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3. Big Data Analytics 

•  Big Topic, big Buzzwords ;-) 
•  Here 
– Overview of two types of systems 

•  Key-value/document stores 
•  Mainly: Bulk processing (MR, graph, …) 

– What is new compared to single node systems? 
– How do these systems change our approach to 

integration/analytics 
•  Schema first vs. Schema later 
•  Pay-as-you-go 
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3. Big Data Overview 

•  1) How does data processing at scale (read 
using many machines) differ from what we 
had before? 
– Load-balancing 
– Fault tolerance 
– Communication 
– New abstractions 

•  Distributed file systems/storage 
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3. Big Data Overview 

•  2) Overview of systems and how they 
achieve scalability 
– Bulk processing 

•  MapReduce, Shark, Flink, Hyracks, … 
•  Graph: e.g., Giraph, Pregel, …  

– Key-value/document stores = NoSQL 
•  Cassandra, MongoDB, Memcached, Dynamo, … 
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3. Big Data Overview 

•  2) Overview of systems and how they 
achieve scalability 
– Bulk processing 

•  MapReduce, Shark, Flink,  
– Fault tolerance 

•  Replication 
•  Handling stragglers 

– Load balancing 
•  Partitioning 
•  Shuffle 

5 CS520 - 7) Big Data Analytics 



3. Big Data Overview 

•  3) New approach towards integration 
– Large clusters enable directly running queries 

over semi-structured data (within feasible time) 
•  Take a click-stream log and run a query 

– One of the reasons why pay-as-you-go is now 
feasible 
•  Previously: designing a database schema upfront and 

designing a process (e.g., ETL) for cleaning and 
transforming data to match this schema, then query 
•  Now: start analysis directly, clean and transform data if 

needed for the analysis 
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3. Big Data Overview 

•  3) New approach towards integration 
– Advantage of pay-as-you-go 

•  More timely data (direct access) 
•  More applicable if characteristics of data change 

dramatically (e.g., yesterdays ETL process no longer 
applicable) 

– Disadvantages of pay-as-you-go 
•  Potentially repeated efforts (everybody cleans the click-

log before running the analysis) 
•  Lack of meta-data may make it hard to  

– Determine what data to use for analysis 
– Hard to understand semantics of data 
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3. Big Data Overview 

•  Scalable systems 
– Performance of the system scales in the number of 

nodes 
•  Ideally the per node performance is constant 

independent of how many nodes there are in the system 
•  This means: having twice the number of nodes would 

give us twice the performance 

– Why scaling is important? 
•  If a system scales well we can “throw” more resources 

at it to improve performance and this is cost effective 
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3. Big Data Overview 

•  What impacts scaling? 
– Basically how parallelizable is my algorithm 

•  Positive example: problem can be divided into  
subproblems that can be solved independently without 
requiring communication 
–  E.g., array of 1-billion integers [i1, …, i1,000,000,000] add 3 to 

each integer. Compute on n nodes, split input into n equally 
sized chunks and let each node process one chunk 

•  Negative example: problem where subproblems are 
strongly intercorrelated 
–  E.g., Context Free Grammar Membership: given a string and a 

context free grammar, does the string belong to the language 
defined by the grammar. 
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3. Big Data – Processing at Scale 

•  New problems at scale 
– DBMS  

•  running on 1 or 10’s of machines 
•  running on 1000’s of machines 

•  Each machine has low probability of failure 
–  If you have many machines, failures are the norm 
– Need mechanisms for the system to cope with 

failures 
•  Do not loose data 
•  Do not use progress of computation when node fails 

– This is called fault-tolerance 
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3. Big Data – Processing at Scale 

•  New problems at scale 
– DBMS  

•  running on 1 or 10’s of machines 
•  running on 1000’s of machines 

•  Each machine has limited storage and 
computational capabilities 
– Need to evenly distribute data and computation 

across nodes 
•  Often most overloaded node determine processing speed 

– This is called load-balancing 
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3. Big Data – Processing at Scale 

•  Building distributed systems is hard 
– Many pitfalls 

•  Maintaining distributed state 
•  Fault tolerance 
•  Load balancing 

– Requires a lot of background in 
•  OS 
•  Networking 
•  Algorithm design 
•  Parallel programming 
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3. Big Data – Processing at Scale 

•  Building distributed systems is hard 
– Hard to debug 

•  Even debugging a parallel program on a single machine 
is already hard 
– Non-determinism because of scheduling: Race conditions 
–  In general hard to reason over behavior of parallel threads of 

execution  

•  Even harder when across machines 

– Just think about how hard it was for you to first 
program with threads/processes 
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3. Big Data – Why large scale? 

•  Datasets are too large 
– Storing a 1 Petabyte dataset requires 1 PB 

storage 
•  Not possible on single machine even with RAID 

storage 

•  Processing power/bandwidth of single 
machine is not sufficient 
– Run a query over the facebook social network 

graph 
•  Only possible within feasible time if distributed 

across many nodes 

14 CS520 - 7) Big Data Analytics 



3. Big Data – User’s Point of 
View 
•  How to improve the efficiency of distributed 

systems experts 
– Building a distributed system from scratch for 

every store and analysis task is obviously not 
feasible! 

•  How to support analysis over large datasets 
for non distributed systems experts 
– How to enable somebody with some programming 

but limited/no distributed systems background to 
run distributed computations 
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3. Big Data – Abstractions 

•  Solution 
– Provide higher level abstractions 

•  Examples 
– MPI (message passing interface) 

•  Widely applied in HPC 
•  Still quite low-level 

– Distributed file systems 
•  Make distribution of storage transparent 

– Key-value storage 
•  Distributed store/retrieval of data by identifier (key) 
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3. Big Data – Abstractions 

•  More Examples 
– Distributed table storage 

•  Store relations, but no SQL interface 

– Distributed programming frameworks 
•  Provide a, typically, limited programming model with 

automated distribution 
– Distributed databases, scripting languages 

•  Provide a high-level language, e.g., SQL-like with an 
execution engine that is distributed 
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3. Distributed File Systems 

•  Transparent distribution of storage 
– Fault tolerance 
– Load balancing? 

•  Examples 
– HPC distributed filesystems 

•  Typically assume a limited number of dedicated storage 
servers 
•  GPFS, Lustre, PVFS 

– “Big Data” filesystems 
•  Google file system, HDFS 
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3. HDFS 

•  Hadoop Distributed Filesystem (HDFS) 
•  Architecture 
– One nodes storing metadata (name node) 
– Many nodes storing file content (data nodes) 

•  Filestructure 
– Files consist of blocks (e.g., 64MB size) 

•  Limitations 
– Files are append only 
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3. HDFS 

•  Name node 
•  Stores the directory structure 
•  Stores which blocks belong to which files 
•  Stores which nodes store copies of which 

block 
•  Detects when data nodes are down 

•  Clients communicate with the name node to 
gather FS metadata  
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3. HDFS 

•  Data nodes 
•  Store blocks 
•  Send/receive file data from clients 
•  Send heart-beat messages to name node to 

indicate that they are still alive 

•  Clients communicate data nodes for reading/
writing files 
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3. HDFS 

•  Fault tolerance 
– n-way replication 
– Name node detects failed nodes based on heart-

beats 
–  If a node if down, then the name node schedules 

additional copies of the blocks stored by this node 
to be copied from nodes storing the remaining 
copies 
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3. Distributed FS Discussion 

•  What do we get? 
– Can store files that do not fit onto single nodes 
– Get fault tolerance 
–  Improved read speed (caused on replication) 
– Decreased write speed (caused by replication) 

•  What is missing? 
– Computations 
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3. Frameworks for Distributed 
Computations 
•  Problems 
– Not all algorithms do parallelize well 
– How to simplify distributed programming? 

•  Solution 
– Fix a reasonable powerful, but simple enough 

model of computation for which scalable 
algorithms are known 

–  Implement distributed execution engine for this 
model and make it fault tolerant and load-balanced 
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3. MapReduce 

•  Data Model 
– Sets of key-value pairs {(k1,v1), …, (kn,vn)} 
– Key is an identifier for a piece data 
– Value is the data associaed with a key 

•  Programming Model 
– We have two higher-level functions map and 

reduce 
•  Take as input a user-defined function that is applied to 

elements in the input key-value pair set 

– Complex computations can be achieved by 
chaining map-reduce computations 
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3. MapReduce Datamodel 

•  Data Model 
– Sets of key-value pairs {(k1,v1), …, (kn,vn)} 
– Key is an identifier for a piece data 
– Value is the data associaed with a key 

•  Examples 
– Document d with an id 

•  (id, d) 

– Person with name, salary, and SSN 
•  (SSN, “name, salary”) 
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3. MapReduce Computional 
Model 
•  Map 
– Takes as input a set of key-value pairs and a user-

defined function f:(k,v) -> {(k,v)}
– Map applies f to every input key-value pair and 

returns the union of the outputs produced by f 
{(k1,v1),…,(kn,vn)} 
->
f((k1,v1)) ∪ … ∪ f((kn,vn)) 
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3. MapReduce Computional 
Model 
•  Example 
– Input: Set of (city,population) pairs 
– Task: multiply population by 1.05 

•  Map function 
–  f: (city,population) -> 
{(city,population*1.05)}

•  Application of f through map 
–  Input: {(chicago, 3), (nashville, 1)}
– Output: {(chicago, 3.15)} ∪ {(nashville, 1.05)}
        = {(chicago, 3.15), (nashville, 1.05)}
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3. MapReduce Computional 
Model 
•  Reduce 
– Takes as input a key with a list of associated values 

a user-defined function  
g: (k,list(v)) -> {(k,v)}

– Reduce groups all values with the same key in the 
input key-value set and passes each key and its list 
of values to g. and returns the union of the outputs 
produced by g 

{(k1,v11),…,(k1,v1n1), … (km,vm1),…,(km,vmnm)} 
->
g((k1,(v11,…,v1n1)) ∪ … ∪ g((km,(vm1,…,vmnm)) 
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3. MapReduce Computional 
Model 
•  Example 
– Input: Set of (state, population) pairs one for each 

city in the state 
– Task: compute the total population per state 

•  Reduce function 
–  f: (state,[p1, …, pn]) -> 
{(state,SUM([p1,…,pn)}

•  Application of f through map 
–  Input: {(illinois, 3), (illinois, 1), (oregon, 15)}
– Output: {(illinois, 4), (oregon, 15)}
 30 CS520 - 7) Big Data Analytics 



3. MapReduce Workflows 

•  Workflows 
– Computations in MapReduce consists of map 

phases followed by reduce phases 
•  The input to the reduce phase is the output of the map 

phase 

– Complex computations may require multiple map-
reduce phases to be chained together 
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3. MapReduce Implementations 

•  MapReduce 
– Developed by google 
– Written in C 
– Runs on top of GFS (Google’s distributed 

filesystem) 
•  Hadoop 
– Open source Apache project 
– Written in Java 
– Runs on-top of HDFS 
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3. Hadoop 

•  Anatomy of a Hadoop cluster 
– Job tracker 

•  Clients submit MR jobs to the job tracker 
•  Job tracker monitors progress 

– Task tracker aka workers 
•  Execute map and reduce jobs 

•  Job 
– Input: files from HDFS 
– Output: written to HDFS 
– Map/Reduce UDFs 
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3. Hadoop 

•  Fault tolerance 
– Handling stragglers 

•  Job tracker will reschedule jobs to a different worker if 
the worker falls behind too much with processing 

– Materialization 
•  Inputs are read from HDFS 
•  Workers write results of map jobs assigned to them to 

local disk 
•  Workers write results of reduce jobs to HDFS for 

persistence 
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3. Hadoop – MR Job 
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3. Hadoop – MR Job 
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3. Hadoop – MR Job 
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3. Hadoop – MR Job 
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3. Hadoop – MR Job 
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3. Combiners 

•  Certain reduce functions lend themselves to 
pre-aggregation 
– E.g., SUM(revenue) group by state 

•  Can compute partial sums over incomplete groups and 
then sum up the pre-aggregated results 

– This can be done at the mappers to reduce amount 
of data send to the reducers 

•  Supported in Hadoop through a user provided 
combiner function 
– The combiner function is applied before writing 

the mapper results to local disk 
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3. Combiners 

•  Certain reduce functions lend themselves to 
pre-aggregation 
– E.g., SUM(revenue) group by state 

•  Can compute partial sums over incomplete groups and 
then sum up the pre-aggregated results 

– This can be done at the mappers to reduce amount 
of data send to the reducers 

•  Supported in Hadoop through a user provided 
combiner function 
– The combiner function is applied before writing 

the mapper results to local disk 
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3. Example code – Word count 

•  https://hadoop.apache.org/docs/r1.2.1/
mapred_tutorial.html 
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3. Example code – Word count 

•  https://hadoop.apache.org/docs/r1.2.1/
mapred_tutorial.html 
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3. Example code – Word count 
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3. Systems/Languages on top of 
MapReduce 
•  Pig 
– Scripting language, compiled into MR 
– Akin to nested relational algebra 

•  Hive 
– SQL interface for warehousing 
– Compiled into MR 

•  … 

45 CS520 - 7) Big Data Analytics 



3. Hive 

•  Hive 
– HiveQL: SQL dialect with support for directly 

applying given Map+Reduce functions as part of a 
query 

– HiveQL is compiled into MR jobs 
– Executed of Hadoop cluster 
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FROM	(	
	MAP	doctext	USING	'python	wc_mapper.py'	AS	(word,	cnt)	 		

																	FROM	docs	
	CLUSTER	BY	word		

)	a	
REDUCE	word,	cnt	USING	'python	wc_reduce.py';		



3. Hive Architecture 
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CREATE TABLE test_delimited(c1 string, c2 int) 

  ROW FORMAT DELIMITED 

     FIELDS TERMINATED BY '\002' 

     LINES TERMINATED BY '\012'; 

 

specifies that the data for table test_delimited uses ctrl-B 
(ascii code 2) as a column delimiter and uses ctrl-L(ascii code 

12) as  a row delimiter. In addition, delimiters can be specified 

to delimit the serialized keys and values of maps and different 

delimiters can also be specified to delimit the various 

elements of a list (collection). This is illustrated by the 

following statement. 

 

CREATE TABLE test_delimited2(c1 string,  

                                                        c2 list<map<string, int>>) 

  ROW FORMAT DELIMITED 

    FIELDS TERMINATED BY '\002' 

    COLLECTION ITEMS TERMINATED BY '\003' 
    MAP KEYS TERMINATED BY '\004'; 

 

     Apart from LazySerDe, some other interesting SerDes are 

present in the hive_contrib.jar that is provided with the 

distribution. A particularly useful one is RegexSerDe which 

enables the user to specify a regular expression to parse 

various columns out from a row. The following statement can 

be used for example, to interpret apache logs. 

 

add jar 'hive_contrib.jar'; 

CREATE TABLE apachelog( 
    host string, 

    identity string, 

    user string, 

    time string, 

    request string, 

    status string, 

    size string, 

    referer string, 

    agent string) 

  ROW FORMAT SERDE  

      'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' 

  WITH SERDEPROPERTIES( 
   'input.regex' = '([^ ]*) ([^ ]*) ([^ ]*) (-|\\[[^\\]]*\\]) ([^ 

\"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^ 

\"]*|\"[^\"]*\"))?', 

  'output.format.string' = '%1$s %2$s %3$s %4$s %5$s %6$s 

%7$s %8$s %9$s'); 

 

The input.regex property is the regular expression applied on 

each record and the output.format.string indicates how the 

column fields can be constructed from the group matches in 

the regular expression. This example also illustrates how 

arbitrary key value pairs can be passed to a serde using the 
WITH SERDEPROPERTIES clause, a capability that can be 

very useful in order to pass arbitrary parameters to a custom 

SerDe. 

C. File Formats 

Hadoop files can be stored in different formats. A file 

format in Hadoop specifies how records are stored in a file. 

Text files for example are stored in the TextInputFormat and 

binary files can be stored as SequenceFileInputFormat. Users 

can also implement their own file formats. Hive does not 

impose an restrictions on the type of file input formats, that 
the data is stored in. The format can be specified when the 

table is created. Apart from the two formats mentioned above, 

Hive also provides an RCFileInputFormat which stores the 

data in a column oriented manner. Such an organization can 

give important performance improvements specially for 

queries that do not access all the columns of the table. Users 

can add their own file formats and associate them to a table as 

shown in the following statement. 

 

CREATE TABLE dest1(key INT, value STRING)  

  STORED AS  

      INPUTFORMAT  
             'org.apache.hadoop.mapred.SequenceFileInputFormat' 

  OUTPUTFORMAT  

      'org.apache.hadoop.mapred.SequenceFileOutputFormat' 

 

The STORED AS clause specifies the classes to be used to 

determine the input and output formats of the files in the 

table’s or partition’s directory. This can be any class that 

implements the FileInputFormat and FileOutputFormat java 

interfaces. The classes can be provded to Hadoop in a jar in 

ways similar to those shown in the examples on adding 

custom SerDes. 

IV. SYSTEM ARCHITECTURE AND COMPONENTS 

 

Fig. 1: Hive System Architecture 

As an example, the statement 
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3. Hive Datamodel  

•  Tables
–  Attribute-DataType pairs
–  User can instruct Hive to partition the table in a certain way

•  Datatypes
–  Primitive: integer, float, string
–  Complex types

•  Map: Key->Value
•  List
•  Struct

–  Complex types can be nested
•  Example:

CREATE TABLE t1(st string, fl float, li list<map<string, struct<p1:int, 
p2:int>>);  

•  Implementation:
–  Tables are stored in HDFS
–  Serializer/Deserializer - transform for querying48 CS520 - 7) Big Data Analytics 



3. Hive - Query Processing 

•  Compile HiveQL query into DAG of map and 
reduce functions. 
–  A single map/reduce may implement several 

traditional query operators
•   E.g., filtering out tuples that do not match a condition 

(selection) and filtering out certain columns (projection)
–  Hive tries to use the partition information to avoid 

reading partitions that are not needed to answer the 
query
•  For example

–  table instructor(name,department) is partitioned on 
department

–  SELECT name FROM instructor WHERE department = ‘CS’
–  This query would only access the partition of the table for 

department ‘CS’ 
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3. Operator implementations 

•  Join implementations 
– Broadcast join 
• Send the smaller table to all nodes 
• Process the other table partitioned 
– Each node finds all the join partners for a partition 

of the larger table and the whole smaller table 

– Reduce join (partition join) 
• Use a map job to create key-value pairs where 

the key is the join attributes 
• Reducer output joined rows 
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3. Example plan 
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set hive.groupby.skewindata=true; 

SELECT t1.c1, sum(t1.c2) 

FROM t1 

GROUP BY t1; 

 
ii. Hash based partial aggregations in the 

mappers – Hash based partial aggregations 

can potentially reduce the data that is sent 

by the mappers to the reducers. This in turn 

reduces the amount of time spent in sorting 

and merging this data. As a result a lot of 

performance gains can be achieved using 

this strategy. Hive enables users to control 

the amount of memory that can be used on 

the mapper to hold the rows in a hash table 

for this optimization. The parameter 

hive.map.aggr.hash.percentmemory 
specifies the fraction of mapper memory 

that can be used to hold the hash table, e.g. 

0.5 would ensure that as soon as the hash 

table size exceeds half of the maximum 

memory for a mapper, the partial aggregates 

stored therein are sent to the reducers. The 

parameter hive.map.aggr.hash.min.reduction 

is also used to control the amount of 

memory used in the mappers. 

 

• Generation of the physical plan – The logical plan 
generated at the end of the optimization phase is then 

split into multiple map/reduce and hdfs tasks. As an 

example a group by on skewed data can generate two 

map/reduce tasks followed by a final hdfs task which 

moves the results to the correct location in hdfs. At the 

end of this stage the physical plan looks like a DAG of 

tasks with each task encapsulating a part of the plan. 

We show a sample multi-table insert query and its 

corresponding physical plan after all optimizations below. 

 

FROM (SELECT a.status, b.school, b.gender  

              FROM status_updates a JOIN profiles b  
                          ON (a.userid = b.userid  

                                  AND a.ds='2009-03-20' )) subq1 

 

INSERT OVERWRITE TABLE gender_summary 

                                          PARTITION(ds='2009-03-20') 

SELECT subq1.gender, COUNT(1)  

GROUP BY subq1.gender 

 

INSERT OVERWRITE TABLE school_summary  

                                          PARTITION(ds='2009-03-20') 

SELECT subq1.school, COUNT(1)  
GROUP BY subq1.school 

 

This query has a single join followed by two different 

aggregations. By writing the query as a multi-table-insert, we 

make sure that the join is performed only once. The plan for 

the query is shown in Fig 3 below. 

The nodes in the plan are physical operators and the edges 

represent the flow of data between operators. The last line in 

each node represents the output schema of that operator. For 

lack of space, we do not describe the parameters specified 
within each operator node. The plan has three map-reduce 

jobs.  

 

Fig. 3: Query plan for multi-table insert query with 3 map/reduce jobs 

 
Within the same map-reduce job, the portion of the operator 

tree below the repartition operator (ReduceSinkOperator) is 

executed by the mapper and the portion above by the reducer. 
The repartitioning itself is performed by the execution engine. 

Notice that the first map-reduce job writes to two 

temporary files to HDFS, tmp1 and tmp2, which are 

consumed by the second and third map-reduce jobs 
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Spark 

•  MR uses heavy materialization to achieve fault 
tolerance 
– A lot of I/O 

•  Spark 
– Works in main memory  (where possible) 
–  Inputs and final outputs stored in HDFS 
– Recomputes partial results instead of materializing 

them - resilient distributed datasets (RDD) 
•  Lineage: Need to know from which chunk a chunk was 

derived from and by which computation 
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Summary 

•  Big data storage systems 
•  Big data computation platforms 
•  Big data “databases” 
•  How to achieve scalability 
– Fault tolerance 
– Load balancing 

•  Big data integration 
– Pay-as-you-go 
– Schema later 
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Outline 

0) Course Info 
1)  Introduction 
2)  Data Preparation and Cleaning 
3)  Schema matching and mapping 
4)  Virtual Data Integration 
5)  Data Exchange 
6)  Data Warehousing  
7)  Big Data Analytics 
8)   Data Provenance 
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