

0

1

5

6

8

8. Sufficiency cont.

- Is sufficiency enough?
- No, sufficiency does not prevent irrelevant inputs to be included in the provenance!
- Sufficiency does not uniquely define provenance
- Monotone Queries
- A query \mathbf{Q} is monotone if
$\forall D, D^{\prime}: D \subseteq D^{\prime} \Rightarrow Q(D) \subseteq Q\left(D^{\prime}\right)$
- For all monotone queries \mathbf{Q} :
- If D is sufficient then so is any superset of D
- in particular the input database D is sufficient

12

14

16

8. Why provenance

 ILLINOIS INSTITUTEOF TECHNOLOG

- Rationale: define provenance as the set of all sufficient subsets of the input
- this uniquely defines provenance
- this does not solve the redundancy issue!
- Why provenance:

$$
W h y(Q, D, t)=\left\{D^{\prime} \mid D^{\prime} \subseteq D \wedge t \in Q\left(D^{\prime}\right)\right\}
$$

- Each sufficient subset of D in the why provenance is called a witness

13
13

8. Minimal Why provenance unvos nsyrviriver

- Minimal Why provenance:
- Only include minimal witnesses

WWhy $(Q, D, t)=\left\{D^{\prime} \mid D^{\prime} \in W h y(Q, D, t) \wedge A D^{\prime \prime} \subset D^{\prime}: D^{\prime \prime} \in W h y(Q, D, t)\right\}$

15
15

8. Why provenance - discussion
 unos.

- Independent of query syntax
- Queries are treated as blackbox functions
- Equivalent queries have the same provenance!
- How to compute this efficiently?
- The discussion so far only gives a brute force exponential time algorithm
- For each subset D' of D test whether it is a witness
- Then for every witness test whether it is minimal by testing for a subset relationship with all other witnesses
- Top-down rules that calculate MWhy in a syntax driven manner

8. MWhy - top-down recursion unoos nsyrurl

- Define top-down syntax-driven rules
- calculate a set of witnesses
- Minimizing the result of these rules returns MWhy $W(R, t, I)=\{\{t\}\}$
$W\left(\sigma_{\theta}(Q), t, I\right)=W(Q, t, I)$
$W\left(\pi_{A}(Q), t, I\right)=\bigcup_{u \in Q(I): u . A=t} W(Q, u, I)$
$W\left(Q_{1} \bowtie_{\theta} Q_{2}, t, I\right)=\left\{\left(w_{1} \cup w_{2}\right) \mid w_{1} \in W\left(Q_{1}, t_{1}, I\right)\right.$ $\left.\wedge w_{2} \in W\left(Q_{2}, t_{2}, I\right) \wedge t=\left(t_{1}, t_{2}\right)\right\}$
$W\left(Q_{1} \cup Q_{2}, t, I\right)=W\left(Q_{1}, t, I\right) \cup W\left(Q_{2}, t, I\right)$
18
18

8. Semiring annotations - Agenda umwos nstrure

- We will now discuss a model that ...
- Provides provenance for both sets and bags
- Allows us to track how tuples where combined
- Can express many other provenance models including MWhy
- Can also express bag and set semantics and other extensions of the relational model such as the incomplete databases we discussed earlier

20
20

22

8. Why provenance - discussion 2

- This works well for set semantics, but not bag semantics
- Minimization can lead to incorrect results with bag semantics
- Treating the provenance as sets of tuples does not align well with bags
- This only encodes data dependencies
- We know from which tuples we have derived a result, but not how the tuples were combined to produce the result

8. Annotations on Data

ILINOIS INSTITUTE

- Annotations
- Allow data to be associated with additional metadata
- Comments from users
- Trust annotations
- Provenance
-...
- Here we are interested in annotations on the tuples of a table

21
21

8. K-relations

 ILINOI INstitute- K-relations
- We fix a set \mathbf{K} of possible annotations
$-\mathbf{K}$ has to have a distinguished element $\mathbf{0}_{\mathbf{K}}$
- Assume some data domain \mathbf{U}
- An n-ary K-relation is a function

$$
\mathcal{U}^{n} \rightarrow K
$$

- We associate an annotation with every possible n-ary tuple
- $\mathbf{0}_{\mathbf{k}}$ is used to annotate tuples that are not in the relation
- Only finitely many tuples are allowed to be mapped to a non-zero annotation

24

26

28

25

27

30

32

31

8. K-relations - Query semantics umwas nsitrurie

- Positive relational algebra ($\mathbf{R A}^{+}$)
- Selection, projection, cross-product, renaming, union
Union: $\left(R_{1} \cup R_{2}\right)(t)=R_{1}(t) \oplus_{\mathcal{K}} R_{2}(t)$
Join: $\left(R_{1} \bowtie R_{2}\right)(t)=R_{1}\left(t\left[R_{1}\right]\right) \otimes_{\mathcal{K}} R_{2}\left(t\left[R_{2}\right]\right)$
Projection: $\left(\pi_{A}(R)\right)(t)=\bigoplus_{t=t^{\prime}[A]} R\left(t^{\prime}\right)$
Selection: $\left(\sigma_{\theta}(R)\right)(t)=R(t) \otimes_{\mathcal{K}} \theta(t)$
$33 \quad \theta(t)= \begin{cases}0_{\mathcal{K}} & \text { if } t \models \theta \\ 1_{\mathcal{K}} & \text { otherwise }\end{cases}$
33

36

38

8. Provenance Polynomials -

Computability

 ILINOIS INSTITUTEOFTTCHNOLOOV

- Recall our requirements of sufficiency and minimality
- Provenance polynomials fulfill a stronger requirement: computability
- Given the result of a query in $N[X]$, we can compute the query result in any other semiring K under a given assignment of input tuples (variables of the polynomials) to annotations from K

37
37

- Provenance is information about the origin and creation process of data
- Data dependencies
- Dependencies between data and the transformations that generated it
- Provenance for Queries
- Correctness criteria:
- sufficiency, minimality, computability
- Provenance models:
- Why, MWhy, Provenance polynomials

