     A: 20 byte string 

      B: 4 byte integer 

      C: 8 byte date 

      D: 5 byte string 

A B C D 

cat 1 10 a 

cat 1 20 b 

dog 1 30 a 

dog 1 40 c 

bat 1 50 d 

T(R) = 5     S(R) = 37 

V(R,A) = 3   V(R,C) = 5 

V(R,B) = 1   V(R,D) = 4 

CS 525 Notes 9 - Logical Optimization 48 

Size estimates  for W = R1 x R2 

T(W) = 

 

S(W) = 
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Size estimates  for W = R1 x R2 

T(W) = 

 

S(W) = 

T(R1) × T(R2) 

 

S(R1) + S(R2) 

CS 525 Notes 9 - Logical Optimization 50 

S(W) = S(R) 

 

T(W) = ? 

Size estimate  for W = σA=a (R) 

CS 525 Notes 9 - Logical Optimization 51 

Example 

         R      V(R,A)=3 

       V(R,B)=1 

       V(R,C)=5 

       V(R,D)=4 

 

 

W = σz=val(R)    T(W) =  

 

A B C D 

cat 1 10 a 

cat 1 20 b 

dog 1 30 a 

dog 1 40 c 

bat 1 50 d 
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Example 

         R      V(R,A)=3 

       V(R,B)=1 

       V(R,C)=5 

       V(R,D)=4 

 

 

W = σz=val(R)    T(W) =  

 

A B C D 

cat 1 10 a 

cat 1 20 b 

dog 1 30 a 

dog 1 40 c 

bat 1 50 d 

T(R) 
V(R,Z) 

CS 525 Notes 9 - Logical Optimization 53 

Assumption: 

Values in select expression Z = val 

are  uniformly distributed 

over possible V(R,Z) values. 

 

CS 525 Notes 9 - Logical Optimization 54 

Alternate Assumption: 

Values in select expression Z = val 

are uniformly distributed 

over domain with DOM(R,Z) values. 
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Example 
        R     Alternate assumption 

     V(R,A)=3  DOM(R,A)=10 
     V(R,B)=1  DOM(R,B)=10 
     V(R,C)=5  DOM(R,C)=10 
     V(R,D)=4  DOM(R,D)=10 

 
 

A B C D 

cat 1 10 a 

cat 1 20 b 

dog 1 30 a 

dog 1 40 c 

bat 1 50 d 

W = σz=val(R)    T(W) = ?  

CS 525 Notes 9 - Logical Optimization 56 

C=val ⇒ T(W) = (1/10)1 + (1/10)1 + ... 

                      = (5/10) = 0.5 

 

B=val ⇒ T(W)= (1/10)5 + 0 + 0 = 0.5 

 

A=val ⇒ T(W)= (1/10)2 + (1/10)2 + (1/10)1 
                    = 0.5 

CS 525 Notes 9 - Logical Optimization 57 

Example 
        R     Alternate assumption 

     V(R,A)=3  DOM(R,A)=10 
     V(R,B)=1  DOM(R,B)=10 
     V(R,C)=5  DOM(R,C)=10 
     V(R,D)=4  DOM(R,D)=10 

 
 

A B C D 

cat 1 10 a 

cat 1 20 b 

dog 1 30 a 

dog 1 40 c 

bat 1 50 d 

W = σz=val(R)    T(W) =  
T(R) 

DOM(R,Z) 

CS 525 Notes 9 - Logical Optimization 58 

Selection cardinality 

SC(R,A) = average # records that satisfy 

   equality condition on R.A 

                 T(R) 

      V(R,A) 

SC(R,A) = 

        T(R) 

      DOM(R,A) 

 

CS 525 Notes 9 - Logical Optimization 59 

What about W = σz ≥ val (R)   ? 

  T(W) = ?     

CS 525 Notes 9 - Logical Optimization 60 

What about W = σz ≥ val (R)   ? 

  T(W) = ?     

•   Solution # 1: 

  T(W) =  T(R)/2      
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What about W = σz ≥ val (R)   ? 

  T(W) = ?     

•   Solution # 1: 

  T(W) =  T(R)/2      

•   Solution # 2: 

  T(W) =  T(R)/3      

CS 525 Notes 9 - Logical Optimization 62 

•  Solution # 3:   Estimate values in range 

 
Example  R Z 

Min=1      V(R,Z)=10 

      W= σz ≥ 15 (R) 

Max=20 

CS 525 Notes 9 - Logical Optimization 63 

•  Solution # 3:   Estimate values in range 

 
Example  R Z 

Min=1      V(R,Z)=10 

      W= σz ≥ 15 (R) 

Max=20 

f = 20-15+1 = 6      (fraction of range) 
      20-1+1     20 
 
T(W) = f × T(R) 

CS 525 Notes 9 - Logical Optimization 64 

Equivalently: 

      f×V(R,Z) = fraction of distinct values 

T(W)  = [f × V(Z,R)] ×T(R)    =  f × T(R)  

                  V(Z,R) 

CS 525 Notes 9 - Logical Optimization 65 

Size estimate  for W = R1      R2 

Let x = attributes of R1 

     y = attributes of R2 

CS 525 Notes 9 - Logical Optimization 66 

Size estimate  for W = R1      R2 

Let x = attributes of R1 

     y = attributes of R2 

    X ∩ Y = ∅ 

   Same as R1 x R2 

Case 1 
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   W = R1      R2      X ∩ Y = A 

R1    A     B     C        R2    A   D 

Case 2 

CS 525 Notes 9 - Logical Optimization 68 

   W = R1      R2      X ∩ Y = A 

R1    A     B     C        R2    A   D 

Case 2 

Assumption: 

V(R1,A)  ≤ V(R2,A)  ⇒  Every A value in R1 is in R2 

V(R2,A)  ≤ V(R1,A)  ⇒  Every A value in R2 is in R1 
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R1    A    B     C        R2    A   D 

Computing T(W)   when V(R1,A) ≤ V(R2,A) 

Take  
1 tuple 

Match 

CS 525 Notes 9 - Logical Optimization 70 

R1    A    B     C        R2    A   D 

Computing T(W)   when V(R1,A) ≤ V(R2,A) 

Take  
1 tuple 

Match 

1 tuple matches with   T(R2)        tuples... 

         V(R2,A)  

so     T(W)   =     T(R2)   × T(R1) 

            V(R2, A)  
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•  V(R1,A)  ≤ V(R2,A)   T(W) = T(R2) T(R1) 

                 V(R2,A) 

 

•  V(R2,A)  ≤ V(R1,A)   T(W)  =  T(R2) T(R1) 

                   V(R1,A) 

 

[A is common attribute] 
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T(W)  =           T(R2) T(R1) 

   max{ V(R1,A), V(R2,A) } 

In general    W = R1      R2 
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  with alternate assumption 

Values uniformly distributed over domain 

 

R1    A  B  C          R2   A     D 

 

  This tuple matches T(R2)/DOM(R2,A) so 

T(W) =  T(R2) T(R1)   =   T(R2) T(R1) 

             DOM(R2, A)         DOM(R1, A)  

 

   

Case 2 

Assume the same 
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In all cases:  
 
S(W) = S(R1) + S(R2) - S(A) 

           size of attribute A 

CS 525 Notes 9 - Logical Optimization 75 

Using similar ideas, 
we can estimate sizes of: 

ΠAB (R)  

σA=a∧B=b (R)  

R       S  with common attribs. A,B,C   

Union, intersection, diff, 	
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Note: for complex expressions, need 
    intermediate T,S,V results. 

E.g.  W = [σA=a (R1) ]       R2 

 

   Treat as relation U 

T(U) = T(R1)/V(R1,A)      S(U) = S(R1) 

 

   Also need V (U, *) !!  
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To estimate Vs 

E.g., U = σA=a (R1)   

          Say R1 has attribs A,B,C,D 

  V(U, A) =  

  V(U, B) = 

  V(U, C) =  

  V(U, D) =  

CS 525 Notes 9 - Logical Optimization 78 

Example 

     R 1     V(R1,A)=3 

      V(R1,B)=1 

      V(R1,C)=5 

      V(R1,D)=3 

                                    U = σA=a (R1) 

 

A B C D 

cat 1 10 10 

cat 1 20 20 

dog 1 30 10 

dog 1 40 30 

bat 1 50 10 
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Example 

     R 1     V(R1,A)=3 

      V(R1,B)=1 

      V(R1,C)=5 

      V(R1,D)=3 

                                    U = σA=a (R1) 

 

A B C D 

cat 1 10 10 

cat 1 20 20 

dog 1 30 10 

dog 1 40 30 

bat 1 50 10 

V(U,A) =1   V(U,B) =1   V(U,C) =    T(R1) 

                V(R1,A) 

V(D,U) ... somewhere in between 

CS 525 Notes 9 - Logical Optimization 80 

Possible Guess    U = σA=a (R) 

V(U,A)  = 1 

V(U,B)  = V(R,B) 
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For Joins    U = R1(A,B)      R2(A,C)  

V(U,A) = min { V(R1, A), V(R2, A) } 

V(U,B) = V(R1, B) 

V(U,C) = V(R2, C) 
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Example: 

Z = R1(A,B)      R2(B,C)        R3(C,D) 

 

  T(R1) = 1000  V(R1,A)=50   V(R1,B)=100 

  T(R2) = 2000  V(R2,B)=200 V(R2,C)=300 

  T(R3) = 3000  V(R3,C)=90   V(R3,D)=500 

R1 

R2 

R3 
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T(U) = 1000×2000      V(U,A) = 50 

        200       V(U,B) = 100 

         V(U,C) = 300 

Partial Result:   U = R1      R2 

CS 525 Notes 9 - Logical Optimization 84 

Z = U      R3 

T(Z) = 1000×2000×3000   V(Z,A) = 50 

   200×300     V(Z,B) = 100 

        V(Z,C) = 90 

        V(Z,D) = 500 
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Approximating Distributions 

•  Summarize the distribution 

– Used to better estimate result sizes 

– Without the need to look at all the data 

•  Concerns 

– Error metric: How to measure preciseness 

– Memory consumption 

– Computational Complexity 

CS 525 Notes 9 - Logical Optimization 85 

Approximating Distributions 

•  Parameterized distribution 

– E.g., gauss distribution 

– Adapt parameters to fit data 

•  Histograms 

– Divide domain into ranges (buckets) 

– Store the number of tuples per bucket 

•  Both need to be maintained 

CS 525 Notes 9 - Logical Optimization 86 
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Histograms 
Parameterized 
Distribution 

Maintaining Statistics 

•  Use separate command that triggers 
statistics collection 

– Postgres: ANALYZE !

•  During query processing 

– Overhead for queries 

•  Use Sampling? 

CS 525 Notes 9 - Logical Optimization 88 
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Estimating Result Size using 
Histograms 

10 20 30 40 

10 

20 

30 

40 

number of tuples 
in R with A value 
in given range 

 σA=val(R) = ? 

Estimating Result Size using 
Histograms 
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• σA=val(R) = ? 

•  |B| - number of values per bucket 

•  #B – number of records in bucket 

 

 #B 

 |B| 
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Join Size using Histograms 

CS 525 Notes 9 - Logical Optimization 91 

•  R ⋈ S 

•  Use  

•  Apply for each bucket 

  

  

T(W)  =           T(R2) T(R1) 

   max{ V(R1,A), V(R2,A) } 

Join Size using Histograms 
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•  V(R1,A) = V(R2,A) = bucket size |B| 

  

  

T(W)  =              #B(R2) #B(R1) 

                       |B| Σbuckets 

Equi-width vs. Equi-depth 
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•  Equi-width 

– All buckets contain the same number of 
values 

– Easy, but inaccurate 

•  Equi-depth (used by most DBMS) 

– All buckets contain the same number of 

tuples 

– Better accuracy, need to sort data to 
compute 

Equi-width vs. Equi-depth 
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Construct Equi-depth 
Histograms 

CS 525 Notes 9 - Logical Optimization 95 

•  Sort input 

•  Determine size of buckets 

– #bucket / #tuples 

•  Example 3 buckets 

1, 5,44, 6,10,12, 3, 6, 7 !

1, 3, 5, 6, 6, 7,10,12,44 !

[1-5][6-8][9-44] !

Advanced Techniques 
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•  Wavelets 

•  Approximate Histograms 

•  Sampling Techniques 

•  Compressed Histograms 
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Summary 

•  Estimating size of results is an “art” 

•  Don’t forget: 

  Statistics must be kept up to date… 

     (cost?) 

CS 525 Notes 9 - Logical Optimization 98 

Outline 

•  Estimating cost of query plan 

– Estimating size of results             done! 

– Estimating # of IOs    next… 

– Operator Implementations 

 

•  Generate and compare plans 
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CS 525 Notes 10 - Query Execution 1 

CS 525: Advanced Database 
Organization 

10: Query Execution 

Boris Glavic 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  

CS 525 Notes 10 - Query Execution 2 

parse 

convert 

apply laws 

estimate result sizes 

consider physical plans estimate costs 

pick best 

execute 

{P1,P2,…..} 

{(P1,C1),(P2,C2)...} 

Pi 

   answer 

SQL query 

parse tree 

logical query plan 

“improved” l.q.p 

l.q.p. +sizes 

statistics 

Query Execution 

•  Here only:  

– how to implement operators 

– what are the costs of implementations 

– how to implement queries 

• Data flow between operators  

•  Next part: 

– How to choose good plan 

CS 525 Notes 10 - Query Execution 3 

Execution Plan 

•  A tree (DAG) of physical operators that 
implement a query 

•  May use indices 

•  May create temporary relations 

•  May create indices on the fly 

•  May use auxiliary operations such as 
sorting 

CS 525 Notes 10 - Query Execution 4 

How to estimate costs 

•  If everything fits into memory 

– Standard computational complexity 

•  If not 

– Assume fixed memory available for 

buffering pages 

– Count I/O operations 

– Real systems combine this with CPU 
estimations 

CS 525 Notes 10 - Query Execution 5 CS 525 Notes 10 - Query Execution 6 

Estimating IOs: 

•  Count # of disk blocks that must be 
read (or written) to execute query plan 
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To estimate costs, we may have 
additional parameters: 

B(R) = # of blocks containing R tuples 

f(R)  = max # of tuples of R per block 

M   = # memory blocks available 

CS 525 Notes 10 - Query Execution 8 

To estimate costs, we may have 
additional parameters: 

B(R) = # of blocks containing R tuples 

f(R)  = max # of tuples of R per block 

M   = # memory blocks available 

HT(i) = # levels in index i 

LB(i) = # of leaf blocks in index i 

CS 525 Notes 10 - Query Execution 9 

Clustered index 

Index that allows tuples to be read in an 
order that corresponds to physical order 

      A 

 
A 

index 

10 

15 

17 

19 

35 

37 

Operators Overview 

•  (External) Sorting 

•  Joins (Nested Loop, Merge, Hash, …) 

•  Aggregation (Sorting, Hash) 

•  Selection, Projection (Index, Scan) 

•  Union, Set Difference 

•  Intersection 

•  Duplicate Elimination 

CS 525 Notes 10 - Query Execution 10 

Operator Profiles 
•  Algorithm 

•  In-memory complexity: e.g., O(n2) 

•  Memory requirements 

– Runtime based on available memory 

•  #I/O if operation needs to go to disk 

•  Disk space needed 

•  Prerequisites 

– Conditions under which the operator can 
be applied 

CS 525 Notes 10 - Query Execution 11 

Execution Strategies 

•  Compiled 

– Translate into C/C++/Assembler code 

– Compile, link, and execute code 

•  Interpreted 

– Generic operator implementations 

– Generic executor 

•  Interprets query plan 

CS 525 Notes 10 - Query Execution 12 
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Virtual Machine Approach 

•  Implement virtual machine of low-level 
DBMS operations 

•  Compile query into machine-code for 
that machine 

CS 525 Notes 10 - Query Execution 13 

Iterator Model 

•  Need to be able to combine operators in 
different ways 

– E.g., join inputs may be scans, or outputs 

of other joins, … 

–  -> define generic interface for operators  

– be able to arbitrarily compose complex 
plans from a small set of operators 

CS 525 Notes 10 - Query Execution 14 

Iterator Model - Interface 

•  Open 

– Prepare operator to read inputs 

•  Close 

– Close operator and clean up 

•  Next 

– Return next result tuple 

CS 525 Notes 10 - Query Execution 15 

Query Execution – Iterator 
Model  
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Iterator 
open close next 

Iterator 
open close next 

Iterator 
open close next 

Iterator 
open close next 

Query Execution – Iterator 
Model  

CS 525 Notes 10 - Query Execution 17 

Iterator 
open close next 

Iterator 
open close next 

Iterator 
open close next 

Iterator 
open close next 

Key 
 Call 
 

Query Execution – Iterator 
Model  
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Iterator 
open close next 

Iterator 
open close next 

Key 
 

Iterator 
open close next 

Iterator 
open close next 

Return Tuple 
Call 
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Parallelism 

•  Iterator Model 

– Pull-based query execution 

•  Potential types of parallelism 

–  Inter-query (every multiuser system) 

–  Intra-operator 

–  Inter-operator 

CS 525 Notes 10 - Query Execution 19 

Intra-Operator Parallelism 

•  Execute portions of an operator in 
parallel 

– Merge-Sort 

• Assign a processor to each merge phase 

– Scan 

• Partition tables 

• Each process scans one partition 

CS 525 Notes 10 - Query Execution 20 

Inter-Operator Parallelism 

•  Each process executes one or more 
operators 

•  Pipelining 

– Push-based query execution 

– Chain operators to directly produce results 

– Pipeline-breakers 

• Operators that need to consume the whole 

input (or large parts) before producing outputs 

CS 525 Notes 10 - Query Execution 21 

Pipelining Communication 

•  Queues 

– Operators push their results to queues 

– Operators read their inputs from queues 

•  Direct call 

– Operator calls its parent in the tree with 
results 

– Within one process 

CS 525 Notes 10 - Query Execution 22 

Pipelines 
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Key 
 Append to queue 

Dequeue 

Direct Call 
 

Pipeline-breakers 

•  Sorting 

– All operators that apply sorting 

•  Aggregation 

•  Set Difference 

•  Some implementations of 

– Join 

– Union 

CS 525 Notes 10 - Query Execution 24 



5 

Operators Overview 

•  (External) Sorting 

•  Joins (Nested Loop, Merge, Hash, …) 

•  Aggregation (Sorting, Hash) 

•  Selection, Projection (Index, Scan) 

•  Union, Set Difference 

•  Intersection 

•  Duplicate Elimination 

CS 525 Notes 10 - Query Execution 25 

Sorting 

•  Why do we want/need to sort 

– Query requires sorting (ORDER BY) 

– Operators require sorted input 

• Merge-join 

• Aggregation by sorting 

• Duplicate removal using sorting 

CS 525 Notes 10 - Query Execution 26 

In-memory sorting 

•  Algorithms from data structures 101 

– Quick sort 

– Merge sort 

– Heap sort 

–  Intro sort 

– … 

CS 525 Notes 10 - Query Execution 27 

External sorting 

•  Problem: 

– Sort N pages of data with M pages of 
memory 

•  Solutions? 

CS 525 Notes 10 - Query Execution 28 

First Idea 

•  Split data into runs of size M 

•  Sort each run in memory and write back 
to disk 

–  ⌈N/M⌉  sorted runs of size M 

•  Now what? 

  

CS 525 Notes 10 - Query Execution 29 

M M M

Merging Runs 

•  Need to create bigger sorted runs out of 
sorted smaller runs 

– Divide and Conquer 

– Merge Sort? 

•  How to merge two runs that are bigger 
than M? 

CS 525 Notes 10 - Query Execution 30 
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Merging Runs using 3 pages 

•  Merging sorted runs R1 and R2 

•  Need 3 pages 

– One page to buffer pages from R1 

– One page to buffer pages from R2 

– One page to buffer the result 

• Whenever this buffer is full, write it to disk 

CS 525 Notes 10 - Query Execution 31 

Merging Runs 

CS 525 Notes 10 - Query Execution 32 

R1 

R2 

read 

read 

merge 

write 

2-Way External Mergesort 

•  Repeat process until we have one 
sorted run 

•  Each iteration (pass) reads and writes 
the whole table once: 2 B(R) I/Os 

•  Each pass doubles the run size 
–  1 + ⌈log2 (B(R) / M)  ⌉  runs 

–  2 B(R) * (1 + ⌈log2 (B(R) / M)  ⌉)  I/Os 

CS 525 Notes 10 - Query Execution 33 CS 525 Notes 10 - Query Execution 34 

2 
3 

5 
6 

4 
7 

10 
1 

11 
12 

13 
14 

20 
40 

21 
22 

2 3 5 6 1 4 7 10 

11 12 13  
14 

20 21 22  
40 

1 2 3 4 5 6 7 10 11 12 13 14 20 21 22 40 

1 2 3 4 5 6 7 10 11 12 13 14 20 21 22 40 

Input 

Pass 0 

Pass 1 

Pass 2 

Pass 3 

2 3 6 5 7 4 10 1 11 12 13 14 20 40 22 21 

N-Way External Mergesort 

•  How to utilize M buffer during merging? 

•  Each pass merges M-1 runs at once 

– One memory page as buffer for each run 

•  #I/Os 

 1 + ⌈logM-1 (B(R) / M)  ⌉    runs 

 2 B(R) *(1 + ⌈logM-1 (B(R) / M)  ⌉)    I/Os 
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Merging Runs 

CS 525 Notes 10 - Query Execution 36 

R1 

R2 

read 

read 

merge 

write 

RM-1 

read 
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How many passes do we 
need? 

CS 525 Notes 10 - Query Execution 37 

N M=17 M=129 M=257 M=513 M=1025 

100 2 1 1 1 1 

1,000 3 2 2 2 1 

10,000 4 2 2 2 2 

100,000 5 3 3 2 2 

1,000,000 5 3 3 3 2 

10,000,000 6 4 3 3 3 

100,000,000 7 4 4 3 3 

1,000,000,000 8 5 4 4 3 

To put into perspective 

•  Scenario 

– Page size 4KB 

– 1TB of data (250,000,000) 

– 10MB of buffer for sorting (250) 

•  Passes 

– 4 passes 

CS 525 Notes 10 - Query Execution 38 

Merge 

•  In practice would want larger I/O buffer 
for each run 

•  Trade-off between number of runs and 
efficiency of I/O 

CS 525 Notes 10 - Query Execution 39 

Improving in-memory merging 

•  Merging M runs 

– To choose next element to output 

– Have to compare M elements 

–  -> complexity linear in M: O(M) 

•  How to improve that? 

– Use priority queue to store current element 
from each run 

–  -> O(log2(M)) 

CS 525 Notes 10 - Query Execution 40 

Priority Queue 

•  Queue for accessing elements in some 
given order 

– pop-smallest = return and remove 

smallest element in set 

– Insert(e) = insert element into queue 

CS 525 Notes 10 - Query Execution 41 

Min-Heap 

•  Implementation of priority queue 

– Store elements in a binary tree 

– All levels are full (except leaf level) 

– Heap property 

• Parent is smaller than child 

•  Example: { 1, 4, 7, 10 } 

CS 525 Notes 10 - Query Execution 42 

1 

4 10 

7 
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Min-Heap Insertion 

• insert(e) !
1.  Add element at next free leaf node 

• This may invalidate heap property 

2.  If node smaller than parent then 

• Switch node with parent 

3.  Repeat until 2) cannot be applied 
anymore 

CS 525 Notes 10 - Query Execution 43 

Min-Heap Dequeue 

CS 525 Notes 10 - Query Execution 44 

• pop-smallest !
1.  Return Root and use right-most leaf as 

new root 

• This may invalidate heap property 

2.  If node smaller than child then 

• Switch node with smaller child 

3.  Repeat until 2) cannot be applied 

anymore 

Insertion 

CS 525 Notes 10 - Query Execution 45 

1 

4 10 

7 

•  Insert 3 

3 

1 

3 10 

7 4 

Insert at first free position Restore heap property 

Dequeue 
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1 

4 10 

7 3 

3 

4 10 

7 

Dequeue 
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3 

4 10 

7 

7 

4 10 

4 

7 10 

Min/Max-Heap Complexity 

•  Heap is a complete tree 

– Height is O(log2(n)) 

•  Insertion 

– Maximal height of the tree switches 

–  -> O(log2(n))   

•  Dequeue 

– Maximal height of the tree switches 

–  -> O(log2(n)) 

CS 525 Notes 10 - Query Execution 48 
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Min-Heap Implementation 

•  Full tree 

– Use array to implement tree 

•  Compute positions 

– Parent(n) = ⌊  (n-­‐1)  /  2  ⌋ 

– Children(n) = 2n + 1, 2n + 2 
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1 

4 10 

7 1 4 10 7 

1 2 3 

Merging with Priority Queue 
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1 
8 
9 

7 
10 
12 

6 
11 
13 

1 

7 6 

Merging with Priority Queue 
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9 

10 
12 

11 
13 

1 
6 

7 8 

Merging with Priority Queue 
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9 

10 
12 

13 

1 
6 7 

11 8 

Using a heap to generate runs 

•  Read inputs into heap 

– Until available memory is full 

•  Replace elements 

– Remove smallest element from heap 

•  If larger then last element written of current 
run then write to current run 

• Else create a new run 

– Add new element from input to heap 

CS 525 Notes 10 - Query Execution 53 

Using a heap to generate runs 

CS 525 Notes 10 - Query Execution 54 

5 
7 
2 
3 
4 
12 
15 
1 

2 

7 5 



10 

Using a heap to generate runs 

CS 525 Notes 10 - Query Execution 55 

5 
7 
2 
3 
4 
15 
12 
1 

2 
3 

7 5 

1 

2 

Using a heap to generate runs 
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5 
7 
2 
3 
4 
15 
12 
1 

2 
3 4 

7 5 

1 

2 

Using a heap to generate runs 
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5 
7 
2 
3 
4 
15 
12 
1 

2 
3 
4 

5 

7 15 

1 

2 

Using a heap to generate runs 
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5 
7 
2 
3 
4 
15 
12 
1 

2 
3 
4 
5 

7 

12 15 

1 

2 

Using a heap to generate runs 
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5 
7 
2 
3 
4 
15 
12 
1 

2 
3 
4 
5 
7 

1 

12 15 

1 

2 

Using a heap to generate runs 
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5 
7 
2 
3 
4 
15 
12 
1 

2 
3 
4 
5 
7 

12 

15 

1 

1 



11 

Using a heap to generate runs 

•  Increases the run-length 

– On average by a factor of 2 (see Knuth) 

CS 525 Notes 10 - Query Execution 61 

Use clustered B+-tree 
•  Keys in the B+-tree I are in sort order 

–  If B+-tree is clustered traversing the leaf 
nodes is sequential I/O! 

– K = #keys/leaf node 

•  Approach 

– Traverse from root to first leaf: HT(I)  

– Follow sibling pointers: |R| / K 

– Read data blocks: B(R) 
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I/O Operations 

•  HT(I) + |R| / K + B(R) I/Os 

•  Less than 2 B(R) = 1 pass external 
mergesort 

•  ->Better than external merge-sort! 
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Unclustered B+-tree? 
•  Each entry in a leaf node may point to 

different page of relation R 

– For each leaf page we may read up to K 

pages from relation R 

– Random I/O 

•  In worst-case we have 

– K * B(R) 

– K = 500  

• 500 * B(R) = 250 merge passes 

CS 525 Notes 10 - Query Execution 64 

Sorting Comparison 

CS 525 Notes 10 - Query Execution 65 

Property Ext. Mergesort B+ (clustered) B+ (unclustered) 

Runtime O (N logM-1 (N)) O(N) O(N) 

#I/O (random) 2 B(R) * (1 + 
⌈logM-1 (B(R) / M)  ⌉)   

HT + |R| / K + 
B(R)  

HT + |R| / K + K * 
#RB 

Memory M 1 (better HT + X) 1 (better HT + X) 

Disk Space 2 B(R) 0 0 

Variants 1)  Merge with 
heap 

2)  Run generation 
with heap 

3)  Larger Buffer 

B(R) = number of block of R 
M = number of available memory blocks 
#RB = records per page 
HT = height of B+-tree (logarithmic) 
K = number of keys per leaf node 

Operators Overview 
•  (External) Sorting 

•  Joins (Nested Loop, Merge, Hash, …) 

•  Aggregation (Sorting, Hash) 

•  Selection, Projection (Index, Scan) 

•  Union, Set Difference 

•  Intersection 

•  Duplicate Elimination 

CS 525 Notes 10 - Query Execution 66 
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Scan 

•  Implements access to a table 

– Combined with selection 

– Probably projection too 

•  Variants 

– Sequential 

• Scan through all tuples of relation 

– Index 

• Use index to find tuples that match selection  
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Operators Overview 
•  (External) Sorting 

•  Joins (Nested Loop, Merge, Hash, …) 

•  Aggregation (Sorting, Hash) 

•  Selection, Projection (Index, Scan) 

•  Union, Set Difference 

•  Intersection 

•  Duplicate Elimination 
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Options 

•  Transformations: R1      c R2,  R2      c R1 

•  Joint algorithms: 

– Nested loop 

– Merge join 

– Join with index 

– Hash join 

•  Outer join algorithms 
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Nested Loop Join (conceptually) 

  for each r ∈ R1 do 

      for each s ∈ R2 do 

   if (r,s) ⊨ C then output (r,s) 

Applicable to: 
•  Any join condition C 
•  Cross-product 
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•  Merge Join (conceptually) 

(1) if R1 and R2 not sorted, sort them 

(2) i ← 1; j ← 1; 

  While (i ≤ T(R1)) ∧  (j ≤ T(R2)) do 

      if R1{ i }.C = R2{ j }.C then outputTuples 

      else if R1{ i }.C > R2{ j }.C then j ← j+1 

      else if R1{ i }.C < R2{ j }.C then i ← i+1 

Applicable to: 

•  C is conjunction of equalities or </>: 

 A1 = B1 AND … AND An = Bn 
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Procedure Output-Tuples 

 While (R1{ i }.C = R2{ j }.C) ∧ (i ≤ T(R1)) do 

  [jj ← j; 

         while (R1{ i }.C = R2{ jj }.C) ∧ (jj ≤ T(R2)) do 

          [output pair R1{ i }, R2{ jj };  

    jj ← jj+1  ] 

       i ← i+1  ] 
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Example 

i      R1{i}.C   R2{j}.C   j 

1   10        5    1 

2   20       20   2 

3   20       20   3 

4   30       30   4 

5   40       30   5 

         50   6 

         52   7   
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Index nested loop (Conceptually)     
     

For each r ∈ R1 do 

 [ X  ←  index (R2, C, r.C) 

  for each s ∈ X do  

   output (r,s) pair] 

Assume R2.C index 

Note:  X ← index(rel, attr, value) 

  then X = set of rel tuples with attr = value 
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Hash join (conceptual) 

Hash function h, range 0 → k 

Buckets for R1: G0, G1, ... Gk 

Buckets for R2: H0, H1, ... Hk 

Applicable to: 

•  C is conjunction of equalities 

 A1 = B1 AND … AND An = Bn 
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Algorithm 

(1) Hash R1 tuples into G buckets 

(2) Hash R2 tuples into H buckets 

(3) For i = 0 to k do 

  match tuples in Gi, Hi buckets 

Hash join (conceptual) 

Hash function h, range 0 → k 

Buckets for R1: G0, G1, ... Gk 

Buckets for R2: H0, H1, ... Hk 
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Simple example     hash: even/odd 

R1  R2     Buckets 
2  5   Even:  
4  4         R1    R2 

3     12   Odd:  
5  3 

8  13 
9  8 
  11 
  14 

2 4 8 4 12 8 14 

3 5 9 5 3 13 11 
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Factors that affect performance 

(1)  Tuples of relation stored 

   physically together? 

 

(2)  Relations sorted by join attribute? 

 

(3)  Indexes exist? 
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Example 1(a)   NL Join R1     R2 

•  Relations not contiguous 

•  Recall    T(R1) = 10,000     T(R2)  = 5,000 

          S(R1) = S(R2) =1/10 block  

               MEM=101 blocks 
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Example 1(a)    
 Nested Loop Join R1     R2 

•  Relations not contiguous 

•  Recall    T(R1) = 10,000     T(R2)  = 5,000 

          S(R1) = S(R2) =1/10 block  

               MEM=101 blocks 

Cost: for each R1 tuple: 

            [Read tuple + Read R2] 

Total =10,000 [1+500]=5,010,000 IOs 
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•   Can we do better? 
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•   Can we do better? 

Use our memory 

(1)  Read 100 blocks of R1 

(2)  Read all of R2 (using 1 block) + join 

(3)  Repeat until done 
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Cost: for each R1 chunk: 

   Read chunk: 100 IOs 

   Read R2:       500 IOs 

          600 
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Cost: for each R1 chunk: 

   Read chunk: 100 IOs 

   Read R2:       500 IOs 

          600 

Total = 1,000  x 600 = 6,000 IOs 
            100 
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•   Can we do better? 
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•   Can we do better? 

E Reverse join order:  R2      R1 
 

Total = 500  x (100 + 1,000) = 
           100 
 

  5 x 1,100 = 5,500 IOs 
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Cost of Block Nested Loop 

E Reverse join order:  R1      R2 
 

Total = B(R1) x (min(B(R1), M-1) + B(R2))  
            M-1 
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Block-Nested Loop Join (conceptual) 

for each M-1 blocks of R1 do 

  read M-1 blocks of R1 into buffer 

  for each block of R2 do 

   read next block of R2 

      for each tuple r in R1 block 

       for each tuple s in R2 block 

    if (r,s) ⊨ C then output (r,s) 

Note 

•  How much memory for buffering inner 
and for outer chunks? 

– 1 for inner would minimize I/O 

– But, larger buffer better for I/O 
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M - k M - k M - k 

k k k k k k 

R1 

R2 
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Example 1(b)   Merge Join 

•  Both R1, R2 ordered by C; relations contiguous 

Memory 

R1 

R2 

….. 

….. 

R1 

R2 
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Example 1(b)   Merge Join 

•  Both R1, R2 ordered by C; relations contiguous 

Memory 

R1 

R2 

….. 

….. 

R1 

R2 

Total cost: Read R1 cost + read R2 cost 

   = 1000 + 500 = 1,500 IOs 

Merge Join Example 
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R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR ZS 

Output: (a,1,1,X)  

Merge Join Example 
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R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

Output: (b,1,1,X)  

Merge Join Example 
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R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

R.B > S.C: advance ZS 

Merge Join Example 
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R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

Output: (a,2,2,y) 
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Merge Join Example 
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R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 
ZS 

Output: (a,2,2,e) 

Merge Join Example 

CS 525 Notes 10 - Query Execution 98 

R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

R.B > S.C: advance ZS 

Merge Join Example 
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R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 
ZS 

R.B < S.C: advance ZR 

Merge Join Example 
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R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

R.B < S.C: advance ZR 

Merge Join Example 

CS 525 Notes 10 - Query Execution 101 

R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

R.B < S.C: DONE 
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Example 1(c)   Merge Join 

•  R1, R2 not ordered, but contiguous 

--> Need to sort R1, R2 first 
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One way to sort:  Merge Sort 

(i) For each 100 blk chunk of R: 

  - Read chunk 

  - Sort in memory 

  - Write to disk   

        sorted 

        chunks 

 

     Memory 

R1 

R2 

..
. 
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(ii) Read all chunks + merge + write out 

 

Sorted file     Memory        Sorted 

        Chunks 

..
. ..
. 

CS 525 Notes 10 - Query Execution 105 

Cost:  Sort 

    Each tuple is read,written, 

     read, written 

so... 

Sort cost R1:  4 x 1,000 = 4,000 

Sort cost R2:  4 x 500   =  2,000 
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Example 1(d)  Merge Join (continued) 

R1,R2 contiguous, but unordered 

 

Total cost = sort cost + join cost 

   =  6,000 + 1,500  = 7,500  IOs 
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Example 1(c)  Merge Join (continued) 

R1,R2 contiguous, but unordered 

 

Total cost = sort cost + join cost 

   =  6,000 + 1,500  = 7,500  IOs 

But:  Iteration cost = 5,500 
   so merge joint does not pay off! 
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But say  R1 = 10,000 blocks    contiguous 

   R2 = 5,000 blocks      not ordered 

 

Iterate:  5000 x (100+10,000) = 50 x 10,100 
        100 

                   = 505,000 IOs 
  

Merge join:  5(10,000+5,000) = 75,000 IOs 

 

       Merge Join (with sort) WINS! 
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How much memory do we need for
   merge sort? 

E.g:   Say I have 10 memory blocks 

       10 

    

..
. 

100 chunks ⇒ to merge, need 
                      100 blocks! R1 
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In general:    

Say  k blocks in memory 

  x blocks for relation sort 

# chunks = (x/k)      size of chunk = k 
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In general:    

Say  k blocks in memory 

  x blocks for relation sort 

# chunks = (x/k)      size of chunk = k 

# chunks < buffers available for merge 
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In general:    

Say  k blocks in memory 

  x blocks for relation sort 

# chunks = (x/k)      size of chunk = k 

# chunks < buffers available for merge 

so...   (x/k)  ≤  k 

or  k2 ≥ x    or  k ≥  √x 
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In our example 

R1 is 1000 blocks,  k ≥ 31.62 

R2 is 500 blocks,    k ≥ 22.36 

  

 Need at least 32 buffers 

 

Again: in practice we would not want to 
use only one buffer per run! 
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Can we improve on merge join? 

Hint: do we really need the fully sorted 
files? 

 

 
R1 

R2 

Join? 

sorted runs 
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Cost of improved merge join: 

C = Read R1 + write R1 into runs 

 + read R2 + write R2 into runs 

 + join 

 = 2,000 + 1,000 + 1,500 = 4,500 

 

--> Memory requirement? 
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Example 1(d)   Index Join 

•  Assume R1.C index exists; 2 levels 

•  Assume R2 contiguous, unordered 

•  Assume R1.C index fits in memory 
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Cost: Reads: 500 IOs   

   for each R2 tuple: 

   - probe index - free 

   - if match, read R1 tuple: 1 IO 
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What is expected # of matching 
tuples? 

(a) say R1.C is key, R2.C is foreign key 

  then expect = 1 

 
(b) say V(R1,C) = 5000,  T(R1) = 10,000 

 with uniform assumption 
 expect = 10,000/5,000   = 2 
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(c) Say DOM(R1, C)=1,000,000 

           T(R1) = 10,000 

 with alternate assumption 

  Expect =   10,000    =  1 
         1,000,000     100 

What is expected # of matching 
tuples? 
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Total cost with index join 

(a)  Total cost = 500+5000(1)1 = 5,500 

 

(b)  Total cost = 500+5000(2)1 = 10,500 

 

(c)  Total cost = 500+5000(1/100)1=550 
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What if index does not fit in memory? 

Example: say R1.C index is 201 blocks 

 

•  Keep root + 99 leaf nodes in memory 

•  Expected cost of each probe is 

  E = (0)99 + (1)101  ≈ 0.5 
      200   200 
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Total cost (including probes) 

 

 = 500+5000 [Probe + get records] 

 = 500+5000 [0.5+2]     uniform assumption 

 = 500+12,500 = 13,000     (case b) 
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Total cost (including probes) 

 

 = 500+5000 [Probe + get records] 

 = 500+5000 [0.5+2]     uniform assumption 

 = 500+12,500 = 13,000     (case b) 

For case (c): 

= 500+5000[0.5 × 1 + (1/100) × 1] 

= 500+2500+50 = 3050 IOs  
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So far 
 

   Nested Loop     5500 
   Merge join      1500 
   Sort+Merge Join    7500 → 4500 
   R1.C Index      5500 → 3050 → 550 
   R2.C Index      ________ 
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•  R1, R2 contiguous (un-ordered) 

→ Use 100 buckets 

→ Read R1, hash, + write buckets 

 

R1 → 

Example 1(e)   Partition Hash Join 

..
. 

..
. 

10 blocks 

100 
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-> Same for R2 

-> Read one R1 bucket; build memory hash table 

 -using different hash function h’ 

-> Read corresponding R2 bucket + hash probe 

 

 

R1 

R2 

..
. 

R1 

memory ..
. 

✏ Then repeat for all buckets 
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Cost: 

“Bucketize:”  Read R1 + write 

      Read R2 + write 

Join:   Read R1, R2 

 

Total cost = 3 x [1000+500] = 4500 
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Cost: 

“Bucketize:”  Read R1 + write 

      Read R2 + write 

Join:   Read R1, R2 

 

Total cost = 3 x [1000+500] = 4500 

Note: this is an approximation since   
buckets will vary in size and  
we have to round up to blocks 

Why is Hash Join good? 
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R 

S S 

R 
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Minimum memory requirements: 

Size of R1 bucket =  (x/k) 

  k = number of memory buffers 

  x = number of R1 blocks 

 
So...  (x/k) < k 
 
k > √x           need: k+1 total memory 
       buffers 
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Can we use Hash-join when buckets 
do not fit into memory?: 

•  Treat buckets as relations and apply 
Hash-join recursively 

join 

Duality Hashing-Sorting 

•  Both partition inputs 

•  Until input fits into memory 

•  Logarithmic number of phases in 
memory size 

CS 525 Notes 10 - Query Execution 132 
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Trick:  keep some buckets in memory 

E.g., k’=33     R1 buckets = 31 blocks 
        keep 2 in memory           

 
memory 

G0 

G1 

in 

..
. 

31 

33-2=31 

R1 

called hybrid hash-join 
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Trick:  keep some buckets in memory 

E.g., k’=33     R1 buckets = 31 blocks 
        keep 2 in memory           

 
memory 

G0 

G1 

in 

..
. 

31 

33-2=31 

R1 

Memory use: 
G0   31 buffers 
G1   31 buffers 
Output   33-2 buffers 
R1 input 1 
Total   94 buffers 

 6 buffers to spare!! 

called hybrid hash-join 
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Next: Bucketize R2 

– R2 buckets =500/33= 16 blocks 

– Two of the R2 buckets joined immediately 

with G0,G1           

 
memory 

G0 

G1 

in 

..
. 

16 

33-2=31 

R2 

..
. 

31 

33-2=31 

R2 buckets R1 buckets 
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Finally: Join remaining buckets 

–  for each bucket pair: 

•  read one of the buckets into memory 

•  join with second bucket          

 
memory 

Gi 

out 

..
. 

16 

33-2=31 

ans 

..
. 

31 

33-2=31 

R2 buckets R1 buckets one full R2 
bucket 

one R1 
buffer 
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Cost 

•  Bucketize R1 = 1000+31×31=1961 

•  To bucketize R2, only write 31 buckets:
 so, cost = 500+31×16=996 

•  To compare join (2 buckets already done)

   read 31×31+31×16=1457 

Total cost = 1961+996+1457 = 4414 
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•  How many buckets in memory? 

memory 

G0 

G1 

in 
R1 

memory 

G0 

in 
R1 

OR... 

☛ See textbook for answer... 

? 
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Another hash join trick: 

•  Only write into buckets    
 <val,ptr> pairs 

•  When we get a match in join phase,  
 must fetch tuples 
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•  To illustrate cost computation, assume: 

– 100 <val,ptr> pairs/block 

– expected number of result tuples is 100 
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•  To illustrate cost computation, assume: 

– 100 <val,ptr> pairs/block 

– expected number of result tuples is 100 

 •  Build hash table for R2 in memory  
 5000 tuples → 5000/100 = 50 blocks 

•  Read R1 and match 

•  Read ~ 100 R2 tuples 
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•  To illustrate cost computation, assume: 

– 100 <val,ptr> pairs/block 

– expected number of result tuples is 100 

 •  Build hash table for R2 in memory  
 5000 tuples → 5000/100 = 50 blocks 

•  Read R1 and match 

•  Read ~ 100 R2 tuples 

Total cost =  Read R2:   500 
   Read R1:   1000 

   Get tuples:  100 
      1600 
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So far: 

  Iterate    5500 
  Merge join    1500 
  Sort+merge joint  7500 
  R1.C index    5500 → 550 
  R2.C index    _____ 
  Build R1.C index   _____ 
  Build R2.C index   _____ 
  Hash join    4500+ 
     with trick,R1 first  4414 
     with trick,R2 first  _____ 
  Hash join, pointers  1600 
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Yet another hash join trick: 

•  Combine the ideas of  

– block nested-loop with hash join 

•  Use memory to build hash-table for one 
chunk of relation 

•  Find join partners in O(1) instead of 
O(M) 

•  Trade-off 

– Space-overhead of hash-table 

– Time savings from look-up 
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Summary 

•  Nested Loop ok for “small” relations  
  (relative to memory size) 

– Need for complex join condition 

•  For equi-join, where relations not  
 sorted and no indexes exist,
   hash join usually best 
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•  Sort + merge join good for    
 non-equi-join (e.g., R1.C > R2.C) 

•  If relations already sorted, use   
 merge join 

•  If index exists, it could be useful 

   (depends on expected result size) 

  

Join Comparison 
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Ni= number of tuples in Ri 

B(Ri) = number of blocks of Ri 
#P = number of partition steps for hash join 
Pij = average number of join partners 

Algorithm #I/O Memory Disk Space 

Nested Loop 
(block) 

B(R1) / (M-1) * !
[min(B(R),M-1) 
+ B(R2)] 

3 0 

Index Nested Loop B(R1) + N1 * P12 B(Index) + 2  0 

Merge (sorted) B(R1) + B(R2) Max tuples =  0 

Merge (unsorted) B(R1) + B(R2)+ 
(sort – 1 pass) 

sort  
 

B(R1) + B(R2) 
 

Hash (2#P + 1) (B(R1) + 
B(R2)) 

root(max(B(R1), 
B(R2)), #P + 1) 

~B(R1) + B(R2) 

Why do we need nested loop? 

•  Remember not all join implementations 
work for all types of join conditions 
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Algorithm Type of Condition Example 

Nested Loop any a LIKE ‘%hello%’ 

Index Nested Loop Supported by index: 
Equi-join (hash) 

Equi or range (B-tree) 

a = b 
a < b 

Merge Equalities and ranges a < b, a = b AND c = d 

Hash Equi-join a = b 

Outer Joins 

•  How to implement (left) outer joins? 

•  Nested Loop and Merge 

– Use a flag that is set to true if we find a 
match for an outer tuple 

–  If flag is false fill with NULL 

•  Hash 

–  If no matching tuple fill with NULL 
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Merge Left Outer Join 
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R      B=C S 

A B 

a 1 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR ZS 

Output: (a,1,1,X)  
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Merge Left Outer Join 
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R      B=C S 

A B 

a 1 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

No match for (d,4) 
Output: (d,4,NULL,NULL)  

Merge Left Outer Join 
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R      B=C S 

A B 

a 1 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

No match for (e,5) 
Output: (e,5,NULL,NULL)  

Operators Overview 
•  (External) Sorting 

•  Joins (Nested Loop, Merge, Hash, …) 

•  Aggregation (Sorting, Hash) 

•  Selection, Projection (Index, Scan) 

•  Union, Set Difference 

•  Intersection 

•  Duplicate Elimination 
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Aggregation 

•  Have to compute aggregation functions 

–  for each group of tuples from input 

•  Groups 

– Determined by equality of group-by 

attributes 
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Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 
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SELECT sum(a),b !

FROM R !

GROUP BY b !

sum(a) b 

6 1 

6 2 

Aggregation Function 
Interface 

• init() !

–  Initialize state 

• update(tuple) !

– Update state with information from tuple 

• close() !

– Return result and clean-up 
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Implementation SUM(A) 

• init() !

– sum := 0 !

• update(tuple) !

– sum += tuple.A!

• close() !

– return sum !
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Aggregation Implementations 

•  Sorting 

– Sort input on group-by attributes 

– On group boundaries output tuple 

•  Hashing 

– Store current aggregated values for each 
group in hash table 

– Update with newly arriving tuples 

– Output result after processing all inputs 
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Grouping by sorting 

•  Similar to Merge join 

•  Sort R on group-by attribute 

•  Scan through sorted input 

–  If group-by values change 

• Output using close() and call init() 

– Otherwise 

• Call update() 
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Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !

FROM R !

GROUP BY b !

a b 

3 1 

3 1 

4 2 

1 2 

1 2 

sort init() 

0 
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Aggregation Example 

SELECT sum(a),b !

FROM R !

GROUP BY b !

a b 

3 1 

3 1 

4 2 

1 2 

1 2 

update(3,1) 

3 
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Aggregation Example 

SELECT sum(a),b !

FROM R !

GROUP BY b !

a b 

3 1 

3 1 

4 2 

1 2 

1 2 

update(3,1) 

6 
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Aggregation Example 

SELECT sum(a),b !

FROM R !

GROUP BY b !

a b 

3 1 

3 1 

4 2 

1 2 

1 2 

Group by changed! 
close(), init(), update(4,2) 

4 

6 
output 

0 

1 

2 

3 

Grouping by Hashing 

•  Create in-memory hash-table 

•  For each input tuple probe hash table 
with group by values 

–  If no entry exists then call init(), update(), 

and add entry 

– Otherwise call update() for entry 

•  Loop through all entries in hash-table 
and ouput calling close() 
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Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !

FROM R !

GROUP BY b !
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Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !

FROM R !

GROUP BY b !

3 

Init() and update(3,1) 
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Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !

FROM R !

GROUP BY b !

3 

Init() and update(4,2) 

4 
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Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !

FROM R !

GROUP BY b !

6 

update(3,1) 

4 
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Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !

FROM R !

GROUP BY b !

6 

•  Loop through hash table entries 
•  Output tuples 

6 

Aggregation Summary 

•  Hashing 

– No sorting -> no extra I/O 

– Hash table has to fit into memory 

– No outputs before all inputs have been 
processed 

•  Sorting 

– No memory required 

– Output one group at a time 
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Operators Overview 
•  (External) Sorting 

•  Joins (Nested Loop, Merge, Hash, …) 

•  Aggregation (Sorting, Hash) 

•  Selection, Projection (Index, Scan) 

•  Union, Set Difference 

•  Intersection 

•  Duplicate Elimination 
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Duplicate Elimination 
•  Equivalent to group-by on all attributes 

•  -> Can use aggregation 
implementations 

•  Optimization 

– Hash 

• Directly output tuple and use hash table only to 
avoid outputting duplicates 
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Operators Overview 
•  (External) Sorting 

•  Joins (Nested Loop, Merge, Hash, …) 

•  Aggregation (Sorting, Hash) 

•  Selection, Projection (Index, Scan) 

•  Union, Set Difference 

•  Intersection 

•  Duplicate Elimination 
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Set Operations 

•  Can be modeled as join  

– with different output requirements 

•  As aggregation/group by on all columns 

– with different output requirements 
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Union 

•  Bag union 

– Append the two inputs 

– E.g., using three buffers 

•  Set union 

– Apply duplicate removal to result 
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Intersection 
•  Set version 

– Equivalent to join + project + duplicate 
removal  

– 3-state aggregate function (found left, 
found right, found both) 

•  Bag version 

– Join + project + min(i,j) 

– Aggegate min(count(i),count(j)) 
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Set Difference 

•  Using join methods 

– Find matching tuples 

–  If no match found, then output 

•  Using aggregation 

– count(i) – count(j) (bag) 

–  true(i) AND false(j) (set) 
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Summary 
•  Operator implementations 

– Joins! 

– Other operators 

•  Cost estimations 

–  I/O 

– memory 

•  Query processing architectures 
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Next 

•  Query Optimization Physical 

•  -> How to efficiently choose an 
efficient plan 

CS 525 Notes 10 - Query Execution 179 



1 

CS 525 Notes 11 - Physical Optimization 1 

CS 525: Advanced Database 
Organization 

11: Query Optimization 

Physical 

Boris Glavic 
Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  
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parse 

convert 

apply laws 

estimate result sizes 

consider physical plans estimate costs 

pick best 

execute 

{P1,P2,…..} 

{(P1,C1),(P2,C2)...} 

Pi 

   answer 

SQL query 

parse tree 

logical query plan 

“improved” l.q.p 

l.q.p. +sizes 

statistics 

Cost of Query 

•  Parse + Analyze 

•  Optimization – Find plan 

•  Execution 

•  Return results to client 
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Cost of Query 
•  Parse + Analyze 

– Can parse MB of SQL code in milisecs 

•  Optimization – Find plan 

– Generating plans, costing plans 

•  Execution 

– Execute plan 

•  Return results to client 

– Can be expensive but not discussed here 
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Physical Optimization 

•  Apply after applying heuristics in logical 
optimization 

•  1) Enumerate potential execution plans 

– All? 

– Subset 

•  2) Cost plans 

– What cost function? 
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Physical Optimization 

•  To apply pruning in the search for the 
best plan 

– Steps 1 and 2 have to be interleaved 

– Prune parts of the search space  

•  if we know that it cannot contain any plan that 

is better than what we found so far 

CS 525 Notes 11 - Physical Optimization 6 
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Example Query 
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SELECT e.name!

FROM Employee e, !

     EmpDep ed, !

     Department d !

WHERE e.name = ed.emp "  !

!AND ed.dep = d.dep!

"AND d.dep = ‘CS’ !

πname 

σdep=CS 

⋈dep=dep 

⋈name=emp 

Employee EmpDep Department 

Example Query – Possible Plan 
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SELECT e.name!

FROM Employee e, !

     EmpDep ed, !

     Department d !

WHERE e.name = ed.emp "  !

!AND ed.dep = d.dep!

"AND d.dep = ‘CS’ !

πname 

ISσdep=CS 

NL⋈dep=dep 

MJ⋈name=emp 

SSEmployee SSEmpDep Department 

Cost Model 

•  Cost factors 

–  #disk I/O 

–  CPU cost 

–  Response time 

–  Total execution time 

•  Cost of operators 

–  I/O as discussed in query execution (part 10) 

–  Need to know size of intermediate results 

(part 09) 
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Example Query – Possible Plan 
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SELECT e.name!

FROM Employee e, !

     EmpDep ed, !

     Department d !

WHERE e.name = ed.emp "  !

!AND ed.dep = d.dep!

"AND d.dep = ‘CS’ !

πname 

ISσdep=CS 

NL⋈dep=dep 

MJ⋈name=emp 

SSEmployee SSEmpDep Department 

Cost? 
Need input size! 

Cost Model Trade-off 

•  Precision 

–  Incorrect cost-estimation -> choose 
suboptimal plan 

•  Cost of computing cost 

– Cost of costing a plan 
•  We may have to cost millions or billions of plans 

– Cost of maintaining statistics 
•  Occupies resources needed for query processing 
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Plan Enumeration 

•  For each operator in the query 

– Several implementation options 

•  Binary operators (joins) 

– Changing the order may improve 

performance a lot! 

•  -> consider both different 

implementations and order of operators 

in plan enumeration 
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Example Join Ordering 
Result Sizes 
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σdep=CS 

⋈dep=dep 

⋈name=emp 

E ED D σdep=CS 

⋈dep=dep 

⋈name=emp 

E 

ED 

D 

10000 10000 30 

1 
10000 

500 

10000 

30 

1 

10000 500 

500 

Example Join Ordering 
Cost (only NL) 
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σdep=CS 

⋈dep=dep 

⋈name=emp 

E ED D 
10000 10000 30 

1 
10000 

500 

S(E) = S(ED) = S(D) = 1/10 block 
M = 101 

σdep=CS 

⋈dep=dep 

⋈name=emp 

E 

ED 

D 

10000 

30 

1 

10000 500 

500 
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σdep=CS 

⋈dep=dep 

⋈name=emp 

E ED D 
10000 10000 30 

1 
10000 

500 

S(E) = S(ED) = S(D) = 1/10 block 
M = 101 

I/O costs only 
No pipelining, write all results to disk 

1100 x 10   
3 

101 x 10 

1100 x 10 + 101 x 10 + 3 (operator costs)  
+ 1000 + 1 + 50   (write results) 

= 13064 I/Os 

1001  + 1050 + 3 (operator costs)  
+ 1 + 50 + 50 

= 2155 I/Os 

σdep=CS 

⋈dep=dep 

⋈name=emp 

E 

ED 

D 

10000 

30 

1 

10000 500 

500 

3 

1001 x 1 

1050 x 1 

Plan Enumeration 

•  All 

– Consider all potential plans of a certain 
type (discussed later) 

– Prune only if sure 

•  Heuristics 

– Apply heuristics to prune search space 

•  Randomized Algorithms 
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Plan Enumeration Algorithms 

•  All 

–  Dynamic Programming (System R) 

–  A* search 

•  Heuristics 

–  Minimum Selectivity, Intermediate result size, … 

–  KBZ-Algorithm, AB-Algorithm 

•  Randomized 

–  Genetic Algorithms 

–  Simulated Annealing 
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Reordering Joins Revisited 

•  Equivalences (Natural Join) 

1.  R ⋈ S ≣ S ⋈ R 

2.  (R ⋈ S) ⋈ T ≣ R ⋈ (S ⋈ T) 

•  Equivalences Equi-Join 

1.  R ⋈a=b S ≣ S ⋈a=b R 

2.  (R ⋈a=b S) ⋈c=d T ≣R ⋈a=b (S ⋈c=d T)? 

3.  σa=b (R X S) ≣ R ⋈a=b S? 

CS 525 Notes 11 - Physical Optimization 18 
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Equi-Join Equivalences 

•  (R ⋈a=b S) ⋈c=d T ≣ R ⋈a=b (S ⋈c=d T) 

–  What if c is attribute of R? 

(R ⋈a=b S) ⋈c=d T ≣ R ⋈a=b∧c=d (S X T) 

 

•  σa=b (R X S) ≣ R ⋈a=b S? 

–  Only useful if a is from R and S from b (vice-
versa) 
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Why Cross-Products are bad 

•  We discussed efficient join algorithms 

– Merge-join O(n) resp. O(n log(n)) 

– Vs. Nested-loop O(n2) 

•  R X S 

– Result size is O(n2) 

• Cannot be better than O(n2) 

– Surprise, surprise: merge-join doesn’t work 

   no need to sort, but degrades to nested loop 
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Agenda 

•  Given some query 

– How to enumerate all plans? 

•  Try to avoid cross-products 

•  Need way to figure out if equivalences 
can be applied 

– Data structure: Join Graph 
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Join Graph 

•  Assumptions 

– Only equi-joins (a = b) 

• a and b are either constants or attributes 

– Only conjunctive join conditions (AND) 
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Join Graph 

•  Nodes: Relations R1, … , Rn of query 

•  Edges: Join conditions 

– Add edge between Ri and Rj labeled with C 

•  if there is a join condition C  

• That equates an attribute from Ri with an 
attribute from Rj 

– Add a self-edge to Ri for each simple 

predicate 
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Join Graph Example 
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SELECT e.name!

FROM Employee e, !

     EmpDep ed, !

     Department d !

WHERE e.name = ed.emp "  !

!AND ed.dep = d.dep!

"AND d.dep = ‘CS’ !

Department 

EmpDep 

Employee 
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Join Graph Example 
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SELECT e.name!

FROM Employee e, !

     EmpDep ed, !

     Department d !

WHERE e.name = ed.emp "  !

!AND ed.dep = d.dep!

"AND d.dep = ‘CS’ !

Department 

EmpDep 

Employee 

name=emp 

dep=dep 

dep=‘CS’ 
Notes on Join Graph  

•  Join Graph tells us in which ways we 
can join without using cross products 

•  However, … 

– Only if transitivity is considered 
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R S T 
a=b b=c 

a=c 

Join Graph Shapes 
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Chain queries 
Star queries Tree queries 

Cycle queries Clique queries 

Join Graph Shapes 
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Chain queries 

SELECT * !

FROM R,S,T !

WHERE R.a = S.b!

!AND S.c = T.d!

Join Graph Shapes 
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Star queries 

SELECT * !

FROM R,S,T,U !

WHERE R.a = S.a!

!AND R.b = T.b!

"AND R.c = U.c"

Join Graph Shapes 
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Tree queries 

SELECT * !

FROM R,S,T,U,V !

WHERE R.a = S.a!

!AND R.b = T.b!

"AND T.c = U.c!

!AND T.d = V.d"
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Join Graph Shapes 
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Cycle queries 

SELECT * !

FROM R,S,T !

WHERE R.a = S.a!

!AND S.b = T.b!

"AND T.c = R.c!

Join Graph Shapes 
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Clique queries 

SELECT * !

FROM R,S,T !

WHERE R.a = S.a!

!AND S.b = T.b!

"AND T.c = R.c!

How many join orders? 

•  Assumption 

– Use cross products (can freely reorder) 

– Joins are binary operations 

• Two inputs 

• Each input either join result or relation access 
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How many join orders? 
•  Example 3 relations R,S,T 

– 12 orders 

CS 525 Notes 11 - Physical Optimization 34 

⋈ 

⋈ 

R S

T ⋈ 

⋈ 

S R

T ⋈ 

⋈ 

R T

S ⋈ 

⋈ 

S T

R ⋈ 

⋈ 

T R

S ⋈ 

⋈ 

T S

R

⋈ 

⋈ 

S T

R ⋈ 

⋈ 

R T

S ⋈ 

⋈ 

T S

R ⋈ 

⋈ 

T R

S ⋈ 

⋈ 

R S

T ⋈ 

⋈ 

S R

T

How many join orders? 

•  A join over n+1 relations requires n binary joins 

•  The root of the join tree joins k with n – k – 1 join 

operators (0 <= k <= n-1) 
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⋈ 

k joins n – k - 1 joins 

How many join orders? 

•  This are the Catalan numbers 

 

 

Cn =  ΣCk x Cn-k-1
 = (2n)! / (n+1)!n! 

 

C0 = 1 
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k=0 

n-1 
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How many join orders? 

•  This are the Catalan numbers 

•  For each such tree we can permute the 
input relations (n+1)! Permutations 

 

(2n)! / (n+1)!n! * (n+1)! = (2n)!/n! 
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How many join orders? 
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#relations #join trees 

2 2 

3 12 

4 120 

5 1,680 

6 30,240 

7 665,280 

8 17,297,280 

9 17,643,225,600 

10  670,442,572,800 

11 28,158,588,057,600 

How many join orders? 

•  If for each join we consider k join 
algorithms then for n relations we have 

– Multiply with a factor kn-1 

•  Example consider 

– Nested loop 

– Merge 

– Hash 
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How many join orders? 
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#relations #join trees 

2 6 

3 108 

4 3240 

5 136,080 

6 7,348,320 

7 484,989,120 

8 37,829,151,360 

9 115,757,203,161,600 

10  13,196,321,160,422,400 

11 1,662,736,466,213,222,400 

Too many join orders? 

•  Even if costing is cheap 

– Unrealistic assumption 1 CPU cycle 

– Realistic are thousands or millions of 

instructions 

•  Cost all join options for 11 relations 

– 3GHz CPU, 8 cores 

– 69,280,686 sec > 2 years 
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How to deal with excessive 
number of combinations? 

•  Prune parts based on optimality 

– Dynamic programming 

– A*-search 

•  Only consider certain types of join trees 

– Left-deep, Right-deep, zig-zag, bushy 

•  Heuristic and random algorithms 

CS 525 Notes 11 - Physical Optimization 42 
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Dynamic Programming 

•  Assumption: Principle of Optimality 

– To compute the global optimal plan it is 
only necessary to consider the optimal 

solutions for its sub-queries 

•  Does this assumption hold? 

– Depends on cost-function 
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What is dynamic 
programming? 

•  Recall data structures and algorithms 101! 

•  Consider a Divide-and-Conquer problem 

–  Solutions for a problem of size n can be build from 

solutions for sub-problems of smaller size (e.g., 
n/2 or n-1) 

•  Memoize 

–  Store solutions for sub-problems 

–  -> Each solution has to be only computed once 

–  -> Needs extra memory 
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Example Fibonacci Numbers  

•  F(n) = F(n-1) + F(n-2) 

•  F(0) = F(1) = 1 
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Fib(n) !
{ !

"if (n = 0) return 0 !
"else if (n = 1) return 1 !
"else return Fib(n-1) + Fib(n-2) !

} !

Example Fibonacci Numbers  
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F(4) 

F(3) F(2) 

F(2) F(1) F(1) F(0) 

F(1) F(0) 

Complexity 

•  Number of calls 

– C(n) = C(n-1) + C(n-2) + 1 = Fib(n+2) 

– O(2n) 

CS 525 Notes 11 - Physical Optimization 47 

Using dynamic programming 
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Fib(n) !
{ !

"int[] fib; !
"fib[0] = 1; !
"fib[1] = 1; !

!

"for(i = 2; i < n; i++) !
" "fib[i] = fib[i-1] + fib[i-2] !

!

"return fib[n]; !
} !
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Example Fibonacci Numbers  
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F(4) 

F(3) 

F(2) 

F(1) F(0) 

What do we gain? 

•  O(n) instead of O(2n) 
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Dynamic Programming for 
Join Enumeration 

•  Find cheapest plan for n-relation join in 
n passes 

•  For each i in 1 … n 

– Construct solutions of size i from best 

solutions of size < i 
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DP Join Enumeration 

CS 525 Notes 11 - Physical Optimization 52 

optPlan ← Map({R},{plan}) !
"

find_join_dp(q(R1,…,Rn)) !
{ !
  for i=1 to n !
    optPlan[{Ri}] ← access_paths(Ri) !
  for i=2 to n !
    foreach S ⊆ {R1,…,Rn} with |S|=i !
      optPlan[S] ← ∅!
      foreach O ⊂ S with O ≠ ∅!
        optPlan[S] ← optPlan[S] ∪ !
            possible_joins(optPlan(O), optPlan(S\O)) !
      prune_plans(optPlan[S]) !
  return optPlan[{R1,…,Rn}]!
} !

Dynamic Programming for 
Join Enumeration 

• access_paths (R) !
– Find cheapest access path for relation R 

• possible_joins(plan, plan) !
– Enumerate all joins (merge, NL, …) 

variants between the input plans 

• prune_plans({plan}) !
– Only keep cheapest plan from input set 
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DP-JE Complexity 

•  Time: O(3n) 

•  Space: O(2n) 

•  Still to much for large number of joins 
(10-20) 
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+left  
+ zig-zag 
+right 

Types of join trees 
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⋈ 

⋈ 

R T

S

⋈ 

U

⋈ 

⋈ 

R T

S

⋈ 

U

⋈ 

⋈ 

S R

T

⋈ 

U
⋈ ⋈ 

R T S

⋈ 

U

Left-deep zig-zag bushy Right-deep 

Number of Join-Trees 

•  Number of join trees for n relations 

•  Left-deep: n! 

•  Right-deep: n! 

•  Zig-zag: 2n-2n! 
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How many join orders? 
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#relations #bushy join trees #left-deep join trees 

2 2 2 

3 12 6 

4 120 24 

5 1,680 120 

6 30,240 720 

7 665,280 5040 

8 17,297,280 40,230 

9 17,643,225,600 362,880 

10  670,442,572,800 3,628,800 

11 28,158,588,057,600 39,916,800 

DP with Left-deep trees only 

•  Reduced search-space 

•  Each join is with input relation 

–  ->can use index joins 

–  ->easy to pipe-line 

•  DP with left-deep plans was introduced 
by system R, the first relational 
database developed by IBM Research 
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⋈ 

⋈ 

R T

S

⋈ 

U

Revisiting the assumption 

•  Is it really sufficient to only look at the 
best plan for every sub-query? 

•  Cost of merge join depends whether the 
input is already sorted 

–  -> A sub-optimal plan may produce results 
ordered in a way that reduces cost of 

joining above 

– Keep track of interesting orders 
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Interesting Orders 

•  Number of interesting orders is usually 
small 

•  ->Extend DP join enumeration to keep 
track of interesting orders 

– Determine interesting orders 

– For each sub-query store best-plan for 
each interesting order 

CS 525 Notes 11 - Physical Optimization 60 
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Example Interesting Orders 
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⋈ 

⋈ 

R S

T

Left-deep best plans: 3-way {R,S,T} 

Left-deep best plans: 2-way 

{R,S} 

⋈ 

R S

{R,T} 

⋈ 

R T

{S,T} 

⋈ 

T S

HJ HJ HJ 

⋈ 

⋈ 

R T

S ⋈ 

⋈ 

T S

R
HJ HJ HJ 

HJ HJ HJ 

Example Interesting Orders 
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⋈ 

⋈ 

R S

T

Left-deep best plans: 3-way {R,S,T} 

Left-deep best plans: 2-way 

{R,S} 

⋈ 

R S

{R,T} 

⋈ 

R T

{S,T} 

⋈ 

T S

HJ HJ HJ 

⋈ 

⋈ 

R T

S ⋈ 

⋈ 

T S

R
HJ HJ HJ 

HJ HJ HJ 

⋈ 

R S

MJ 

Not best 

⋈ 

⋈ 

R S

T
MJ 

MJ 

best 

Greedy Join Enumeration 

•  Heuristic method 

– Not guaranteed that best plan is found 

•  Start from single relation plans 

•  In each iteration greedily join to plans 
with the minimal cost 

•  Until a plan for the whole query has 
been generated 
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Greedy Join Enumeration 
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plans ← list({plan}) !
"

find_join_dp(q(R1,…,Rn)) !
{ !
  for i=1 to n !
    plans ← plans ∪ access_paths(Ri) !
  for i=n to 2 !
    cheapest = argminj,k∊{1,…,n} (cost(Pj ⋈ Pk)) !

      plans ← plans \ {Pj,Pk} ∪ {Pj ⋈ Pk}    !
  return plans // single plan left!
} !

Greedy Join Enumeration 

•  Time: O(n3) 

– Loop iterations: O(n) 

–  In each iterations looking of pairs of plans 

in of max size n: O(n2) 

•  Space: O(n2) 

– Needed to store the current list of plans 
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Randomized Join-Algorithms 

•  Iterative improvement 

•  Simulated annealing 

•  Tabu-search 

•  Genetic algorithms 

CS 525 Notes 11 - Physical Optimization 66 
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Transformative Approach 

•  Start from (random) complete solutions 

•  Apply transformations to generate new 
solutions 

– Direct application of equivalences 

• Commutativity 

• Associativity 

– Combined equivalences 

• E.g., (R ⋈ S) ⋈ T ≣ T ⋈ (S ⋈ R) 
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Concern about Transformative 
Approach 

•  Need to be able to generate random 
plans fast 

•  Need to be able to apply 
transformations fast 

– Trade-off: space covered by 
transformations vs. number and complexity 

of transformation rules 
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Iterative Improvement 
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improve(q(R1,…,Rn)) !
{ !
  best ← random_plan(q) !
  while (not reached time limit) !
    curplan ← random_plan(q) !
    do !"

    !prevplan ← curplan!
      curplan ← apply_random_trans (prevplan) "
    while (cost(curplan) < cost(prevplan)) !
    if (cost(prevplan) < cost(best) !
      best ← prevplan!
  return best !
} !

Iterative Improvement 

•  Easy to get stuck in local minimum 

•  Idea: Allow transformations that result 
in more expensive plans with the hope 
to move out of local minima 

–  ->Simulated Annealing 
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Simulated Annealing 
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SA(q(R1,…,Rn)) !
{ !
  best ← random_plan(q) !
  curplan ← best !
  t ← tinit // “temperature”!
  while (t > 0) !
    newplan ← apply_random_trans(curplan) !
    if cost(newplan) < cost(curplan) !"

    !curplan ← newplan!
    else if random() < e-(cost(newplan)-cost(curplan))/t !

      curplan ← newplan!

    if (cost(curplan) < cost(best) !
      best ← curplan!

     reduce(t)!
  return best !
} !

Simulated Annealing 
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SA(q(R1,…,Rn)) !
{ !
  best ← random_plan(q) !
  curplan ← best !
  t ← tinit // “temperature”!
  while (t > 0) !
    newplan ← apply_random_trans(curplan) !
    if cost(newplan) < cost(curplan) !"

    !curplan ← newplan!
    else if random() < e-(cost(newplan)-cost(curplan))/t !

      curplan ← newplan!

    if (cost(curplan) < cost(best) !
      best ← curplan!

     reduce(t)!
  return best !
} !

Until “cooled down” !

Reduce !
Chance !
To “jump” !

Probability to !
Take “bad” plan !
Based on temp. !
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Genetic Algorithms 

•  Represent solutions as sequences 
(strings) = genome 

•  Start with random population of 
solutions 

•  Iterations = Generations 

– Mutation = random changes to genomes 

– Cross-over = Mixing two genomes 
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Genetic Join Enumeration for 
Left-deep Plans 

•  A left-deep plan can be represented as 
a permutation of the relations 

– Represent each relation by a number 

– E.g., encode this tree as “1243” 
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⋈ 

⋈ 

R1 
R2 

R4 

⋈ 

R3 

Mutation 

•  Switch random two random positions 

•  Is applied with a certain fixed 
probability 

•  E.g., “1342” -> “4312” 
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Cross-over 

•  Sub-set exchange 

– For two solutions find subsequence 

• equals length with the same set of relations 

– Exchange these subsequences 

•  Example 

– J1 = “5632478” and J2 = “5674328” 

– Generate J’ = “5643278” 
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Survival of the fittest 

•  Probability of survival determined by 
rank within the current population 

•  Compute ranks based on costs of 
solutions 

•  Assign Probabilities based on rank 

– Higher rank -> higher probability to survive 

•  Roll a dice for each solution 
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Genetic Join Enumeration 

•  Create an initial population P random plans 

•  Apply crossover and mutation with a fixed 
rate 

–  E.g., crossover 65%, mutation 5% 

•  Apply selection until size is again P 

•  Stop once no improvement for at least X 
iterations 
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Comparison Randomized Join 
Enumeration 

•  Iterative Improvement 

–  Towards local minima (easy to get stuck) 

•  Simulated Annealing 

–  Probability to “jump” out of local minima 

•  Genetic Algorithms 

–  Random transformation 

–  Mixing solutions (crossover) 

–  Probabilistic chance to keep solution based on cost 
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Join Enumeration Recap 

•  Hard problem 

– Large problem size 

• Want to reduce search space 

– Large cost differences between solutions 

• Want to consider many solution to increase 

chance to find a good one. 
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Join Enumeration Recap 

•  Tip of the iceberg 

– More algorithms 

– Combinations of algorithms 

– Different representation subspaces of the 
problem 

– Cross-products / no cross-products 

– … 
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From Join-Enumeration to 
Plan Enumeration 

•  So far we only know how to reorder 
joins 

•  What about other operations? 

•  What if the query does consist of 
several SQL blocks? 

•  What if we have nested subqueries? 
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CS 525 Notes 11 - Physical Optimization 83 

parse 

convert 

apply laws 

estimate result sizes 

consider physical plans estimate costs 

pick best 

execute 

{P1,P2,…..} 

{(P1,C1),(P2,C2)...} 

Pi 

   answer 

SQL query 

parse tree 

logical query plan 

“improved” l.q.p 

l.q.p. +sizes 

statistics 

From Join-Enumeration to 
Plan Enumeration 

•  Lets reconsider the input to plan 
enumeration! 

– We briefly touched on Query graph 

models 

– We discussed briefly why relational algebra 

is not sufficient 

CS 525 Notes 11 - Physical Optimization 84 
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Query Graph Models 

•  Represents an SQL query as query 
blocks 

– A query block corresponds to the an SQL 

query block (SELECT FROM WHERE …) 

– Data type/operator/function information 

• Needed for execution and optimization 
decisions 

– Structured in a way suited for optimization 
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QGM example 

SELECT name, city !

FROM !

"(SELECT * !

"FROM person) AS p, !

"(SELECT * !

"FROM address) AS a !

WHERE p.addrId = a.id!
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Postgres Example 
{QUERY  

    :commandType 1  

    :querySource 0  

    :canSetTag true  

    :utilityStmt <>  

    :resultRelation 0  

    :intoClause <>  

    :hasAggs false  

    :hasSubLinks false  

    :rtable ( 

       {RTE  

       :alias  

          {ALIAS  

          :aliasname p  

          :colnames <> 

          } 

       :eref  

          {ALIAS  

          :aliasname p  

          :colnames ("name" "addrid") 

          } 

       :rtekind 1  

       :subquery  

          {QUERY  

          :commandType 1  

          :querySource 0  

          :canSetTag true  

… 
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How to enumerate plans for a 
QGM query 

•  Recall the correspondence between SQL 
query blocks and algebra expressions! 

•  If block is (A)SPJ 

– Determine join order 

– Decide which aggregation to use (if any) 

•  If block is set operation 

– Determine order 
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More than one query block 

•  Recursive create plans for subqueries 

– Start with leaf blocks 

•  Consider our example 

– Even if blocks are only SPJ we would not 

consider reordering of joins across blocks 

–  -> try to “pull up” subqueries before 

optimization 
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Subquery Pull-up 

SELECT name, city !

FROM !

"(SELECT * !

"FROM person) AS p, !

"(SELECT * !

"FROM address) AS a !

WHERE p.addrId = a.id!
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SELECT name, city !

FROM !

"person p, !

"address a !

WHERE p.addrId = a.id!
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Parameterized Queries 

•  Problem 

– Repeated executed of similar queries 

•  Example 

– Webshop 

– Typical operation: Retrieve product with all 
user comments for that product 

– Same query modulo product id 
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Parameterized Queries 

•  Naïve approach 

– Optimize each version individually 

– Execute each version individually 

•  Materialized View 

– Store common parts of the query 

–  -> Optimizing a query with materialized 
views 

–  -> Separate topic not covered here 
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Caching Query Plans 

•  Caching Query Plans 

– Optimize query once 

– Adapt plan for specific instances 

– Assumption: varying values do not effect 
optimization decisions 

– Weaker Assumption: Additional cost of 

“bad” plan less than cost of repeated 
planning   

CS 525 Notes 11 - Physical Optimization 93 

Parameterized Queries 

•  How to represent varying parts of a 
query 

– Parameters 

– Query planned with parameters assumed 
to be unknown 

– For execution replace parameters with 
concrete values 
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PREPARE statement 

•  In SQL 

– PREPARE name (parameters) AS 
query !

– EXECUTE name (parameters) 
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Nested Subqueries 
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SELECT name !

FROM person p !

WHERE EXISTS (SELECT newspaper !

" "   FROM hasRead h !

" "   WHERE h.name = p.name "

" "     AND h.newspaper = ‘Tribune’) !
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How to evaluate nested 
subquery? 

•  If no correlations: 

– Execute once and cache results 

•  For correlations: 

– Create plan for query with parameters 

•  -> called nested iteration 
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Nested Iteration - Correlated 
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q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) // parameterize q’ with values from t !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’) "

Nested Iteration - 
Uncorrelated 
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q ← outer query !
q’ ← inner query !
result ← execute(q) !
result’ ← execute (qt) "
foreach tuple t in result !
  evaluate_nested_condition (t,result’) "

Nested Iteration - Example 
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SELECT name !

FROM person p !

WHERE EXISTS (SELECT newspaper !

" "   FROM hasRead h !

" "   WHERE h.name = p.name " "!

                      AND h.newspaper = ‘Tribune’) !

name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

Nested Iteration - Example 
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name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

SELECT newspaper !

FROM hasRead h !

WHERE h.name = p.name !

      AND h.newspaper 
"   = ‘Tribune’) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’) "

Nested Iteration - Example 
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name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

SELECT newspaper !

FROM hasRead h !

WHERE h.name = ‘Alice’!

      AND h.newspaper 
"   = ‘Tribune’) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’) "
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Nested Iteration - Example 

CS 525 Notes 11 - Physical Optimization 103 

name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

SELECT newspaper !

FROM hasRead h !

WHERE h.name = p.name !

      AND h.newspaper 
"   = ‘Tribune’) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’) "

newspaper 

Tribune 

result’ 

Nested Iteration - Example 
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name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

EXISTS evaluates to 
true! !

!

Output(Alice) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’) "

newspaper 

Tribune 

result’ 

Nested Iteration - Example 
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name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

Empty result set -> 
EXISTS evaluates to 
false !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’) "

newspaper 

result’ 

Nested Iteration - Example 
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name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

Empty result set -> 
EXISTS evaluates to 
false !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’) "

newspaper 

result’ 

Nested Iteration - Discussion 

•  Repeated evaluation of nested subquery 

–  If correlated 

–  Improve:  

• Plan once and substitute parameters 

• EXISTS: stop processing after first result 

•  IN/ANY: stop after first match 

•  No optimization across nesting 
boundaries 
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Unnesting and Decorrelation 

•  Apply equivalences to transform nested 
subqueries into joins 

•  Unnesting: 

– Turn a nested subquery into a join 

•  Decorrelation: 

– Turn correlations into join expressions 

CS 525 Notes 11 - Physical Optimization 108 
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Equivalences 

•  Classify types of nesting 

•  Equivalence rules will have 
preconditions 

•  Can be applied heuristically before plan 
enumeration or using a transformative 

approach 
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N-type Nesting 

•  Properties 

– Expression ANY comparison (or IN)!

– No Correlations 

– Nested query does not use aggregation 

•  Example 
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SELECT name !

FROM orders o!

WHERE o.cust IN (SELECT cId!

" "   FROM customer !

" "   WHERE region = ‘USA’) !

A-type Nesting 

•  Properties 

– Expression is ANY comparison (or scalar) 

– No Correlations 

– Nested query uses aggregation 

– No Group By 

•  Example 
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SELECT name !

FROM orders o!

WHERE o.amount = (SELECT max(amount)!

" "   FROM orders i) !

J-type Nesting 

•  Properties 

– Expression is ANY comparison (IN) 

– Nested query uses equality comparison 

with correlated attribute 

– No aggregation in nested query 

•  Example 
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SELECT name !

FROM orders o !

WHERE o.amount IN (SELECT amount !

" " FROM orders i !

" " WHERE i.cust = o.cust                !

                    AND i.shop = ‘New York’) !

JA-type Nesting 
•  Properties 

– Expression equality comparison 

– Nested query uses equality comparison 

with correlated attribute 

– Nested query uses aggregation and no 
GROUP BY 

•  Example 
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SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount)!

" "   FROM orders i !

" "   WHERE i.cust = o.cust) !

Unnesting A-type 

•  Move nested query to FROM clause 

•  Turn nested condition (op ANY, IN) into 
op with result attribute of nested query 

CS 525 Notes 11 - Physical Optimization 114 
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Unnesting N/J-type 

•  Move nested query to FROM clause 

•  Add DISTINCT to SELECT clause of 
nested query 

•  Turn equality comparison with 
correlated attributes into join conditions 

•  Turn nested condition (op ANY, IN) into 
op with result attribute of nested query 
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Example 

1.  To FROM 
clause 

2.  Add 

DISTINCT 

3.  Correlation 

to join 

4.  Nesting 
condition to 
join 
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SELECT name !

FROM orders o !

WHERE o.amount IN (SELECT amount !

" " FROM orders i !

" " WHERE i.cust = o.cust                !

                    AND i.shop = ‘New York’) !

SELECT name !

FROM orders o, !

     (SELECT amount !

     FROM orders i !

     WHERE i.cust = o.cust                !

           AND i.shop = ‘New York’) AS sub !

Example 

1.  To FROM 
clause 

2.  Add 

DISTINCT 

3.  Correlation 

to join 

4.  Nesting 
condition to 
join 
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SELECT name !

FROM orders o !

WHERE o.amount IN (SELECT amount !

" " FROM orders i !

" " WHERE i.cust = o.cust                !

                    AND i.shop = ‘New York’) !

SELECT name !

FROM orders o, !

     (SELECT DISTINCT amount !

     FROM orders i !

     WHERE i.cust = o.cust                !

           AND i.shop = ‘New York’) AS sub !

Example 

1.  To FROM 
clause 

2.  Add 

DISTINCT 

3.  Correlation 

to join 

4.  Nesting 
condition to 
join 
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SELECT name !

FROM orders o !

WHERE o.amount IN (SELECT amount !

" " FROM orders i !

" " WHERE i.cust = o.cust                !

                    AND i.shop = ‘New York’) !

SELECT name !

FROM orders o, !

     (SELECT DISTINCT amount, cust!

     FROM orders i              !

     WHERE i.shop = ‘New York’) AS sub !

WHERE sub.cust = o.cust !

Example 

1.  To FROM 
clause 

2.  Add 

DISTINCT 

3.  Correlation 

to join 

4.  Nesting 
condition to 
join 
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SELECT name !

FROM orders o !

WHERE o.amount IN (SELECT amount !

" " FROM orders i !

" " WHERE i.cust = o.cust                !

                    AND i.shop = ‘New York’) !

SELECT name !

FROM orders o, !

     (SELECT DISTINCT amount, cust!

     FROM orders i              !

     WHERE i.shop = ‘New York’) AS sub !

WHERE sub.cust = o.cust!

      AND o.amount = sub.amount!

Unnesting JA-type 

•  Move nested query to FROM clause 

•  Turn equality comparison with 
correlated attributes into 

– GROUP BY 

– Join conditions 

•  Turn nested condition (op ANY, IN) into 
op with result attribute of nested query 
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Example 

1.  To FROM 
clause 

2.  Introduce 

GROUP BY 
and join 
conditions 

3.  Nesting 

condition to 
join 
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SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount)!

" "   FROM orders i !

" "   WHERE i.cust = o.cust) !

SELECT name !

FROM orders o, !

    (SELECT max(amount) !

    FROM orders I !

    WHERE i.cust = o.cust) sub !

Example 

1.  To FROM 
clause 

2.  Introduce 

GROUP BY 
and join 
conditions 

3.  Nesting 

condition to 
join 
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SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount)!

" "   FROM orders i !

" "   WHERE i.cust = o.cust) !

SELECT name !

FROM orders o, !

    (SELECT max(amount) AS ma, i.cust!

    FROM orders i !

    GROUP BY i.cust) sub !

WHERE i.cust = sub.cust!

Example 

1.  To FROM 
clause 

2.  Introduce 

GROUP BY 
and join 
conditions 

3.  Nesting 

condition to 
join 
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SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount)!

" "   FROM orders i !

" "   WHERE i.cust = o.cust) !

SELECT name !

FROM orders o, !

    (SELECT max(amount) AS ma, i.cust!

    FROM orders i !

    GROUP BY i.cust) sub !

WHERE sub.cust = o.cust!

      AND o.amount = sub.ma!

Unnesting Benefits Example 
•  N(orders) = 

1,000,000 

•  V(cust,orders) = 
10,000 

•  S(orders) =  

   1/10 block 
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SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount) !

" "   FROM orders i !

" "   WHERE i.cust = o.cust) !

SELECT name !

FROM orders o, !

    (SELECT max(amount) AS ma, i.cust!

    FROM orders i !

    GROUP BY i.cust) sub !

WHERE sub.cust = o.cust!

      AND o.amount = sub.ma!
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SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount) !

" "   FROM orders i !

" "   WHERE i.cust = o.cust) !

•  Inner query: 

–  One scan B(orders) = 100,000 I/Os 

•  Outer query: 

–  One scan B(orders) = 100,000 I/Os 

–  1,000,000 tuples 

•  Total cost: 1,000,001 x 100,000=~ 1011 I/Os 

•  N(orders) = 1,000,000 

•  V(cust,orders) = 10,000 

•  S(orders) = 1/10 block 

•  M = 10,000 

•  N(orders) = 1,000,000 

•  V(cust,orders) = 10,000 

•  S(orders) = 1/10 block 

•  M = 10,000 
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•  Inner queries: 

–  One scan B(orders) = 100,000 I/Os 

•  1,000,000 result tuples 

–  Aggregation: Sort (assume 1 pass) = 3 x 100,000 = 

300,000 I/Os 

•  10,000 result tuples -> + 1,000 pages to write to disk 

•  The join: use merge – join during merge  

–  3 x (1,000 + 100,000) I/Os = 303,000 I/Os 

•  Total cost: 604,000 I/Os 

SELECT name !

FROM orders o, !

    (SELECT max(amount) AS ma, i.cust!

    FROM orders i !

    GROUP BY i.cust) sub !

WHERE sub.cust = o.cust!

      AND o.amount = sub.ma!
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CS 525 Notes 12 - Transaction 
Management 

1 

CS 525: Advanced Database 
Organization 

12: Transaction  
Management 

Boris Glavic 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  

Concurrency and Recovery 

• DBMS should enable multiple 
clients to access the database 
concurrently 
– This can lead to problems with correctness 

of data because of interleaving of 
operations from different clients 

–  ->System should ensure correctness 
(concurrency control) 

CS 525 Notes 12 - Transaction 
Management 

2 

Concurrency and Recovery 

• DBMS should enable reestablish 
correctness of data in the presence 
of failures 
–  ->System should restore a correct state 

after failure (recovery) 

CS 525 Notes 12 - Transaction 
Management 

3 CS 525 Notes 12 - Transaction 
Management 

4 

Integrity or correctness of data 

•  Would like data to be “accurate” or
  “correct” at all times 

       EMP Name 

White 
Green 
Gray 

Age 

52 
3421 

1 

CS 525 Notes 12 - Transaction 
Management 

5 

Integrity or consistency constraints 

•  Predicates data must satisfy 

•  Examples: 

- x is key of relation R 

- x → y holds in R 

- Domain(x) = {Red, Blue, Green} 

- α is valid index for attribute x of R 

- no employee should make more than  

 twice the average salary 

CS 525 Notes 12 - Transaction 
Management 

6 

Definition: 

•  Consistent state: satisfies all constraints 

•  Consistent DB: DB in consistent state 
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Management 

7 

Constraints (as we use here) may  
 not capture “full correctness” 

Example 1   Transaction constraints 

•  When salary is updated,  

  new salary >  old salary 

•  When account record is deleted, 

  balance = 0 

CS 525 Notes 12 - Transaction 
Management 

8 

Note: could be “emulated” by simple  
 constraints, e.g.,  

 

  account Acct # …. balance deleted? 

CS 525 Notes 12 - Transaction 
Management 

9 

Example 2     Database should reflect
    real world 

 

 

DB 
Reality 

Constraints (as we use here) may  
 not capture “full correctness” 

CS 525 Notes 12 - Transaction 
Management 

10 

?in any case, continue with constraints... 

Observation:  DB cannot be consistent 
     always! 

Example: a1 + a2 +…. an = TOT (constraint) 

 Deposit $100 in a2:   a2  ←  a2 + 100 

     TOT  ←  TOT + 100 

CS 525 Notes 12 - Transaction 
Management 

11 

 

 
    a2 

 

     TOT 

. 

. 

50 

. 

. 

1000 

. 

. 

150 

. 

. 

1000 

. 

. 

150 

. 

. 

1100 

Example: a1 + a2 +…. an = TOT (constraint) 

 Deposit $100 in a2:   a2  ←  a2 + 100 

     TOT  ←  TOT + 100 

Transactions 

• Transaction: Sequence of 
operations executed by one 
concurrent client that preserve 
consistency 

CS 525 Notes 12 - Transaction 
Management 

12 
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Transaction:  collection of actions   
  that preserve consistency 

    

Consistent DB Consistent DB’ T 

CS 525 Notes 12 - Transaction 
Management 

14 

Big assumption: 

If T starts with consistent state + 

       T executes in isolation 

⇒ T leaves consistent state 

CS 525 Notes 12 - Transaction 
Management 

15 

Correctness  (informally) 

•  If we stop running transactions,   
 DB left consistent 

•  Each transaction sees a consistent DB 

Transactions - ACID 
•  Atomicity 

–  Either all or no commands of transaction are executed 
(their changes are persisted in the DB) 

•  Consistency 

–  After transaction DB is consistent (if before consistent) 

•  Isolation 

–  Transactions are running isolated from each other 

•  Durability 

–  Modifications of transactions are never lost 

CS 525 Notes 12 - Transaction 
Management 
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How can constraints be violated? 

•  Transaction bug 

•  DBMS bug 

•  Hardware failure 

  e.g., disk crash alters balance of account 

•  Data sharing 

 e.g.: T1: give 10% raise to programmers           

 T2: change programmers ⇒ systems analysts 

CS 525 Notes 12 - Transaction 
Management 
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How can we prevent/fix violations? 

• Part 13 (Recovery):  

– due to failures 

• Part 14 (Concurrency Control):  

– due to data sharing 
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Will not consider: 

•  How to write correct transactions 

•  How to write correct DBMS 

•  Constraint checking & repair 

  That is, solutions studied here do not need  

  to know constraints 

CS 525 Notes 12 - Transaction 
Management 
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Data Items: 

•  Data Item / Database Object / … 

•  Abstraction that will come in handy 
when talking about concurrency control 
and recovery 

•  Data Item could be 

– Table, Row, Page, Attribute value 

CS 525 Notes 12 - Transaction 
Management 
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Operations: 

•  Input (x):   block containing x → memory 

•  Output (x): block containing x → disk 

CS 525 Notes 12 - Transaction 
Management 

22 

Operations: 

•  Input (x):   block containing x → memory 

•  Output (x): block containing x → disk 

•  Read (x,t): do input(x) if necessary  
       t ← value of x in block 

•  Write (x,t): do input(x) if necessary  
       value of x in block ← t 

CS 525 Notes 12 - Transaction 
Management 

23 

Key problem   Unfinished transaction 
   (Atomicity) 

Example   Constraint: A=B 

     T1:  A  ←  A × 2 

           B  ←   B × 2 

CS 525 Notes 12 - Transaction 
Management 
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T1:  Read (A,t);  t ← t×2 
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A: 8 
B: 8 

A: 8 

B: 8 

memory disk 
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T1:  Read (A,t);  t ← t×2 
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A: 8 
B: 8 

A: 8 

B: 8 

memory disk 

16 
16 
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T1:  Read (A,t);  t ← t×2 
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A: 8 
B: 8 

A: 8 

B: 8 

memory disk 

16 
16 

16 

failure! 

Transactions in SQL 

•  BEGIN WORK 

– Start new transaction 

– Often implicit 

•  COMMIT 

– Finish and make all modifications of 
transactions persistent 

•  ABORT/ROLLBACK 

– Finish and undo all changes of transaction 

CS 525 Notes 12 - Transaction 
Management 
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Example 
BEGIN WORK; !

  UPDATE accounts !

    SET bal = bal + 40 !

    WHERE acc = 10; !

!

!

!

!

  UPDATE accounts !

    SET bal = bal - 40 !

    WHERE acc = 9; !

COMMIT; !

CS 525 Notes 12 - Transaction 
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BEGIN WORK; !

  UPDATE accounts !

    SET bal = bal * 1.05; !

COMMIT; !

 

time 

Example 
BEGIN WORK; !

  UPDATE accounts !

    SET bal = bal + 40 !

    WHERE acc = 10; !

!

!

!

!

  UPDATE accounts !

    SET bal = bal - 40 !

    WHERE acc = 9; !

COMMIT; !

CS 525 Notes 12 - Transaction 
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BEGIN WORK; !

  UPDATE accounts !

    SET bal = bal * 1.05; !

COMMIT; !

 

time Bank customer 
transfers money 
from account 9 
to account 10 

Example 
BEGIN WORK; !

  UPDATE accounts !

    SET bal = bal + 40 !

    WHERE acc = 10; !

!

!

!

!

  UPDATE accounts !

    SET bal = bal - 40 !

    WHERE acc = 9; !

COMMIT; !

CS 525 Notes 12 - Transaction 
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BEGIN WORK; !

  UPDATE accounts !

    SET bal = bal * 1.05; !

COMMIT; !

 

time Bank adds interest 
to all accounts 
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BEGIN WORK; !

  UPDATE accounts !

    SET bal = bal + 40 !

    WHERE acc = 10; !

!

!

!

!

  UPDATE accounts !

    SET bal = bal - 40 !

    WHERE acc = 9; !

COMMIT; !

CS 525 Notes 12 - Transaction 
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BEGIN WORK; !

  UPDATE accounts !

    SET bal = bal * 1.05; !

COMMIT; !

 

time 

Potential Problems: 
1.  Transactions are interrupted 
•  No reduction in bal of acc 9 
•  Only some accounts got 

interest 
2.  Interleaving of Transaction 
•  Acc 9 too much interest 

(before 40 has been 
deducted) 

Modeling Transactions and 
their Interleaving 

•  Transaction is sequence of operations 

– read: ri(x) = transaction i read item x 

– write: wi(x) = transaction i wrote item x 

– commit: ci = transaction i committed 

– abort: ai =transaction i aborted 

CS 525 Notes 12 - Transaction 
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BEGIN WORK; !

  UPDATE accounts !

    SET bal = bal + 40 !

    WHERE acc = 10; !

!

!

!

!

  UPDATE accounts !

    SET bal = bal - 40 !

    WHERE acc = 9; !

COMMIT; !

CS 525 Notes 12 - Transaction 
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time 

T1 = r1(a10), w1(a10), r1(a9), w1(a9), c1 !

BEGIN WORK; !

  UPDATE accounts !

    SET bal = bal + 40 !

    WHERE acc = 10; !

!

!

!

!

  UPDATE accounts !

    SET bal = bal - 40 !

    WHERE acc = 9; !

COMMIT; !
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BEGIN WORK; !

  UPDATE accounts !

    SET bal = bal * 1.05; !

COMMIT; !

 

time 

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1 !

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c1 !

Assume we have accounts: 
a1,a2,a9,a10 

Schedules 
•  A schedule S for a set of transactions 

T = {T1, …, Tn} is an partial order over 
operations of T so that 

– S contains a prefix of the operations of 
each Ti 

– Operations of Ti appear in the same order 
in S as in Ti 

– For any two conflicting operations they are 
ordered 

CS 525 Notes 12 - Transaction 
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Note 
•  For simplicity: We often assume that 

the schedule is a total order 

CS 525 Notes 12 - Transaction 
Management 

36 
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How to model execution 
order? 

•  Schedules model the order of the 
execution for operations of a set of 
transactions 

CS 525 Notes 12 - Transaction 
Management 
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Conflicting Operations 

•  Two operations are conflicting if 

– At least one of them is a write 

– Both are accessing the same data item 

•  Intuition 

– The order of execution for conflicting 
operations can influence result! 

CS 525 Notes 12 - Transaction 
Management 
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Conflicting Operations 

•  Examples 

– w1(X), r2(X) are conflicting 

– w1(X), w2(Y) are not conflicting 

–  r1(X), r2(X) are not conflicting 

– w1(X), w1(X) are not conflicting 

CS 525 Notes 12 - Transaction 
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Complete Schedules = History 
•  A schedule S for T is complete if it 

contains all operations from each 
transaction in T 

•  We will call complete schedules 
histories 

CS 525 Notes 12 - Transaction 
Management 
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CS 525 Notes 12 - Transaction 
Management 

41 

time 

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1 !

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c1 !

Complete Schedule 

Incomplete Schedule 

Not a Schedule 

S=r2(a1),r1(a10),w2(a1),r2(a2),w1(a10),w2(a2),r2(a9),w2(a9), 
r1(a9),w1(a9),c1 r2(a10),w2(a10),c1 !

S=r2(a1),r1(a10),w2(a1),w1(a10) !

S=r2(a1),r1(a10),c1 !

CS 525 Notes 12 - Transaction 
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time 

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1 !

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c1 !

Conflicting operations 

S1 = … w2(a1) … w1(a10) !

S2 = … w1(a1) … w2(a10) !

•  Conflicting operations w1(a10) and w2(a10) !

•  Order of these operations determines value of a10 !
•  S1 and S2 do not generate the same result  
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Why Schedules? 
•  Study properties of different execution 

orders 

– Easy/Possible to recover after failure 

–  Isolation 

–  -> preserve ACID properties 

•  Classes of schedules and protocols to 
guarantee that only “good” schedules 
are produced 

CS 525 Notes 12 - Transaction 
Management 

43 
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CS 525 Notes 13 - Failure and Recovery 1 

CS 525: Advanced Database 
Organization 

13: Failure and  
Recovery 
Boris Glavic 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  
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Now 

• Crash recovery 

CS 525 Notes 13 - Failure and Recovery 3 

Correctness  (informally) 

•  If we stop running transactions,   
 DB left consistent 

•  Each transaction sees a consistent DB 

CS 525 Notes 13 - Failure and Recovery 4 

How can constraints be violated? 

•  Transaction bug 

•  DBMS bug 

•  Hardware failure 

  e.g., disk crash alters balance of account 

•  Data sharing 

 e.g.: T1: give 10% raise to programmers           

 T2: change programmers ⇒ systems analysts 

CS 525 Notes 13 - Failure and Recovery 5 

Recovery 

•  First order of business:    
  Failure Model 

CS 525 Notes 13 - Failure and Recovery 6 

Events   Desired 

    Undesired   Expected  

       Unexpected 
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Our failure model 

         processor 

 

memory            disk 

CPU 

M D 
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Desired events: see product manuals…. 

 

Undesired expected events: 

  System crash 

   - memory lost 

   - cpu halts, resets 

CS 525 Notes 13 - Failure and Recovery 9 

Desired events: see product manuals…. 

 

Undesired expected events: 

  System crash 

   - memory lost 

   - cpu halts, resets 

Undesired Unexpected:    Everything else! 

that’s it!! 

CS 525 Notes 13 - Failure and Recovery 10 

Examples: 

•  Disk data is lost 

•  Memory lost without CPU halt 

•  CPU implodes wiping out universe…. 

Undesired Unexpected:    Everything else! 

CS 525 Notes 13 - Failure and Recovery 11 

Is this model reasonable? 

Approach:  Add low level checks +   
    redundancy to increase 

     probability model holds 

 

E.g.,  Replicate disk storage (stable store) 

   Memory parity 

   CPU checks 

CS 525 Notes 13 - Failure and Recovery 12 

Second order of business: 

Storage hierarchy 

Memory                  Disk 

DB Buffer 

x x 



3 
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Operations: 

•  Input (x):   block containing x → memory 

•  Output (x): block containing x → disk 
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Operations: 

•  Input (x):   block containing x → memory 

•  Output (x): block containing x → disk 

•  Read (x,t): do input(x) if necessary  
       t ← value of x in block 

•  Write (x,t): do input(x) if necessary  
       value of x in block ← t 

CS 525 Notes 13 - Failure and Recovery 15 

Key problem   Unfinished transaction 

Example   Constraint: A=B 

     T1:  A  ←  A × 2 

           B  ←   B × 2 

CS 525 Notes 13 - Failure and Recovery 16 

T1:  Read (A,t);  t ← t×2 
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A: 8 
B: 8 

A: 8 

B: 8 

memory disk 
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T1:  Read (A,t);  t ← t×2 
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A: 8 
B: 8 

A: 8 

B: 8 

memory disk 

16 
16 

CS 525 Notes 13 - Failure and Recovery 18 

T1:  Read (A,t);  t ← t×2 
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A: 8 
B: 8 

A: 8 

B: 8 

memory disk 

16 
16 

16 

failure! 



4 

CS 525 Notes 13 - Failure and Recovery 19 

•  Need atomicity:   

– execute all actions of a transaction or                  
none at all 

How to restore consistent 
state after crash? 

•  Desired state after recovery: 

–  Changes of committed transactions are reflected 
on disk 

–  Changes of unfinished transactions are not 
reflected on disk 

•  After crash we need to 

–  Undo changes of unfinished transactions that 
have been written to disk 

–  Redo changes of finished transactions that have 
not been written to disk 

 
CS 525 Notes 13 - Failure and Recovery 20 

How to restore consistent 
state after crash? 

•  After crash we need to 

–  Undo changes of unfinished transactions that 
have been written to disk 

–  Redo changes of finished transactions that have 
not been written to disk 

•  We need to either 

–  Store additional data to be able to Undo/Redo 

–  Avoid ending up in situations where we need to 
Undo/Redo 

 

CS 525 Notes 13 - Failure and Recovery 21 CS 525 Notes 13 - Failure and Recovery 22 

T1:  Read (A,t);  t ← t×2 
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A: 8 

B: 8 

memory disk 

16 

failure! 

T1 is unfinished 
-> need to undo the 
write to A to recover 
to consistent state 

Logging 

•  After crash need to 

– Undo  

– Redo  

•  We need to know  

– Which operations have been executed  

– Which operations are reflected on disk 

•  ->Log upfront what is to be done 

CS 525 Notes 13 - Failure and Recovery 23 

Buffer Replacement Revisited 

•  Now we are interested in knowing how 
buffer replacement influences recovery! 

CS 525 Notes 13 - Failure and Recovery 24 
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Buffer Replacement Revisited 

•  Steal: all pages with fix count = 0 are 
replacement candidates 

– Smaller buffer requirements 

•  No steal: pages that have been 
modified by active transaction -> not 
considered for replacement 

– No need to undo operations of unfinished 

transactions after failure 

CS 525 Notes 13 - Failure and Recovery 25 

Buffer Replacement Revisited 

•  Force: Pages modified by transaction 
are flushed to disk at end of transaction 

– No redo required 

•  No force: modified (dirty) pages are 
allowed to remain in buffer after end of 
transaction 

– Less repeated writes of same page 

CS 525 Notes 13 - Failure and Recovery 26 

Effects of Buffer Replacement 

CS 525 Notes 13 - Failure and Recovery 27 

force No force 

No steal 
•  No Undo 
•  No Redo 

•  No Undo 
•  Redo 

steal 
•  Undo 
•  No Redo 

•  Redo 
•  Undo 

Schedules and Recovery 

•  Are there certain schedules that are 
easy/hard/impossible to recover from? 

CS 525 Notes 13 - Failure and Recovery 28 

Recoverable Schedules 

•  We should never have to rollback an already 
committed transaction (D in ACID) 

•  Recoverable (RC) schedules require that 

–  A transaction does not commit before every 
transaction that is has read from has committed 

–  A transaction T reads from another transaction T’ 
if it reads an item X that has last been written by 
T’ and T’ has not aborted before the read 

CS 525 Notes 13 - Failure and Recovery 29 CS 525 Notes 12 - Transaction 
Management 

30 

T1 = w1(X),c1 !

T2 = r2(X),w2(X),c2 !

Recoverable (RC) Schedule 

S1 = w1(X),r2(X),w2(X),c1,c2 !

S2 = w1(X),r2(X),w2(X),c2,c1 !

Nonrecoverable Schedule 
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Cascading Abort 

•  Transaction T has written an item that is later 
read by T’ and T aborts after that 

–  we have to also abort T’ because the value it read 
is no longer valid anymore 

–  This is called a cascading abort 

–  Cascading aborts are complex and should be 
avoided 

CS 525 Notes 13 - Failure and Recovery 31 

S = … w1(X) … r2(X) … a1!

Cascadeless Schedules 

•  Cascadeless (CL) schedules guarantee that 
there are no cascading aborts 

–  Transactions only read values written by already 
committed transactions 

CS 525 Notes 13 - Failure and Recovery 32 

CS 525 Notes 12 - Transaction 
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T1 = w1(X),c1 !

T2 = r2(X),w2(X),c2 !

Recoverable (RC) Schedule 

S2 = w1(X),r2(X),w2(X),c1,c2 !

S3 = w1(X),r2(X),w2(X),c2,c1 !

Nonrecoverable Schedule 

Cascadeless (CL) Schedule 

S1 = w1(X),c1,r2(X),w2(X),c2 !

CS 525 Notes 12 - Transaction 
Management 
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T1 = w1(X),a1 !

T2 = r2(X),w2(X),c2 !

Recoverable (RC) Schedule 

S2 = w1(X),r2(X),w2(X),a1,a2 !

S3 = w1(X),r2(X),w2(X),c2,a1 !

Nonrecoverable Schedule 

Cascadeless (CL) Schedule 

S1 = w1(X),a1,r2(X),w2(X),c2 !

Consider what  
happens if T1  
aborts! 

Strict Schedules 

•  Strict (ST) schedules guarantee that to 
Undo the effect of an transaction we simply 
have to undo each of its writes 

–  Transactions do not read nor write items written 
by uncommitted transactions 

CS 525 Notes 13 - Failure and Recovery 35 CS 525 Notes 12 - Transaction 
Management 

36 

T1 = w1(X),c1 !

T2 = r2(X),w2(X),c2 !

Recoverable (RC) Schedule 

S2 = w1(X),r2(X),w2(X),c1,c2 !

S3 = w1(X),r2(X),w2(X),c2,c1 !

Nonrecoverable Schedule 

Cascadeless (CL) + Strict Schedule (ST) 

S1 = w1(X),c1,r2(X),w2(X),c2 !
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Compare Classes 

ST ⊂ CL ⊂ RC ⊂ ALL 

CS 525 Notes 13 - Failure and Recovery 37 CS 525 Notes 13 - Failure and Recovery 38 

Strict 
schedules 

Cascadeless schedules 

Recoverable schedules 

All schedules 

Logging and Recovery 

•  We now discuss approaches for logging 
and how to use them in recovery 

CS 525 Notes 13 - Failure and Recovery 39 CS 525 Notes 13 - Failure and Recovery 40 

One solution: undo logging  (immediate 

       modification) 
 

 
due to: Hansel and Gretel, 782 AD 
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One solution: undo logging  (immediate 

       modification) 
 

 
due to: Hansel and Gretel, 782 AD 

•  Improved in 784 AD to durable  

     undo logging 
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T1:  Read (A,t);  t ← t×2          A=B   
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A:8 
B:8 

A:8 
B:8 

memory disk log 

 Undo logging    (Immediate modification) 
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T1:  Read (A,t);  t ← t×2          A=B   
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A:8 
B:8 

A:8 
B:8 

memory disk log 

 Undo logging    (Immediate modification) 

16 
16 

<T1, start> 
<T1, A, 8> 
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T1:  Read (A,t);  t ← t×2          A=B   
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A:8 
B:8 

A:8 
B:8 

memory disk log 

 Undo logging    (Immediate modification) 

16 
16 

<T1, start> 
<T1, A, 8> 

16 <T1, B, 8> 
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T1:  Read (A,t);  t ← t×2          A=B   
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A:8 
B:8 

A:8 
B:8 

memory disk log 

 Undo logging    (Immediate modification) 

16 
16 

<T1, start> 
<T1, A, 8> 

16 <T1, B, 8> 

16 
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T1:  Read (A,t);  t ← t×2          A=B   
  Write (A,t); 
  Read (B,t);  t ← t×2 
  Write (B,t); 
  Output (A); 
  Output (B); 

A:8 
B:8 

A:8 
B:8 

memory disk log 

 Undo logging    (Immediate modification) 

16 
16 

<T1, start> 
<T1, A, 8> 

<T1, commit> 
16 <T1, B, 8> 

16 
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One “complication” 

•  Log is first written in memory 

•  Not written to disk on every action 

  memory      

       DB 

  

       Log 

A: 8 16 
B: 8 16 
Log: 
<T1,start> 
<T1, A, 8> 
<T1, B, 8> 
 

A: 8 
B: 8 
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One “complication” 

•  Log is first written in memory 

•  Not written to disk on every action 

  memory      

       DB 

  

       Log 

A: 8 16 
B: 8 16 
Log: 
<T1,start> 
<T1, A, 8> 
<T1, B, 8> 
 

A: 8 
B: 8 

16 
BAD STATE 

# 1 
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One “complication” 

•  Log is first written in memory 

•  Not written to disk on every action 

  memory      

       DB 

  

          Log 

A: 8 16 
B: 8 16 
Log: 
<T1,start> 
<T1, A, 8> 
<T1, B, 8> 
<T1, commit> 
 

A: 8 
B: 8 

16 
BAD STATE 

# 2 

<T1, B, 8> 
<T1, commit> 

..
. 
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Undo logging rules 

(1) For every action generate undo log  
 record (containing old value) 

(2) Before x is modified on disk, log  
 records pertaining to x must be 

  on disk (write ahead logging: WAL) 

(3) Before commit is flushed to log, all  
 writes of transaction must be 

  reflected on disk 
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Recovery rules:         Undo logging 

•  For every Ti   with <Ti, start> in log:  
 - If <Ti,commit> or <Ti,abort> 

                   in log, do nothing 
 - Else   For all <Ti, X, v> in log: 

    write (X, v) 

    output (X ) 

       Write <Ti, abort> to log 
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Recovery rules:         Undo logging 

•  For every Ti   with <Ti, start> in log:  
 - If <Ti,commit> or <Ti,abort> 

                   in log, do nothing 
 - Else   For all <Ti, X, v> in log: 

    write (X, v) 

    output (X ) 

       Write <Ti, abort> to log 

➽IS THIS CORRECT?? 
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Recovery rules:         Undo logging 

(1) Let S = set of transactions with   
 <Ti, start> in log, but no 

  <Ti, commit> (or <Ti, abort>) record in log 

(2) For each <Ti, X, v> in log, 

   in reverse order (latest → earliest) do: 

  - if Ti ∈ S then    - write (X, v) 

             - output (X) 

(3) For each Ti ∈ S do 

  - write <Ti, abort> to log 

CS 525 Notes 13 - Failure and Recovery 54 

Question 

•  Can writes of <Ti, abort> records 
be done in any order (in Step 3)? 

– Example: T1 and T2 both write A 

– T1 executed before T2 

– T1 and T2 both rolled-back 

– <T1, abort> written but NOT <T2, abort>? 

– <T2, abort> written but NOT <T1, abort>? 

T1 write A T2 write A 
time/log 
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What if failure during recovery? 

 No problem!    ✏ Undo idempotent 

•  An operation is called idempotent 
if the number of times it is applied 
do not effect the result 

•  For Undo: 
•  Undo(log) = Undo(Undo(… 

(Undo(log)) …)) 

Undo is idempotent 

•  We store the values of data items 
before the operation 

•  Undo can be executed repeatedly 
without changing effects 

–  idempotent 
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Physical vs. Logical Logging 
•  How to represent values in log entries? 

•  Physical logging 

– Content of pages before and after 

•  Logical operations 

– Operation to execute for undo/redo 

• E.g., delete record x 

•  Hybrid (Physiological) 

– Delete record x from page y 
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To discuss: 

•  Redo logging 

•  Undo/redo logging, why both? 

•  Real world actions 

•  Checkpoints 

•  Media failures 
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Redo logging  (deferred modification) 

T1:  Read(A,t); t   t×2; write (A,t); 

    Read(B,t); t   t×2; write (B,t); 

  Output(A); Output(B)    

A: 8 
B: 8 

 

A: 8 
B: 8 
 

memory DB 

 LOG 

CS 525 Notes 13 - Failure and Recovery 60 

Redo logging  (deferred modification) 

T1:  Read(A,t); t   t×2; write (A,t); 

    Read(B,t); t   t×2; write (B,t); 

  Output(A); Output(B)    

A: 8 
B: 8 

 

A: 8 
B: 8 
 

memory DB 

 LOG 

16 
16 

<T1, start> 
<T1, A, 16> 
<T1, B, 16> 

<T1, commit> 
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Redo logging  (deferred modification) 

T1:  Read(A,t); t   t×2; write (A,t); 

    Read(B,t); t   t×2; write (B,t); 

  Output(A); Output(B)    

A: 8 
B: 8 

 

A: 8 
B: 8 
 

memory DB 

 LOG 

16 
16 

<T1, start> 
<T1, A, 16> 
<T1, B, 16> 

<T1, commit> 

output 

16 
16 
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Redo logging  (deferred modification) 

T1:  Read(A,t); t   t×2; write (A,t); 

    Read(B,t); t   t×2; write (B,t); 

  Output(A); Output(B)    

A: 8 
B: 8 

 

A: 8 
B: 8 
 

memory DB 

 LOG 

16 
16 

<T1, start> 
<T1, A, 16> 
<T1, B, 16> 

<T1, commit> 

<T1, end> 

output 

16 
16 
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Redo logging rules 

(1) For every action, generate redo log 

  record (containing new value) 

(2) Before X is modified on disk (DB),  
 all log records for transaction that 
 modified X (including commit) must 

    be on disk 

(3) Flush log at commit 

(4) Write END record after DB updates 
 flushed to disk 
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•  For every Ti with <Ti, commit> in log: 

– For all <Ti, X, v> in log: 

   Write(X, v) 

   Output(X) 

Recovery rules:         Redo logging 
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•  For every Ti with <Ti, commit> in log: 

– For all <Ti, X, v> in log: 

   Write(X, v) 

   Output(X) 

Recovery rules:         Redo logging 

➽IS THIS CORRECT?? 
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(1) Let S = set of transactions with 
<Ti, commit> (and no <Ti, end>) in log 

(2) For each <Ti, X, v> in log, in forward 

    order (earliest → latest) do: 

  - if Ti ∈ S then  Write(X, v) 

      Output(X) 

(3) For each Ti ∈ S, write <Ti, end>   

Recovery rules:         Redo logging 
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Crash During Redo 

•  Since Redo log contains values after 
writes, repeated application of a log 
entry does not change result 

–  ->idempotent 
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Combining <Ti, end> Records 

•  Want to delay DB flushes for hot objects 

Say X is branch balance: 
T1: ... update X... 
T2: ... update X... 
T3: ... update X... 
T4: ... update X... 

Actions: 
write X 
output X 
write X 
output X 
write X 
output X 
write X 
output X 
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Combining <Ti, end> Records 

•  Want to delay DB flushes for hot objects 

Say X is branch balance: 
T1: ... update X... 
T2: ... update X... 
T3: ... update X... 
T4: ... update X... 

Actions: 
write X 
output X 
write X 
output X 
write X 
output X 
write X 
output X 

combined <end> (checkpoint) 
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Solution:  Checkpoint      

Periodically: 

(1) Do not accept new transactions 

(2) Wait until all transactions finish 

(3) Flush all log records to disk (log) 

(4) Flush all buffers to disk (DB) (do not discard buffers) 

(5) Write “checkpoint” record on disk (log) 

(6) Resume transaction processing 

•  no <ti, end> actions> 
• simple checkpoint 
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Example: what to do at recovery? 

Redo log (disk): 

<
T
1
,A

,1
6
>
 

 <
T
1
,c

o
m

m
it
>
 

 

C
h
e
ck

p
o
in

t 

<
T
2
,B

,1
7
>
 

 <
T
2
,c

o
m

m
it
>
 

 

<
T
3
,C

,2
1
>
 

Crash 
... ... ... ... ... ... 

Advantage of Checkpoints 

•  Limits recovery to parts of the log after 
the checkpoint 

– Think about system that has been online 

for months 

•  ->Analyzing the whole log is too expensive! 

•  Source of backups 

–  If we backup checkpoints we can use them 
for media recovery! 

CS 525 Notes 13 - Failure and Recovery 72 
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Checkpoints Justification 

•  Checkpoint should be consistent DB 
state 

– No active transactions 

• Do not accept new transactions 

• Wait until all transactions finish 

– DB state reflected on disk 

•  Flush log 

•  Flush buffers 

CS 525 Notes 13 - Failure and Recovery 73 CS 525 Notes 13 - Failure and Recovery 74 

Key drawbacks: 

•  Undo logging:  

– cannot bring backup DB copies up to date 

•  Redo logging:  

– need to keep all modified blocks in memory 

until commit 
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Solution: undo/redo logging! 

Update ⇒  <Ti, Xid, New X val, Old X val> 

page X 
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Rules 

•  Page X can be flushed before or   
 after Ti commit 

•  Log record flushed before 
corresponding updated page (WAL) 

•  Flush at commit (log only)  
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Example: Undo/Redo logging 
              what to do at recovery? 

log (disk): 

<
ch

e
ck

p
o
in

t>
 

 <
T
1
, 
A
, 
1
0
, 
1
5
>
 

 <
T
1
, 
B
, 
2
0
, 
2
3
>
 

<
T
1
, 
co

m
m

it
>
 

 <
T
2
, 
C
, 
3
0
, 
3
8
>
 

 <
T
2
, 
D

, 
4
0
, 
4
1
>
 

Crash 
... ... ... ... ... ... 

Checkpoint Cost 

•  Checkpoints are expensive 

– No new transactions can start 

– A lot of I/O 

•  Flushing the log 

•  Flushing dirty buffer pages 

CS 525 Notes 13 - Failure and Recovery 78 
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Non-quiesce checkpoint 

L 
O 
G 
 
    for 

    undo   dirty buffer 
    pool pages 
    flushed 

Start-ckpt 
active TR: 
Ti,T2,... 

end 
ckpt 

... ... ... 

..
. 
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Examples   what to do at recovery time? 

           no T1 commit 

L 
O 
G 

T1,- 
a 

... 
Ckpt 
T1 

... 
Ckpt 
end 

... 
T1- 
b 

... 
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Examples   what to do at recovery time? 

           no T1 commit 

L 
O 
G 

T1,- 
a 

... 
Ckpt 
T1 

... 
Ckpt 
end 

... 
T1- 
b 

... 

➽ Undo T1  (undo a,b) 
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Example 

L 
O 
G 

... 
T1 
a 

... ... 
T1 
b 

... ... 
T1 
c 

... 
T1 

cmt 
... 

ckpt- 
end 

ckpt-s 
T1 
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Example 

L 
O 
G 

... 
T1 
a 

... ... 
T1 
b 

... ... 
T1 
c 

... 
T1 

cmt 
... 

ckpt- 
end 

ckpt-s 
T1 

➽ Redo T1: (redo b,c) 
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Recover  From Valid Checkpoint: 

... 
ckpt 
start 

... ... 
T1 
b 

... ... 
T1 
c 

... 
ckpt- 
start 

ckpt 
end 

L 
O 
G 

start 
of latest 
valid 
checkpoint 
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Recovery process: 

•  Backwards pass (end of log ➜ latest valid checkpoint start) 

–  construct set S of committed transactions 

–  undo actions of transactions not in S 

•  Undo pending transactions 

–  follow undo chains for transactions in 
  (checkpoint active list) - S 

•  Forward pass (latest checkpoint start ➜ end of log) 

–  redo actions of S transactions 

backward pass 

forward pass 
start 

check- 
point 
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Real world actions 

E.g., dispense cash at ATM 

 Ti = a1 a2 …... aj …... an 

$ 
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Solution 

(1) execute real-world actions after commit 

(2) try to make idempotent 
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         ATM 

Give$$ 

(amt, Tid, time) 

$ 

give(amt) 

lastTid: 

time: 
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Media failure  (loss of non-volatile
     storage) 

       

A: 16 

CS 525 Notes 13 - Failure and Recovery 90 

Media failure  (loss of non-volatile
     storage) 

       

A: 16 

Solution:  Make copies of data! 
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Example 1  Triple modular redundancy 

•  Keep 3 copies on separate disks 

•  Output(X) --> three outputs 

•  Input(X) --> three inputs + vote 

X1 X2 X3 
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Example #2    Redundant writes,
      Single reads 

•  Keep N copies on separate disks 

•  Output(X) --> N outputs 

•  Input(X) --> Input one copy   
                       - if ok, done 

    - else try another one 

➳ Assumes bad data can be detected 
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Example #3: DB Dump + Log 

backup 
database 

active 
database 

log 

•  If active database is lost, 
–  restore active database from backup 
–  bring up-to-date using redo entries in log 
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When can log be discarded? 

check- 
point 

db 
dump 

last 
needed 
undo 

not needed for 
media recovery redo 

not needed for undo 
after system failure 

not needed for 
redo after system failure 

log 

time 

last 
needed 
undo 

not needed for 
media recovery 

Practical Recovery with ARIES 

•  ARIES 

– Algorithms for Recovery and Isolation 
Exploiting Semantics 

•  Implemented in, e.g., 

– DB2 

– MSSQL 
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Underlying Ideas 

•  Keep track of state of pages by relating them to 
entries in the log 

•  WAL 

•  Recovery in three phases 
–  Analysis, Redo, Undo 

•  Log entries to track state of Undo for repeated 
failures 

•  Redo: page-oriented -> efficient 

•  Undo: logical -> permits higher level of concurrency 

CS 525 Notes 13 - Failure and Recovery 96 
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Log Entry Structure 

•  LSN 

– Log sequence number 

– Order of entries in the log 

– Usually log file id and offset for direct 
access 
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•  LSN 

•  Entry type 

–  Update, compensation, commit, … 

•  TID 
–  Transaction identifier 

•  PrevLSN 

–  LSN of previous log record for same transaction 

•  UndoNxtLSN 

–  Next undo operation for CLR (later!) 

•  Undo/Redo data 
–  Data needed to undo/redo the update 
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Page Header Additions 

•  PageLSN 

– LSN of the last update that modified the 
page 

– Used to know which changes have been 
applied to a page 
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Forward Processing 

•  Normal operations when no ROLLBACK is 
required 

–  WAL: write redo/undo log record for each action 
of a transaction 

•  Buffer manager has to ensure that 

–  changes to pages are not persisted before the 
corresponding log record has been persisted 

–  Transactions are not considered committed before 
all their log records have been flushed 

CS 525 Notes 13 - Failure and Recovery 100 

Dirty Page Table 

•  PageLSN 

– Entries <PageID,RecLSN> 

– Whenever a page is first fixed in the buffer 

pool with indention to modify 

•  Insert <PageId,RecLSN> with RecLSN 
being the current end of the log 

– Flushing a page removes it from the Dirty 
page table 
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Dirty Page Table 

•  Used for checkpointing 

•  Used for recovery to figure out what to 
redo 

CS 525 Notes 13 - Failure and Recovery 102 



18 

Transaction Table 

•  TransID 
–  Identifier of the transaction 

•  State 

–  Commit state 

•  LastLSN 

–  LSN of the last update of the transaction 

•  UndoNxtLSN 
–  If last log entry is a CLR then UndoNxtLSN from that record 

–  Otherwise = LastLSN 
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A: 16 
B: 16 

13 
… 
<13,U,2,10,-,-A=3+A=16> 

disk buffer 

T1=r1(A),A=A*2,w1(A) !

Page_LSN: 

LSN of last 
modification to page 

Persistent 
log 

Transaction Table: 

<1, U, -, ->  

Dirty Page Table: 
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A: 16 
B: 16 

13 
… 
<13,U,2,10,-,-A=3+A=16> 

Persistent 
log 

disk buffer 

T1=r1(A),A=A*2,w1(A) !

A: 16 
B: 16 

13 

Transaction Table: 

<1, U, -, ->  

Dirty Page Table: 

<100, 14> 
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A: 16 
B: 16 

13 
… 
<13,U,2,10,-,-A=3+A=16> 

Persistent 
log 

disk buffer 

T1=r1(A),A=A*2,w1(A) !

A: 16 
B: 16 

13 

<14,U,1,-,-,-A=16+A=32> 
 

Write log entry 

Transaction Table: 

<1, U, -, ->  

Dirty Page Table: 

<100, 14> 
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A: 16 
B: 16 

13 
… 
<13,U,2,10,-,-A=3+A=16> 

Persistent 
log 

disk buffer 

T1=r1(A),A=A*2,w1(A) !

A: 32 
B: 16 

14 

<14,U,1,-,-,-A=16+A=32> 
 

Update page 

Transaction Table: 

<1, U, 14, 14>  

Dirty Page Table: 

<100, 14> 
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A: 16 
B: 16 

13 
… 
<13,U,2,10,-,-A=3+A=16> 

Persistent 
log 

disk buffer 

T1=r1(A),A=A*2,w1(A) !

A: 32 
B: 16 

14 

<14,U,1,-,-,-A=16+A=32> 
 

2 

1 

Transaction Table: 

<1, U, 14, 14>  

Dirty Page Table: 

<100, 14> 
Can wait with 
flushing page, but log 
has to be flushed 
first! 
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Undo during forward 
processing 

•  Transaction was rolled back 

–  User aborted, aborted because of error, … 

•  Need to undo operations of transaction 

•  During Undo 

–  Write log entries for every undo 

–  Compensation Log Records (CLR) 

–  Used to avoid repeated undo when failures occur 
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Undo during forward processing 

•  Starting with the LastLSN of transaction 
from transaction table 
–  Traverse log entries of transaction last to first 

using PrevLSN pointers 

–  For each log entry use undo information to undo 
action 

•  <LSN, Type, TID, PrevLSN, -, Undo/Redo data> 

–  Before modifying data write an CLR that stores 
redo-information for the undo operation 

•  UndoNxtLSN = PrevLSN of log entry we are undoing 

•  Redo data = How to redo the undo 
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buffer 

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6> 
<2,U,1,1,-,-B=10+B=5> 

<3,U,1,2,-,-C=5+C=10> 
<4,U,1,3,-,-A=6+A=4> 

 
 

Undo T1 

Transaction Table: 

<1, U, 4, 4>  

A: 4 
B: 5 

4 

C: 10 
D: 20 

3 
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buffer 

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6> 
<2,U,1,1,-,-B=10+B=5> 

<3,U,1,2,-,-C=5+C=10> 
<4,U,1,3,-,-A=6+A=4> 

<5,CLR,1,-,3,+A=6> 
 

 

Undo T1 

Transaction Table: 

<1, U, 5, 3>  

A: 6 
B: 5 

5 

C: 10 
D: 20 

3 
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buffer 

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6> 
<2,U,1,1,-,-B=10+B=5> 

<3,U,1,2,-,-C=5+C=10> 
<4,U,1,3,-,-A=6+A=4> 

<5,CLR,1,-,3,+A=6> 
<6,CLR,1,-,2,+C=5> 

 

 

Undo T1 

Transaction Table: 

<1, U, 6, 2>  

A: 6 
B: 5 

5 

C: 5 
D: 20 

6 
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buffer 

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6> 
<2,U,1,1,-,-B=10+B=5> 

<3,U,1,2,-,-C=5+C=10> 
<4,U,1,3,-,-A=6+A=4> 

<5,CLR,1,-,3,+A=6> 
<6,CLR,1,-,2,+C=5> 

<7,CLR,1,-,1,+B=10> 

 
 

Undo T1 

Transaction Table: 

<1, U, 7, 1>  

A: 6 
B: 10 

7 

C: 5 
D: 20 

6 
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buffer 

T1= w1(A), w1(B), w1(C), w1(A), a1!

<1,U,1,-,-,-A=3+A=6> 
<2,U,1,1,-,-B=10+B=5> 

<3,U,1,2,-,-C=5+C=10> 
<4,U,1,3,-,-A=6+A=4> 

<5,CLR,1,-,3,+A=6> 
<6,CLR,1,-,2,+C=5> 

<7,CLR,1,-,1,+B=10> 

<8,CLR,1,-,-,+A=3> 
 

Undo T1 

Transaction Table: 

<1, U, 8, ->  

A: 3 
B: 10 

8 

C: 5 
D: 20 

6 

Fuzzy Checkpointing in ARIES 

•  Begin of checkpoint 

– Write begin_cp log entry 

– Write end_cp log entry with 

• Dirty page table 

• Transaction table 

•  Master Record 

– LSN of begin_cp log entry of last complete 
checkpoint 

CS 525 Notes 13 - Failure and Recovery 116 

Restart Recovery 

1.  Analysis Phase 

2.  Redo Phase 

3.  Undo Phase 
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Analysis Phase 

1) Determine LSN of last checkpoint 
using Master Record 

2) Get Dirty Page Table and Transaction 
Table from checkpoint end record 

3) RedoLSN = min(RecLSN) from Dirty 
Page Table or checkpoint LSN if no dirty 
page 
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Analysis Phase 

4) Scan log forward starting from 
RedoLSN 

•  Update log entry from transaction 

–  If necessary: Add Page to Dirty Page Table  

–  Add Transaction to Transaction Table or update 
LastLSN 

•  Transaction end entry 

–  Remove transaction from Transaction Table 
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Analysis Phase 

•  Result 

–  Transaction Table 

•  Transactions to be later undone 

–  RedoLSN 

•  Log entry to start Redo Phase 

–  Dirty Page Table 

•  Pages that may not have been written back to 
disk 

CS 525 Notes 13 - Failure and Recovery 120 
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Redo Phase 

•  Start at RedoLSN scan log forward 

•  Unconditional Redo 

– Even redo actions of transactions that will 
be undone later 

•  Only redo once 

– Only redo operations that have not been 
reflected on disk (PageLSN) 
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Redo Phase 

•  For each update log entry 

–  If affected page is not in Dirty Page Table 
or RecLSN > LSN 

•  skip log entry 

– Fix page in buffer 

•  If PageLSN >= LSN then operation already 
reflected on disk 

–  Skip log entry 

• Otherwise apply update  
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Redo Phase 

•  Result 

– State of DB before Failure 
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Undo Phase 

•  Scan log backwards from end using 
Transaction Table 

– Repeatedly take log entry with max LSN 

from all the current actions to be undone 
for each transaction 

• Write CLR 

• Update Transaction Table 
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Undo Phase 

•  All unfinished transactions have been 
rolled back 
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Idempotence? 

•  Redo 

– We are not logging during Redo so 
repeated Redo will result in the same state 

•  Undo 

–  If we see CLRs we do not undo this action 
again 
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Avoiding Repeated Work 

•  Redo 

–  If operation has been reflected on disk 
(PageLSN) we do not need to redo it again 

•  Undo 

–  If we see CLRs we do not undo this action 
again 
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T1 = w1(A),       w1(B), w1(C), w1(A), c1!

<1,begin(T1), -> 
<2,begin(T2), -> 

<3,write(A,T1),1> 
<4,write(X,T2),2> 

<5,write(B,T1),3> 
<6,write(C,T1),5> 

<7,write(A,T1),6> 

<8,commit(T1),7> 
<9,write(A,T2),4> 

 

T2 =        w1(X),                        r(A), w(A)!

Log 
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T1 = w1(A),       w1(B), w1(C), w1(A), c1!

<1,begin(T1), -> 
<2,begin(T2), -> 

<3,write(A,T1),1> 
<4,write(X,T2),2> 

<5,write(B,T1),3> 
<6,write(C,T1),5> 

<7,write(A,T1),6> 

<8,commit(T1),7> 
<9,write(A,T2),4> 

 

T2 =        w1(X),                        r(A), w(A)!

Log 
Analysis Phase: 

  - start at log entry 1 

  - add T1 to transaction table (rec. 1) 

  - add T2 to transaction table (rec. 2) 

  - add A to dirty page table (RecLSN 3) 

  - add X to dirty page table (RecLSN 4) 

  - add B to dirty page table (RecLSN 5) 

  - add C to dirtypage table (RecLSN 6) 

  - remove T1 from Transaction Table (rec. 8) 
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T1 = w1(A),       w1(B), w1(C), w1(A), c1!

<1,begin(T1), -> 
<2,begin(T2), -> 

<3,write(A,T1),1> 
<4,write(X,T2),2> 

<5,write(B,T1),3> 
<6,write(C,T1),5> 

<7,write(A,T1),6> 

<8,commit(T1),7> 
<9,write(A,T2),4> 

 

T2 =        w1(X),                        r(A), w(A)!

Log 
Analysis Phase Result: 

  - Transaction Table: 

      <T2, 9> 

  - Dirty Page Table:  

      <A, 3>, <B, 5>, <C, 6>, <X, 4> 

  - RedoLSN = min(3,5,6,4) = 3 
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T1 = w1(A),       w1(B), w1(C), w1(A), c1!

<1,begin(T1), -> 
<2,begin(T2), -> 

<3,write(A,T1),1> 
<4,write(X,T2),2> 

<5,write(B,T1),3> 
<6,write(C,T1),5> 

<7,write(A,T1),6> 

<8,commit(T1),7> 
<9,write(A,T2),4> 

 

T2 =        w1(X),                        r(A), w(A) !

Log 
Redo Phase (RedoLSN 3): 

 - Read A if PageLSN < 3 apply write 

 - Read X if PageLSN < 4 apply write 

 - Read B if PageLSN < 5 apply write 

 - Read C if PageLSN < 6 apply write 

 - Read A if PageLSN < 7 apply write 

 - Read A if PageLSN < 9 apply write 
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T1 = w1(A),       w1(B), w1(C), w1(A), c1!

<1,begin(T1), -> 
<2,begin(T2), -> 

<3,write(A,T1),1> 
<4,write(X,T2),2> 

<5,write(B,T1),3> 
<6,write(C,T1),5> 

<7,write(A,T1),6> 

<8,commit(T1),7> 
<9,write(A,T2),4> 

<10,CLR(A,T2),4> 

<11,CLR(X,T2),-> 
 

T2 =        w1(X),                        r(A), w(A)!

Log 
Undo Phase (T2): 

 - Undo entry 9 

     -write CLR with UndoNxtLSN = 4 

     -modify page A 

 - Undo entry 4 

     -write CLR with UndoNxtLSN = 2 

     -modify page X 

  - Done 
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ARIES take away messages 

•  Provide good performance by  

–  Not requiring complete checkpoints 

–  Linking of log records 

–  Not restricting buffer operations (no-force/steal is 
ok) 

•  Logical Undo and Physical (Physiological) 
Redo 

•  Idempotent Redo and Undo 

–  Avoid undoing the same operation twice 

CS 525 Notes 13 - Failure and Recovery 133 

Media Recovery 

•  What if disks where log or DB is stored 
failes 

–  ->keep backups of log + DB state 

CS 525 Notes 13 - Failure and Recovery 134 

Log Backup 

•  Split log into several files 

•  Is append only, backup of old files 
cannot interfere with current log 
operations 

CS 525 Notes 13 - Failure and Recovery 135 

Backup DB state 

•  Copy current DB state directly from disk 

•  May be inconsistent 

•  ->Use log to know which pages are up-
to-date and redo operations not yet 
reflected 

CS 525 Notes 13 - Failure and Recovery 136 

CS 525 Notes 13 - Failure and Recovery 137 

Summary 

•  Consistency of data 

•  One source of problems: failures 

 - Logging 

 - Redundancy 

•  Another source of problems: 
          Data Sharing..... next 
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CS 525 Notes 14 - Concurrency Control 1 

CS 525: Advanced Database 
Organization 

14: Concurrency 
 Control 
Boris Glavic 

Slides: adapted from a course taught by  

Hector Garcia-Molina, Stanford InfoLab  

CS 525 Notes 14 - Concurrency Control 2 

Chapter 18 [18] Concurrency Control 

     T1  T2  …  Tn 

DB 
(consistency 
constraints) 

CS 525 Notes 14 - Concurrency Control 3 

Example: 

T1:  Read(A)   T2:  Read(A) 

  A ← A+100   A ← A×2 

  Write(A)    Write(A) 

  Read(B)    Read(B) 

  B ← B+100   B ← B×2 

  Write(B)    Write(B) 

Constraint:  A=B 

CS 525 Notes 14 - Concurrency Control 4 

Schedule A 

T1     T2 

Read(A); A ← A+100 

Write(A); 

Read(B); B ←  B+100; 

Write(B); 

     Read(A);A ←  A×2; 

     Write(A); 

         Read(B);B ←  B×2; 

     Write(B); 

    

CS 525 Notes 14 - Concurrency Control 5 

Schedule A 

T1     T2 

Read(A); A ← A+100 

Write(A); 

Read(B); B ←  B+100; 

Write(B); 

     Read(A);A ←  A×2; 

     Write(A); 

         Read(B);B ←  B×2; 

     Write(B); 

    

A  B 

25  25 

 

125 

 

 125 

 

250 

 

 250 

250  250 

CS 525 Notes 14 - Concurrency Control 6 

Schedule B 

T1     T2 

     Read(A);A ←  A×2; 

     Write(A); 

     Read(B);B ←  B×2; 

     Write(B); 

Read(A); A ← A+100 

Write(A); 

Read(B); B ←  B+100; 

Write(B); 
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CS 525 Notes 14 - Concurrency Control 7 

Schedule B 

T1     T2 

     Read(A);A ←  A×2; 

     Write(A); 

     Read(B);B ←  B×2; 

     Write(B); 

Read(A); A ← A+100 

Write(A); 

Read(B); B ←  B+100; 

Write(B); 

       

  

A  B 

25  25 

 

50 

 

 50 

 

150 

 

 150 

150  150 

CS 525 Notes 14 - Concurrency Control 8 

Schedule C 

T1     T2 

Read(A); A ← A+100 

Write(A); 

     Read(A);A ←  A×2; 

     Write(A); 

Read(B); B ←  B+100; 

Write(B); 

         Read(B);B ←  B×2; 

     Write(B); 

    

CS 525 Notes 14 - Concurrency Control 9 

Schedule C 

T1     T2 

Read(A); A ← A+100 

Write(A); 

     Read(A);A ←  A×2; 

     Write(A); 

Read(B); B ←  B+100; 

Write(B); 

         Read(B);B ←  B×2; 

     Write(B); 

    

A  B 

25  25 

 

125 

 

250 

 

 125 

 

 250 

250  250 

CS 525 Notes 14 - Concurrency Control 10 

Schedule D 

T1     T2 

Read(A); A ← A+100 

Write(A); 

     Read(A);A ←  A×2; 

     Write(A); 

         Read(B);B ←  B×2; 

     Write(B); 

Read(B); B ←  B+100; 

Write(B); 

 

    

CS 525 Notes 14 - Concurrency Control 11 

Schedule D 

T1     T2 

Read(A); A ← A+100 

Write(A); 

     Read(A);A ←  A×2; 

     Write(A); 

         Read(B);B ←  B×2; 

     Write(B); 

Read(B); B ←  B+100; 

Write(B); 

 

    

A  B 

25  25 

 

125 

 

250 

 

 50 

 

 150 

250  150 

CS 525 Notes 14 - Concurrency Control 12 

Schedule E 

T1     T2’ 

Read(A); A ← A+100 

Write(A); 

     Read(A);A ←  A×1; 

     Write(A); 

         Read(B);B ←  B×1; 

     Write(B); 

Read(B); B ←  B+100; 

Write(B); 

 

    

Same as Schedule D 
but with new T2’ 
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CS 525 Notes 14 - Concurrency Control 13 

Schedule E 

T1     T2’ 

Read(A); A ← A+100 

Write(A); 

     Read(A);A ←  A×1; 

     Write(A); 

         Read(B);B ←  B×1; 

     Write(B); 

Read(B); B ←  B+100; 

Write(B); 

 

    

A  B 

25  25 

 

125 

 

125 

 

 25 

 

 125 

125  125 

Same as Schedule D 
but with new T2’ 

Serial Schedules 

•  As long as we do not execute 
transactions in parallel and each 
transaction does not violate the 

constraints we are good 

– All schedules with no interleaving of 
transaction operations are called serial 

schedules 

CS 525 Notes 14 - Concurrency Control 14 

Definition: Serial Schedule 

•  No transactions are interleaved 

– There exists no two operations from 
transactions Ti and Tj so that both 

operations are executed before either 
transaction commits 

CS 525 Notes 14 - Concurrency Control 15 CS 525 Notes 12 - Transaction 
Management 
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T1 = r1(A),w1(A),r1(B),w1(B),c1 !

T2 = r2(A),w2(A),r2(B),w2(B),c2 !

Serial Schedule 

S1 = r2(A),w2(A),r2(B),w2(B),c2,r1(A),w1(A),r1(B),w1(B),c1 !

S2 = r2(A),w2(A),r1(A),w1(A),r2(B),w2(B),c2,r1(B),w1(B),c1 !

!

Nonserial Schedule 

Compare Classes 

S ⊂ ST ⊂ CL ⊂ RC ⊂ ALL 

CS 525 Notes 13 - Failure and Recovery 17 

•  Abbreviations 

– S = Serial 

– ST = Strict 

– CL = Cascadeless 

– RC = Recoverable 

– ALL = all possible schedules 

CS 525 Notes 13 - Failure and Recovery 18 

Strict (ST) 

Cascadeless (CL) 

Recoverable (RC) 

All schedules (ALL) 

Serial (S) 
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Why not serial schedules? 

•  No concurrency! L 

CS 525 Notes 14 - Concurrency Control 19 CS 525 Notes 14 - Concurrency Control 20 

•  Want schedules that are “good”,  
 regardless of 

–  initial state and 

–  transaction semantics 

•  Only look at order of read and writes 

Example:  

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 

Outline 
•  Since serial schedules have good 

properties we would like our schedules 
to behave like (be equivalent to) serial 

schedules 

1.  Need to define equivalence based solely 
on order of operations 

2.  Need to define class of schedules which is 
equivalent to serial schedule 

3.  Need to design scheduler that guarantees 
that we only get these good schedules 

CS 525 Notes 14 - Concurrency Control 21 CS 525 Notes 14 - Concurrency Control 22 

Sc‘=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B) 

 

        T1           T2 

Example:  

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 

CS 525 Notes 14 - Concurrency Control 23 

However, for Sd: 

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B) 

•  as a matter of fact, 

       T2 must precede T1  

        in any equivalent schedule, 

        i.e.,  T2 → T1 

CS 525 Notes 14 - Concurrency Control 24 

T1    T2   Sd cannot be rearranged 

     into a serial schedule 

    Sd is not “equivalent” to 

     any serial schedule 

    Sd is “bad” 

•    T2 → T1  

•    Also, T1 → T2 
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Returning to Sc 

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 

 

    T1 → T2     T1 → T2 

CS 525 Notes 14 - Concurrency Control 26 

Returning to Sc 

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 

 

    T1 → T2     T1 → T2 

E no cycles ⇒ Sc is “equivalent” to a 

    serial schedule 

    (in this case T1,T2) 

CS 525 Notes 14 - Concurrency Control 27 

Concepts 

Transaction: sequence of ri(x), wi(x) actions 

Conflicting actions:  r1(A)    w2(A)    w1(A) 

             w2(A)   r1(A)     w2(A) 

Schedule: represents chronological order
  in which actions are executed 

Serial schedule: no interleaving of actions
     or transactions 

 

CS 525 Notes 14 - Concurrency Control 28 

What about concurrent actions? 

Ti issues  System  Input(X)     t ← x 
read(x,t)  issues  completes 
   input(x) 

time 

CS 525 Notes 14 - Concurrency Control 29 

What about concurrent actions? 

Ti issues  System  Input(X)     t ← x 
read(x,t)  issues  completes 
   input(x) 

time 

T2 issues 
write(B,S) 

System 
issues 

input(B) 

input(B) 
completes 

B ← S 

System 
issues 

output(B) 
output(B) 
completes 

CS 525 Notes 14 - Concurrency Control 30 

So net effect is either 

•   S=…r1(x)…w2(b)…  or 

•   S=…w2(B)…r1(x)… 
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CS 525 Notes 14 - Concurrency Control 31 

What about conflicting, concurrent actions 
on same object? 

  start r1(A)    end r1(A) 

 

start w2(A)    end w2(A) 

 

 

time 

CS 525 Notes 14 - Concurrency Control 32 

•  Assume equivalent to either r1(A) w2(A) 

     or  w2(A) r1(A) 

• ⇒ low level synchronization mechanism 

•  Assumption called “atomic actions” 

What about conflicting, concurrent actions 
on same object? 

  start r1(A)    end r1(A) 

 

start w2(A)    end w2(A) 

 

 

time 

Outline 
•  Since serial schedules have good 

properties we would like our schedules 
to behave like (be equivalent to) serial 

schedules 

1.  Need to define equivalence based solely 
on order of operations 

2.  Need to define class of schedules which is 
equivalent to serial schedule 

3.  Need to design scheduler that guarantees 
that we only get these good schedules 

CS 525 Notes 14 - Concurrency Control 33 

Conflict Equivalence 

•  Define equivalence based on the order 
of conflicting actions 

CS 525 Notes 14 - Concurrency Control 34 

CS 525 Notes 14 - Concurrency Control 35 

Definition 

S1, S2 are conflict equivalent schedules 

 if S1 can be transformed into S2 by a 
series of swaps on non-conflicting 
actions. 

 

Alternatively: 

If the order of conflicting actions in S1 
and S2 is the same 

Outline 
•  Since serial schedules have good 

properties we would like our schedules 
to behave like (be equivalent to) serial 

schedules 

1.  Need to define equivalence based solely 
on order of operations 

2.  Need to define class of schedules which is 
equivalent to serial schedule 

3.  Need to design scheduler that guarantees 
that we only get these good schedules 

CS 525 Notes 14 - Concurrency Control 36 
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CS 525 Notes 14 - Concurrency Control 37 

Definition 

A schedule is conflict serializable (CSR) if 
it is conflict equivalent to some serial 
schedule. 

How to check? 
•  Compare orders of all conflicting 

operations 

•  Can be simplified because there is some 
redundant information here, e.g., 

– W2(A) conflicts with R1(A) 

– W2(B) conflicts with W1(B) 

– Both imply that T2 has to be executed 
before T1 in any equivalent serial schedule 

CS 525 Notes 14 - Concurrency Control 38 

S1 = w2(A),w2(B),r1(A),w1(B) !

CS 525 Notes 14 - Concurrency Control 39 

Nodes: transactions in S 

Arcs:  Ti → Tj whenever 

   - pi(A), qj(A) are actions in S 

   - pi(A) <S  qj(A) 

   - at least one of pi, qj is a  write 

Conflict graph P(S)  (S is schedule) 

CS 525 Notes 14 - Concurrency Control 40 

Exercise: 

•  What is P(S) for 
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D) 

•  Is S serializable? 

CS 525 Notes 14 - Concurrency Control 41 

Exercise: 

•  What is P(S) for 
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D) 

•  Is S serializable? 

T1 T2 

T3 T4 

CS 525 Notes 14 - Concurrency Control 42 

Exercise: 

•  What is P(S) for 
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D) 

•  Is S serializable? 

T1 T2 

T3 T4 
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CS 525 Notes 14 - Concurrency Control 43 

Another Exercise: 

•  What is P(S) for 
S = w1(A) r2(A)  r3(A) w4(A) ? 

 

 

 

CS 525 Notes 14 - Concurrency Control 44 

Another Exercise: 

•  What is P(S) for 
S = w1(A) r2(A)  r3(A) w4(A) ? 

 

 

 

T1 T2 

T3 T4 

CS 525 Notes 14 - Concurrency Control 45 

Lemma 

S1, S2 conflict equivalent ⇒ P(S1)=P(S2) 

CS 525 Notes 14 - Concurrency Control 46 

Lemma 

S1, S2 conflict equivalent ⇒ P(S1)=P(S2) 

Proof: (a → b same as ¬b → ¬a) 

Assume P(S1) ≠ P(S2) 

⇒ ∃ Ti: Ti → Tj in S1 and not in S2 

⇒ S1 = …pi(A)... qj(A)…   pi, qj 

   S2 = …qj(A)…pi(A)...   conflict 

 

⇒ S1, S2 not conflict equivalent  

CS 525 Notes 14 - Concurrency Control 47 

Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent 

CS 525 Notes 14 - Concurrency Control 48 

Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent 

Counter example: 

 

S1=w1(A) r2(A)     w2(B) r1(B) 

  

S2=r2(A) w1(A)     r1(B) w2(B)  
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CS 525 Notes 14 - Concurrency Control 49 

Theorem 

P(S1) acyclic ⇐⇒ S1 conflict serializable 

(⇐) Assume S1 is conflict serializable 

⇒ ∃ Ss: Ss, S1 conflict equivalent 

⇒ P(Ss) = P(S1)  

⇒ P(S1) acyclic since P(Ss) is acyclic 

CS 525 Notes 14 - Concurrency Control 50 

(⇒) Assume P(S1) is acyclic 

Transform S1 as follows: 
(1) Take T1 to be transaction with no incident arcs 

(2) Move all T1 actions to the front 

  S1 = …….  qj(A)…….p1(A)….. 

 
(3) we now have S1 = < T1 actions ><... rest ...> 

(4) repeat above steps to serialize rest! 

T1 

T2    T3 

   T4 

Theorem 

P(S1) acyclic ⇐⇒ S1 conflict serializable 

What’s the damage? 

•  Classification of “bad” things that can 
happen in “bad” schedules 

– Dirty reads 

– Non-repeatable reads 

– Phantom reads (later) 

CS 525 Notes 14 - Concurrency Control 51 

Dirty Read 

•  A transaction T1 read a value that has 
been updated by an uncommitted 
transaction T2 

•  If T2 aborts then the value read by T1 is 
invalid 

CS 525 Notes 14 - Concurrency Control 52 

CS 525 Notes 14 - Concurrency Control 53 

Dirty Read 

T1     T2 

Read(A), A += 100 

Write(A);  

     Read(A), A +=200 

Abort 

     Write(A); 

  

    

S1 = r1(A),w1(A),r2(A),a1,w2(A) !

T1 T2 

A=50 

T1: A = 150 

A = 150 

T2: A = 350 

 

 

Non-repeatable Read 

•  A transaction T1 reads items; some 
before and some after an update of 
these item by a transaction T2 

•  Problem 

– Repeated reads of the same item see 
different values 

– Some values are modified and some are 
not 

CS 525 Notes 14 - Concurrency Control 54 
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Inconsistent Read 

T1     T2 

Read(A)      

     Read(A), A /= 2 

     Write(A) 

     Commit 

Read(A) 

Commit   

     

S1 = r1(A),r2(A),w2(A),c2,r1(A),c1 !

T1 T2 

A = 100 

 

A = 50 

 

 

A = 50 

CS 525 Notes 14 - Concurrency Control 56 

How to enforce serializable schedules? 

Option 1:  run system, recording P(S);  
   at end of day, check for P(S)  
   cycles and declare if execution

   was good 

CS 525 Notes 14 - Concurrency Control 57 

How to enforce serializable schedules? 

Option 1:  run system, recording P(S);  
   at end of day, check for P(S)  
   cycles and declare if execution

   was good 

 

This is called optimistic concurrency 
control 

CS 525 Notes 14 - Concurrency Control 58 

Option 2:  prevent P(S) cycles from  
   occurring  

    T1  T2 …..   Tn 

Scheduler 

DB 

How to enforce serializable schedules? 

CS 525 Notes 14 - Concurrency Control 59 

Option 2:  prevent P(S) cycles from  
   occurring  

 

 

This is called pessimistic concurrency 

control 

     

How to enforce serializable schedules? 

CS 525 Notes 14 - Concurrency Control 60 

A locking protocol 

Two new actions: 

 lock (exclusive):  li (A) 

   unlock:   ui (A) 

 

 
scheduler 

T1     T2 

lock 
table 
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CS 525 Notes 14 - Concurrency Control 61 

Rule #1:  Well-formed transactions 

Ti:  … li(A) … pi(A) … ui(A) ... 

 

1)  Transaction has to lock A before it can 
access A 

2)  Transaction has to unlock A eventually 

3)  Transaction cannot access A after 
unlock 

CS 525 Notes 14 - Concurrency Control 62 

Rule #2    Legal scheduler 

S = …….. li(A) ………... ui(A) ……... 

 

 

4) Only one transaction can hold a lock 
on A at the same time 

 no lj(A) 

CS 525 Notes 14 - Concurrency Control 63 

•  What schedules are legal? 
What transactions are well-formed? 

S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B) 

r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

S2 = l1(A)r1(A)w1(B)u1(A)u1(B) 

l2(B)r2(B)w2(B)l3(B)r3(B)u3(B) 

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B) 

l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

Exercise: 

CS 525 Notes 14 - Concurrency Control 64 

•  What schedules are legal? 
What transactions are well-formed? 

S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B) 

r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

S2 = l1(A)r1(A)w1(B)u1(A)u1(B) 

l2(B)r2(B)w2(B)l3(B)r3(B)u3(B) 

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B) 

l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

Exercise: 

CS 525 Notes 14 - Concurrency Control 65 

Schedule F 

T1          T2 

l1(A);Read(A) 

A   A+100;Write(A);u1(A)    

     l2(A);Read(A) 

     A   Ax2;Write(A);u2(A) 

     l2(B);Read(B) 

     B   Bx2;Write(B);u2(B)  

l1(B);Read(B) 

B   B+100;Write(B);u1(B)  

     

 

 
CS 525 Notes 14 - Concurrency Control 66 

Schedule F 

T1          T2           25   25   

l1(A);Read(A) 

A   A+100;Write(A);u1(A)           125 

     l2(A);Read(A) 

     A   Ax2;Write(A);u2(A)   250 

     l2(B);Read(B) 

     B   Bx2;Write(B);u2(B)     50 

l1(B);Read(B) 

B   B+100;Write(B);u1(B)        150 

              250 150 

     

 

 

A   B 



12 

CS 525 Notes 14 - Concurrency Control 67 

Rule #3  Two phase locking (2PL) 

     for transactions 

Ti = ……. li(A) ………... ui(A) ……... 

 

 

 

5) A transaction does not require new 
locks after its first unlock operation 

no unlocks      no locks 

CS 525 Notes 14 - Concurrency Control 68 

# locks 

held by 

Ti 

 

 

        Time 

         Growing   Shrinking 

           Phase     Phase 

CS 525 Notes 14 - Concurrency Control 69 

Schedule G 

T1      T2 

l1(A);Read(A) 

A   A+100;Write(A) 

l1(B); u1(A)            

      l2(A);Read(A) 

      A   Ax2;Write(A);l2(B)    

delayed 

CS 525 Notes 14 - Concurrency Control 70 

Schedule G 

T1        T2 

l1(A);Read(A) 

A   A+100;Write(A) 

l1(B); u1(A)            

        l2(A);Read(A) 

        A   Ax2;Write(A);l2(B) 

Read(B);B    B+100 

Write(B); u1(B)  

 

delayed 

CS 525 Notes 14 - Concurrency Control 71 

Schedule G 

T1        T2 

l1(A);Read(A) 

A   A+100;Write(A) 

l1(B); u1(A)            

        l2(A);Read(A) 

        A   Ax2;Write(A);l2(B) 

Read(B);B    B+100 

Write(B); u1(B)   

        l2(B); u2(A);Read(B) 

        B    Bx2;Write(B);u2(B);  

 

delayed 

CS 525 Notes 14 - Concurrency Control 72 

Schedule H    (T2 reversed) 

T1     T2 

l1(A); Read(A)    l2(B);Read(B) 

A   A+100;Write(A)    B   Bx2;Write(B) 

l1(B)      l2(A) 

 delayed delayed 
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Deadlock 

•  Two or more transactions are waiting 
for each other to release a lock 

•  In the example 

– T1 is waiting for T2 and is making no 

progress 

– T2 is waiting for T1 and is making no 

progress 

–  -> if we do not do anything they would 

wait forever 

CS 525 Notes 14 - Concurrency Control 73 CS 525 Notes 14 - Concurrency Control 74 

•  Assume deadlocked transactions are 
rolled back 

– They have no effect 

– They do not appear in schedule 

– Come back to that later 

E.g., Schedule H = 

     This space intentionally 

     left blank! 

CS 525 Notes 14 - Concurrency Control 75 

Next step: 

Show that rules #1,2,3 ⇒ conflict- 

         serializable 

         schedules 

CS 525 Notes 14 - Concurrency Control 76 

Conflict rules for  li(A), ui(A): 

 

•  li(A), lj(A) conflict  

•  li(A), uj(A) conflict 

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,... 

CS 525 Notes 14 - Concurrency Control 77 

Theorem  Rules #1,2,3  ⇒  conflict 

        (2PL)       serializable 

          schedule   

CS 525 Notes 14 - Concurrency Control 78 

Theorem  Rules #1,2,3  ⇒  conflict 

        (2PL)       serializable 

          schedule   

To help in proof: 

Definition    Shrink(Ti) = SH(Ti) =
     first unlock       

                                    action of Ti 



14 

CS 525 Notes 14 - Concurrency Control 79 

Lemma 

Ti → Tj in S ⇒ SH(Ti) <S  SH(Tj) 

CS 525 Notes 14 - Concurrency Control 80 

Lemma 

Ti → Tj in S ⇒ SH(Ti) <S  SH(Tj) 

Proof of lemma: 

Ti → Tj means that 

 S = … pi(A) …  qj(A) …;    p,q conflict 

By rules 1,2: 

 S = … pi(A) … ui(A) … lj(A) ... qj(A) … 

CS 525 Notes 14 - Concurrency Control 81 

Lemma 

Ti → Tj in S ⇒ SH(Ti) <S  SH(Tj) 

Proof of lemma: 

Ti → Tj means that 

 S = … pi(A) …  qj(A) …;    p,q conflict 

By rules 1,2: 

 S = … pi(A) … ui(A) … lj(A) ... qj(A) … 

By rule 3:    SH(Ti)         SH(Tj) 

So,  SH(Ti) <S SH(Tj) 
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Proof: 

(1) Assume P(S) has cycle  

   T1 → T2 →…. Tn → T1 

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1) 

(3) Impossible, so P(S) acyclic 

(4) ⇒ S is conflict serializable 

Theorem  Rules #1,2,3  ⇒ conflict 

        (2PL)       serializable 

          schedule   
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2PL subset of Serializable 

S ⊂ 2PL⊂ CSR⊂ ALL 

CS 525 Notes 13 - Failure and Recovery 84 

2PL (2PL) 

Conflict Serializable (CSR) 

All schedules (ALL) 

Serial (S) 
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S1: w1(x)  w3(x)  w2(y)  w1(y) 

•  S1 cannot be achieved via 2PL: 
The lock by T1 for y must occur after w2(y), 

so the unlock by T1 for x must occur after 
this point (and before w1(x)). Thus, w3(x) 

cannot occur under 2PL where shown in S1 

because T1 holds the x lock at that point. 

•  However, S1 is serializable 
(equivalent to T2, T1, T3). 
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SC: w1(A)  w2(A)  w1(B)  w2(B) 

If you need a bit more practice: 

Are our schedules SC and SD 2PL schedules? 

SD:  w1(A)  w2(A)  w2(B)  w1(B)  
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•  Beyond this simple 2PL protocol, it is all 
a matter of improving performance and 
allowing more concurrency…. 

– Shared locks 

– Multiple granularity 

– Avoid Deadlocks 

–  Inserts, deletes and phantoms 

– Other types of C.C. mechanisms 

• Multiversioning concurrency control 
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Shared locks 

So far: 

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) … 

 

    Do not conflict 
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Shared locks 

So far: 

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) … 

 

    Do not conflict 

 
Instead: 

S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)  
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Lock actions 

l-ti(A): lock A in t mode (t is S or X) 

u-ti(A): unlock t mode (t is S or X) 

 

Shorthand: 

ui(A): unlock whatever modes  

   Ti has locked A 
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Rule #1    Well formed transactions 

Ti =... l-S1(A) … r1(A) …  u1 (A) … 

Ti =... l-X1(A) … w1(A) …  u1 (A) … 
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•  What about transactions that read and 
write same object? 

Option 1:  Request exclusive lock 

Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) … 
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Option 2:  Upgrade   
(E.g.,  need to read, but don’t know if will write…) 

 

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)… 

 

 

Think of 
- Get 2nd lock on A, or 
- Drop S, get X lock 

•  What about transactions that read and 
   write same object? 
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Rule #2   Legal scheduler 

S = ....l-Si(A) …  … ui(A) … 

 
    no l-Xj(A) 

 

S = ... l-Xi(A) …    … ui(A) … 

 
     no l-Xj(A) 
     no l-Sj(A) 
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A way to summarize Rule #2 

Compatibility matrix 
 

Comp      S    X 

    S     true       false 

    X  false      false 
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Rule # 3     2PL transactions 

No change except for upgrades: 

(I)  If upgrade gets more locks 

  (e.g., S → {S, X})  then no change! 

(II) If upgrade releases read (shared)  
 lock (e.g., S → X) 

  - can be allowed in growing phase 
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Proof:  similar to X locks case 

Detail: 

l-ti(A), l-rj(A) do not conflict if comp(t,r) 

l-ti(A), u-rj(A) do not conflict if comp(t,r) 

 

Theorem  Rules 1,2,3 ⇒  Conf.serializable 

   for S/X locks           schedules 
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Lock types beyond S/X 

Examples: 

   (1) increment lock 

   (2) update lock 
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Example (1): increment lock 

•  Atomic increment action: INi(A) 

   {Read(A); A ← A+k; Write(A)} 

•  INi(A), INj(A) do not conflict! 

    A=7 

A=5      A=17 

    A=15 

 

INi(A) 

+2 

INj(A) 

+10 

+10 

INj(A) 

+2 

INi(A) 
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Comp    S  X  I 

    S   

    X   

    I   
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Comp    S  X  I 

    S  T  F  F 

    X  F  F  F 

    I  F  F  T 
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Update locks 

A common deadlock problem with upgrades: 

T1     T2 

l-S1(A) 

      l-S2(A) 

l-X1(A) 

      l-X2(A) 

     --- Deadlock --- 
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Solution 

If Ti wants to read A and knows it 

may later want to write A, it requests 

update lock (not shared) 
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Comp    S  X  U 

    S   

    X   

    U    

 

         

             New request 

Lock  
already 
held in 

CS 525 Notes 14 - Concurrency Control 105 

Comp    S  X  U 

    S  T  F  T 

    X  F  F  F 

    U   TorF  F  F 

 

        -> symmetric table? 

             New request 

Lock  
already 
held in 
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Note: object A may be locked in different 
   modes at the same time... 

 

S1=...l-S1(A)…l-S2(A)…l-U3(A)…  l-S4(A)…? 

          l-U4(A)…?  
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Note: object A may be locked in different 
   modes at the same time... 

 

S1=...l-S1(A)…l-S2(A)…l-U3(A)…  l-S4(A)…? 

          l-U4(A)…?  

•  To grant a lock in mode t, mode t must 
be compatible with all currently held 
locks on object 
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How does locking work in practice? 

•  Every system is different 

 (E.g., may not even provide  

    CONFLICT-SERIALIZABLE schedules) 

•  But here is one (simplified) way ... 
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(1) Don’t trust transactions to   
  request/release locks 

(2) Hold all locks until transaction   
  commits 

# 
locks 

time 

Sample Locking System: 
Strict Strong 2PL (SS2PL) 

•  2PL + (2) from the last slide 

•  All locks are held until transaction end 

•  Compare with schedule class strict 
(ST) we defined for recovery 

– A transaction never reads or writes items 

written by an uncommitted transactions 

•  SS2PL = (ST ∩ 2PL) 
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2PL (2PL) 

Conflict Serializable (CSR) 

All schedules (ALL) 

Serial (S) 

SS2PL (SS2PL) 
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   Ti 

      Read(A),Write(B) 

 

 
      l(A),Read(A),l(B),Write(B)… 

 
 
 
      Read(A),Write(B) 

Scheduler, part I 

Scheduler, part II 

DB 

lock 
table 
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Lock table    Conceptually 

  A Λ 

B 
C 

Λ 

... 

Lock info for B 

Lock info for C 

If null, object is unlocked 

E
v
e
ry

 p
o
ss

ib
le

 o
b
je

ct
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But use hash table: 

A 

If object not found in hash table, it is 
unlocked 

Lock info for A A 

... 
... 

H 
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Lock info for A - example 

             tran mode wait? Nxt T_link 

Object:A 
Group mode:U 
Waiting:yes 
List: 

T1 S no 

T2 U no 

T3 X yes Λ 

To other T3  

records 
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What are the objects we lock? 

         

 

 

        ? 

 

Relation A 

Relation B 

... 

Tuple A 

Tuple B 

Tuple C 

... 

Disk  
block 

A 

Disk  
block 

B 

... 

DB DB DB 

CS 525 Notes 14 - Concurrency Control 117 

•  Locking works in any case, but should 
we choose small or large objects? 
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•  Locking works in any case, but should 
we choose small or large objects? 

•  If we lock large objects (e.g., Relations) 

– Need few locks 

– Low concurrency 

•  If we lock small objects (e.g., tuples,fields) 

– Need more locks 

– More concurrency 
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We can have it both ways!! 

Ask any janitor to give you the solution... 

hall 

Stall 1 Stall 2 Stall 3 Stall 4 

restroom 
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Example 

  R1 

t1 
t2 t3 

t4 
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Example 

  R1 

t1 
t2 t3 

t4 

T1(IS) 

T1(S) 
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Example 

  R1 

t1 
t2 t3 

t4 

T1(IS) 

T1(S) 

, T2(S) 
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Example (b) 

  R1 

t1 
t2 t3 

t4 

T1(IS) 

T1(S) 
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Example 

  R1 

t1 
t2 t3 

t4 

T1(IS) 

T1(S) 

, T2(IX) 

T2(IX) 
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Multiple granularity 

Comp    Requestor 

      IS   IX  S   SIX  X 

       IS 

      Holder   IX 

        S 

     SIX 

        X 
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Multiple granularity 

Comp    Requestor 

      IS   IX  S   SIX  X 

       IS 

      Holder   IX 

        S 

     SIX 

        X 

T T T T F 

F 

F 

F 

F F F F F 

F F F T 

F T F T 

F F T T 
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Parent   Child can be 
locked in   locked in 
 
 IS 
 IX 
 S 
 SIX 
 X 

P 

C 
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Parent   Child can be locked 
locked in   by same transaction in 
 
 IS 
 IX 
 S 
 SIX 
 X 

P 

C 

IS, S 
IS, S, IX, X, SIX 

none 
X, IX, [SIX] 

none 

not necessary 
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Rules 

(1) Follow multiple granularity comp function 

(2) Lock root of tree first, any mode 

(3) Node Q can be locked by Ti in S or IS only if       

     parent(Q) locked by Ti in IX or IS 

(4) Node Q can be locked by Ti in X,SIX,IX only  

     if parent(Q) locked by Ti in IX,SIX 

(5) Ti is two-phase 

(6) Ti can unlock node Q only if none of Q’s       

     children are locked by Ti 
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Exercise: 

•  Can T2 access object f2.2 in X mode? 
What locks will T2 get? 

R1 

t1 
t2 t3 

t4 T1(IX) 

f2.1 f2.2 f3.1 f3.2 

T1(IX) 

T1(X) 
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Exercise: 

•  Can T2 access object f2.2 in X mode? 
What locks will T2 get? 

R1 

t1 
t2 t3 

t4 T1(X) 

f2.1 f2.2 f3.1 f3.2 

T1(IX) 
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Exercise: 

•  Can T2 access object f3.1 in X mode? 
What locks will T2 get? 

R1 

t1 
t2 t3 

t4 T1(S) 

f2.1 f2.2 f3.1 f3.2 

T1(IS) 
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Exercise: 

•  Can T2 access object f2.2 in S mode? 
What locks will T2 get? 

R1 

t1 
t2 t3 

t4 T1(IX) 

f2.1 f2.2 f3.1 f3.2 

T1(SIX) 

T1(X) 
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Exercise: 

•  Can T2 access object f2.2 in X mode? 
What locks will T2 get? 

R1 

t1 
t2 t3 

t4 T1(IX) 

f2.1 f2.2 f3.1 f3.2 

T1(SIX) 

T1(X) 
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Insert + delete operations 

 

 

 

 

         Insert 

A 

Z 

α	



... 
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Modifications to locking rules: 

(1) Get exclusive lock on A before 
deleting A 

(2) At insert A operation by Ti, 
 Ti is given exclusive lock on A 
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Still have a problem: Phantoms 

Example: relation R (E#,name,…) 

   constraint: E# is key 

   use tuple locking 

 

R   E#  Name  …. 

  o1  55  Smith   

  o2  75  Jones   
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T1: Insert <08,Obama,…> into R 
T2: Insert <08,McCain,…> into R 

   T1            T2 

S1(o1)           S2(o1) 

S1(o2)           S2(o2) 

Check Constraint       Check Constraint 

 

Insert o3[08,Obama,..] 

          Insert o4[08,McCain,..] 

 

... 

... 
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Solution 

•  Use multiple granularity tree 

•  Before insert of node Q, 

   lock parent(Q) in 

   X mode R1 

t1 
t2 t3 
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Back to example 

T1: Insert<04,Kerry>   T2: Insert<04,Bush> 

  T1       T2 

X1(R) 

      

 

Check constraint    

Insert<04,Kerry> 

U(R) 

     X2(R) 

     Check constraint 

     Oops! e# = 04 already in R! 

      

X2(R) delayed 
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Instead of using R, can use index on R: 

Example: 
R 

Index 
0<E#<100 

Index 
100<E#<200 

E#=2 E#=5 E#=107 E#=109 ... 

... 

... 
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•  This approach can be generalized to 
multiple indexes... 
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Next: 

•  Tree-based concurrency control 

•  Validation concurrency control 
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Example 

A 

B C 

D 

E F 

•  all objects accessed 
  through root, 
  following pointers 
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Example 

A 

B C 

D 

E F 

•  all objects accessed 
  through root, 
  following pointers 

T1 lock 

T1 lock T1 lock 
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Example 

A 

B C 

D 

E F 

•  all objects accessed 
  through root, 
  following pointers 

T1 lock 

T1 lock T1 lock 

E can we release A lock 
    if we no longer need A?? 
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Idea: traverse like “Monkey Bars” 

A 

B C 

D 

E F 
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Idea: traverse like “Monkey Bars” 

A 

B C 

D 

E F 

T1 lock 

T1 lock 
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Idea: traverse like “Monkey Bars” 

A 

B C 

D 

E F 

T1 lock 

T1 lock 
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Why does this work? 

•  Assume all Ti start at root; exclusive lock 

•  Ti → Tj  ⇒ Ti locks root before Tj 

 

•  Actually works if we don’t always 
   start at root 

Root 

Q   Ti → Tj 



26 

CS 525 Notes 14 - Concurrency Control 151 

Rules: tree protocol (exclusive locks) 

(1) First lock by Ti may be on any item 

(2) After that, item Q can be locked by Ti 
 only if parent(Q) locked by Ti 

(3) Items may be unlocked at any time 

(4) After Ti unlocks Q, it cannot relock Q 
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•  Tree-like protocols are used typically for 
B-tree concurrency control 

E.g., during insert, do not release parent lock, until you 
are certain child does not have to split 

Root 
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Tree Protocol with Shared Locks 

•  Rules for shared & exclusive locks? 

A 

B C 

D 

E F 

T1 S lock(released) 

T1 S lock (held) 

T1 X lock (released) 

T1 X lock (will get) 
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Tree Protocol with Shared Locks 

•  Rules for shared & exclusive locks? 

A 

B C 

D 

E F 

T1 S lock(released) 

T1 S lock (held) 

T1 X lock (released) 

T1 X lock (will get) 

T2 reads: 
•  B modified by T1 

•  F not yet modified by T1 
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•  Need more restrictive protocol 

•  Will this work?? 

– Once T1 locks one object in X mode, 
all further locks down the tree must be 

in X mode 

Tree Protocol with Shared Locks 
Deadlocks (again) 

•  Before we assumed that we are able to 
detect deadlocks and resolve them 

•  Now two options 

–  (1) Deadlock detection (and resolving) 

–  (2) Deadlock prevention 
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Deadlock Prevention 

•  Option 1: 

– 2PL + transaction has to acquire all locks 
at transaction start following a global order 
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# 
locks 

time 

Deadlock Prevention 

•  Option 1: 

– Long lock durations L 

– Transaction has to know upfront what data 

items it will access L 

• E.g.,  

UPDATE R SET a = a + 1 WHERE b < 15 

• We don’t know what tuples are in R! 
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Deadlock Prevention 

•  Option 2: 

– Define some global order of data items O 

– Transactions have to acquire locks 

according to this order 

•  Example (X < Y < Z) 

l1(X), l1(Z) (OK) 

l1(Y), l1(X) (NOT OK) 
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Deadlock Prevention 

•  Option 2: 

– Accessed data items have to be known 
upfront L 

– or access to data has to follow the order L 
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Deadlock Prevention 

•  Option 3 (Preemption) 

– Roll-back transactions that wait for locks 
under certain conditions 

– 3 a) wait-die 

• Assign timestamp to each transaction 

•  If transaction Ti waits for Tj to release a lock 
–  Timestamp Ti < Tj -> wait 

–  Timestamp Ti > Tj -> roll-back Ti 
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Deadlock Prevention 

•  Option 3 (Preemption) 

– Roll-back transactions that wait for locks 
under certain conditions 

– 3 a) wound-wait 

• Assign timestamp to each transaction 

•  If transaction Ti waits for Tj to release a lock 
–  Timestamp Ti < Tj -> roll-back Tj 

–  Timestamp Ti > Tj -> wait 
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Deadlock Prevention 

•  Option 3: 

– Additional transaction roll-backs L 
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Timeout-based Scheme 

•  Option 4: 

– After waiting for a lock longer than X, a 
transaction is rolled back 
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Timeout-based Scheme 

•  Option 4: 

– Simple scheme J 

– Hard to find a good value of X 

• To high: long wait times for a transaction 
before it gets eventually aborted 

• To low: to many transaction that are not 
deadlock get aborted 
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Deadlock Detection and 
Resolution 

•  Data structure to detect deadlocks: 
wait-for graph 

– One node for each transaction 

– Edge Ti->Tj if Ti is waiting for Tj 

– Cycle -> Deadlock 

• Abort one of the transaction in cycle to resolve 

deadlock 
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Deadlock Detection and 
Resolution 

•  When do we run the detection? 

•  How to choose the victim? 
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T1 T2 

T3 T4 T5 
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Optimistic Concurrency Control: 
Validation 
Transactions have 3 phases: 

(1) Read 

– all DB values read 

– writes to temporary storage 

– no locking 

(2) Validate 

– check if schedule so far is serializable 

(3) Write 

–  if validate ok, write to DB 
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Key idea 

•  Make validation atomic 

•  If T1, T2, T3, … is validation order, then 
resulting schedule will be conflict 
equivalent to Ss = T1 T2 T3... 
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To implement validation, system keeps 
two sets: 

•  FIN = transactions that have finished  
  phase 3 (and are all done) 

•  VAL = transactions that have   
  successfully finished phase 2   
 (validation) 
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Example of what validation must prevent: 

  RS(T2)={B}    RS(T3)={A,B} 

  WS(T2)={B,D}   WS(T3)={C} 

time 

T2 

start 

T2 

validated 

T3 

validated 
T3 

start 

∩ = φ 
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T2 
finish 

phase 3 

Example of what validation must prevent: 

  RS(T2)={B}    RS(T3)={A,B} 

  WS(T2)={B,D}   WS(T3)={C} 

time 

T2 

start 

T2 

validated 

T3 

validated 
T3 

start 

∩ = φ 

allow 

T3 

start 
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Another thing validation must prevent: 

  RS(T2)={A}      RS(T3)={A,B} 

  WS(T2)={D,E}  WS(T3)={C,D} 

time 

T2 

validated 

T3 

validated 

finish 
T2 
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Another thing validation must prevent: 

  RS(T2)={A}      RS(T3)={A,B} 

  WS(T2)={D,E}  WS(T3)={C,D} 

time 

T2 

validated 

T3 

validated 

finish 
T2 

BAD:  w3(D)  w2(D) 
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finish 
T2 

Another thing validation must prevent: 

  RS(T2)={A}      RS(T3)={A,B} 

  WS(T2)={D,E}  WS(T3)={C,D} 

time 

T2 

validated 

T3 

validated 

allow 

finish 
T2 
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Validation rules for Tj: 

(1) When Tj starts phase 1:  

  ignore(Tj) ← FIN 

(2) at Tj Validation: 

   if check (Tj) then   

    [ VAL ← VAL U {Tj}; 

      do write phase; 

      FIN  ←FIN U {Tj}  ] 
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Check (Tj): 

  For Ti ∈ VAL - IGNORE (Tj)  DO 

   IF [ WS(Ti) ∩  RS(Tj) ≠ ∅ OR 

   Ti ∉ FIN ] THEN RETURN false; 

  RETURN true; 
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Check (Tj): 

  For Ti ∈ VAL - IGNORE (Tj)  DO 

   IF [ WS(Ti) ∩  RS(Tj) ≠ ∅ OR 

   Ti ∉ FIN ] THEN RETURN false; 

  RETURN true; 

 

   
Is this check too restrictive ? 
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Improving Check(Tj) 

For Ti ∈ VAL - IGNORE (Tj)  DO  

 IF [ WS(Ti) ∩  RS(Tj) ≠ ∅ OR 

  (Ti ∉ FIN  AND WS(Ti) ∩ WS(Tj) ≠ ∅)] 

   THEN RETURN false; 

RETURN true; 
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Exercise: 

T: RS(T)={A,B} 
     WS(T)={A,C} 

V: RS(V)={B} 
     WS(V)={D,E} 

U: RS(U)={B} 
        WS(U)={D} 

W: RS(W)={A,D} 
       WS(W)={A,C} 

start 
validate 
finish 



31 

CS 525 Notes 14 - Concurrency Control 181 

Is Validation = 2PL? 

2PL 

Val 
2PL 

Val 

2PL 

Val 

Val 

2PL 
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S2:  w2(y)  w1(x)  w2(x) 

•  S2 can be achieved with 2PL: 
l2(y) w2(y) l1(x) w1(x) u1(x)  l2(x) w2(x) u2(y) u2(x) 

•  S2 cannot be achieved by validation: 

The validation point of T2, val2 must occur before 
w2(y) since transactions do not write to the database 
until after validation. Because of the conflict on x, 
val1 < val2, so we must have something like 
      S2:  val1  val2  w2(y)  w1(x)  w2(x) 
With the validation protocol, the writes of T2 should 
not start until T1 is all done with its writes, which is 
not the case.  
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Validation subset of 2PL? 

•  Possible proof (Check!): 

– Let S be validation schedule 

– For each T in S insert lock/unlocks, get S’: 

• At T start: request read locks for all of RS(T) 

• At T validation: request write locks for WS(T); 

release read locks for read-only objects 

• At T end: release all write locks 

– Clearly transactions well-formed and 2PL 

– Must show S’ is legal (next page) 
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•  Say S’ not legal: 
S’: ... l1(x)     w2(x)  r1(x)   val1 u2(x) ... 

–  At val1: T2 not in Ignore(T1); T2 in VAL 

–  T1 does not validate: WS(T2) ∩  RS(T1) ≠ ∅ 

–  contradiction! 

•  Say S’ not legal: 
S’: ... val1 l1(x)     w2(x)  w1(x)   u2(x) ... 

–  Say T2 validates first (proof similar in other case) 

–  At val1: T2 not in Ignore(T1); T2 in VAL 

–  T1 does not validate: 

T2 ∉ FIN  AND WS(T1) ∩ WS(T2) ≠ ∅) 

–  contradiction! 
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Validation (also called optimistic 
concurrency control) is useful in 
some cases: 

  - Conflicts rare 

  - System resources plentiful 

  - Have real time constraints 

Multiversioning Concurrency 
Control (MVCC) 

•  Keep old versions of data item and use 
this to increase concurrency 

•  Each write creates a new version of the 
written data item 

•  Use version numbers of timestamps to 
identify versions 
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Multiversioning Concurrency 
Control (MVCC) 

•  Different transactions operate over 
different versions of data items 

•  -> readers never have to wait for writers 

•  -> great for combined workloads 

–  OLTP workload (writes, only access small number 

of tuples, short) 

–  OLAP workload (reads, access large portions of 
database, long running) 
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MVCC schemes 

•  MVCC timestamp ordering 

•  MVCC 2PL 

•  Snapshot isolation (SI) 

–  We will only cover this one 
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Snapshot Isolation (SI) 

•  Each transaction T is assigned a timestamp 
S(T) when it starts 

•  Each write creates a new data item version 
timestamped with the current timestamp 

•  When a transaction commits, then the latest 
versions created by the transaction get a 

timestamp C(T) as of the commit 
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Snapshot Isolation (SI) 

•  Under snapshot isolation each 
transaction T sees a consistent 
snapshot of the database as of S(T) 

–  It only sees data item versions of 
transactions that committed before T 

started 

–  It also sees its own changes 
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First Updater Wins Rule (FUW) 

•  Two transactions Ti and Tj may update 
the same data item A 

– To avoid lost updates only one of the two 

can be safely committed 

•  First Updater Wins Rules 

– The transaction that updated A first is 

allowed to commit 

– The other transaction is aborted 
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First Committer Wins Rule 
(FCW) 

•  Two transactions Ti and Tj may update 
the same data item A 

– To avoid lost updates only one of the two 

can be safely committed 

•  First Committer Wins Rules 

– The transaction that attempts to commit 

first is allowed to commit 

– The other transaction is aborted 
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T1! T2! T3!

W(Y := 1)"

Commit"

Start"

R(X) à 0"

R(Y)à 1"

W(X:=2)"

W(Z:=3)"

Commit"

R(Z) à 5"

R(Y) à 1"

W(X:=3)"

Commit-Req"

Abort"

Concurrent updates not visible"

"

Not first-committer of X"

Serialization error, T2 is rolled back"

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

X! Y! Z!

0"

0"

"

"

"

"

2"

2"

"

"

"

"

3"

1"

"

"

"

"

"

"

5"

"

"

"

"

"

3"

3"

©Silberschatz, Korth and Sudarshan!

Update not visible outside of T1"

Update becomes visible to"

 future transactions"

Why does that work? 

•  Since all transactions see a consistent 
snapshot and their changes are only 
made “public” once they commit 

–  It looks like the transactions have been 
executed in the order of their commits* 

* Recall the writes to the same data item 
are disallowed for concurrent transactions 
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Is that serializable? 

•  Almost ;-) 

•  There is still one type of conflict which 
cannot occur in serialize schedules 
called write-skew 
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Write Skew 

•  Consider two data items A and B 

– A = 5, B = 5 

•  Concurrent Transactions T1 and T2 

– T1: A = A + B 

– T2: B = A + B 

•  Final result under SI 

– A = 10, B = 10 
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Write Skew 

•  Consider serial schedules: 

– T1, T2: A=10, B=15 

– T2, T1: A=15, B=10 

•  What is the problem 

– Under SI both T1 and T2 do not see each 
others changes 

–  In any serial schedule one of the two 
would see the others changes 
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Example: Oracle 
•  Tuples are updated in place 

•  Old versions in separate ROLLBACK segment 

–  GC once nobody needs them anymore 

•  How to implement the FCW or FUW? 

–  Oracle uses write locks to block concurrent writes 

–  Transaction waiting for a write lock aborts if 
transaction holding the lock commits 
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SI Discussion 

•  Advantages 
–  Readers and writers do not block each other 

–  If we do not GC old row versions we can go back 

to previous versions of the database -> Time 
travel 

•  E.g., show me the customer table as it was yesterday 

•  Disadvantages 

–  Storage overhead to keep old row versions 

–  GC overhead 

–  Not strictly serializable 
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Summary 

Have studied CC mechanisms used in practice 

 - 2 PL variants 

 - Multiple lock granularity 

 - Deadlocks 

 - Tree (index) protocols 

 - Optimistic CC (Validation) 

 - Multiversioning Concurrency Control (MVCC) 

 

 

  


