
CS520
Data Integration, Warehousing, and

Provenance

7. Big Data Systems and Integration

Boris Glavic
http://www.cs.iit.edu/~glavic/
http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info
1)  Introduction
2)  Data Preparation and Cleaning
3)  Schema matching and mapping
4)  Virtual Data Integration
5)  Data Exchange
6)  Data Warehousing
7)   Big Data Analytics
8)  Data Provenance

 1 CS520 - 7) Big Data Analytics

3. Big Data Analytics

•  Big Topic, big Buzzwords ;-)
•  Here
– Overview of two types of systems

•  Key-value/document stores
•  Mainly: Bulk processing (MR, graph, …)

– What is new compared to single node systems?
– How do these systems change our approach to

integration/analytics
•  Schema first vs. Schema later
•  Pay-as-you-go

2 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  1) How does data processing at scale (read
using many machines) differ from what we
had before?
– Load-balancing
– Fault tolerance
– Communication
– New abstractions

•  Distributed file systems/storage

3 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  2) Overview of systems and how they
achieve scalability
– Bulk processing

•  MapReduce, Shark, Flink, Hyracks, …
•  Graph: e.g., Giraph, Pregel, …

– Key-value/document stores = NoSQL
•  Cassandra, MongoDB, Memcached, Dynamo, …

4 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  2) Overview of systems and how they
achieve scalability
– Bulk processing

•  MapReduce, Shark, Flink,
– Fault tolerance

•  Replication
•  Handling stragglers

– Load balancing
•  Partitioning
•  Shuffle

5 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  3) New approach towards integration
– Large clusters enable directly running queries

over semi-structured data (within feasible time)
•  Take a click-stream log and run a query

– One of the reasons why pay-as-you-go is now
feasible
•  Previously: designing a database schema upfront and

designing a process (e.g., ETL) for cleaning and
transforming data to match this schema, then query
•  Now: start analysis directly, clean and transform data if

needed for the analysis

6 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  3) New approach towards integration
– Advantage of pay-as-you-go

•  More timely data (direct access)
•  More applicable if characteristics of data change

dramatically (e.g., yesterdays ETL process no longer
applicable)

– Disadvantages of pay-as-you-go
•  Potentially repeated efforts (everybody cleans the click-

log before running the analysis)
•  Lack of meta-data may make it hard to

– Determine what data to use for analysis
– Hard to understand semantics of data

7 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  Scalable systems
– Performance of the system scales in the number of

nodes
•  Ideally the per node performance is constant

independent of how many nodes there are in the system
•  This means: having twice the number of nodes would

give us twice the performance

– Why scaling is important?
•  If a system scales well we can “throw” more resources

at it to improve performance and this is cost effective

8 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  What impacts scaling?
– Basically how parallelizable is my algorithm

•  Positive example: problem can be divided into
subproblems that can be solved independently without
requiring communication
–  E.g., array of 1-billion integers [i1, …, i1,000,000,000] add 3 to

each integer. Compute on n nodes, split input into n equally
sized chunks and let each node process one chunk

•  Negative example: problem where subproblems are
strongly intercorrelated
–  E.g., Context Free Grammar Membership: given a string and a

context free grammar, does the string belong to the language
defined by the grammar.

9 CS520 - 7) Big Data Analytics

3. Big Data – Processing at Scale

•  New problems at scale
– DBMS

•  running on 1 or 10’s of machines
•  running on 1000’s of machines

•  Each machine has low probability of failure
–  If you have many machines, failures are the norm
– Need mechanisms for the system to cope with

failures
•  Do not loose data
•  Do not use progress of computation when node fails

– This is called fault-tolerance
10 CS520 - 7) Big Data Analytics

3. Big Data – Processing at Scale

•  New problems at scale
– DBMS

•  running on 1 or 10’s of machines
•  running on 1000’s of machines

•  Each machine has limited storage and
computational capabilities
– Need to evenly distribute data and computation

across nodes
•  Often most overloaded node determine processing speed

– This is called load-balancing

11 CS520 - 7) Big Data Analytics

3. Big Data – Processing at Scale

•  Building distributed systems is hard
– Many pitfalls

•  Maintaining distributed state
•  Fault tolerance
•  Load balancing

– Requires a lot of background in
•  OS
•  Networking
•  Algorithm design
•  Parallel programming

12 CS520 - 7) Big Data Analytics

3. Big Data – Processing at Scale

•  Building distributed systems is hard
– Hard to debug

•  Even debugging a parallel program on a single machine
is already hard
– Non-determinism because of scheduling: Race conditions
–  In general hard to reason over behavior of parallel threads of

execution

•  Even harder when across machines

– Just think about how hard it was for you to first
program with threads/processes

13 CS520 - 7) Big Data Analytics

3. Big Data – Why large scale?

•  Datasets are too large
– Storing a 1 Petabyte dataset requires 1 PB

storage
•  Not possible on single machine even with RAID

storage

•  Processing power/bandwidth of single
machine is not sufficient
– Run a query over the facebook social network

graph
•  Only possible within feasible time if distributed

across many nodes

14 CS520 - 7) Big Data Analytics

3. Big Data – User’s Point of
View
•  How to improve the efficiency of distributed

systems experts
– Building a distributed system from scratch for

every store and analysis task is obviously not
feasible!

•  How to support analysis over large datasets
for non distributed systems experts
– How to enable somebody with some programming

but limited/no distributed systems background to
run distributed computations

15 CS520 - 7) Big Data Analytics

3. Big Data – Abstractions

•  Solution
– Provide higher level abstractions

•  Examples
– MPI (message passing interface)

•  Widely applied in HPC
•  Still quite low-level

– Distributed file systems
•  Make distribution of storage transparent

– Key-value storage
•  Distributed store/retrieval of data by identifier (key)

16 CS520 - 7) Big Data Analytics

3. Big Data – Abstractions

•  More Examples
– Distributed table storage

•  Store relations, but no SQL interface

– Distributed programming frameworks
•  Provide a, typically, limited programming model with

automated distribution
– Distributed databases, scripting languages

•  Provide a high-level language, e.g., SQL-like with an
execution engine that is distributed

17 CS520 - 7) Big Data Analytics

3. Distributed File Systems

•  Transparent distribution of storage
– Fault tolerance
– Load balancing?

•  Examples
– HPC distributed filesystems

•  Typically assume a limited number of dedicated storage
servers
•  GPFS, Lustre, PVFS

– “Big Data” filesystems
•  Google file system, HDFS

18 CS520 - 7) Big Data Analytics

3. HDFS

•  Hadoop Distributed Filesystem (HDFS)
•  Architecture
– One nodes storing metadata (name node)
– Many nodes storing file content (data nodes)

•  Filestructure
– Files consist of blocks (e.g., 64MB size)

•  Limitations
– Files are append only

19 CS520 - 7) Big Data Analytics

3. HDFS

•  Name node
•  Stores the directory structure
•  Stores which blocks belong to which files
•  Stores which nodes store copies of which

block
•  Detects when data nodes are down

•  Clients communicate with the name node to
gather FS metadata

20 CS520 - 7) Big Data Analytics

3. HDFS

•  Data nodes
•  Store blocks
•  Send/receive file data from clients
•  Send heart-beat messages to name node to

indicate that they are still alive

•  Clients communicate data nodes for reading/
writing files

21 CS520 - 7) Big Data Analytics

3. HDFS

•  Fault tolerance
– n-way replication
– Name node detects failed nodes based on heart-

beats
–  If a node if down, then the name node schedules

additional copies of the blocks stored by this node
to be copied from nodes storing the remaining
copies

22 CS520 - 7) Big Data Analytics

3. Distributed FS Discussion

•  What do we get?
– Can store files that do not fit onto single nodes
– Get fault tolerance
–  Improved read speed (caused on replication)
– Decreased write speed (caused by replication)

•  What is missing?
– Computations

23 CS520 - 7) Big Data Analytics

3. Frameworks for Distributed
Computations
•  Problems
– Not all algorithms do parallelize well
– How to simplify distributed programming?

•  Solution
– Fix a reasonable powerful, but simple enough

model of computation for which scalable
algorithms are known

–  Implement distributed execution engine for this
model and make it fault tolerant and load-balanced

24 CS520 - 7) Big Data Analytics

3. MapReduce

•  Data Model
– Sets of key-value pairs {(k1,v1), …, (kn,vn)}
– Key is an identifier for a piece data
– Value is the data associaed with a key

•  Programming Model
– We have two higher-level functions map and

reduce
•  Take as input a user-defined function that is applied to

elements in the input key-value pair set

– Complex computations can be achieved by
chaining map-reduce computations

25 CS520 - 7) Big Data Analytics

3. MapReduce Datamodel

•  Data Model
– Sets of key-value pairs {(k1,v1), …, (kn,vn)}
– Key is an identifier for a piece data
– Value is the data associaed with a key

•  Examples
– Document d with an id

•  (id, d)

– Person with name, salary, and SSN
•  (SSN, “name, salary”)

26 CS520 - 7) Big Data Analytics

3. MapReduce Computional
Model
•  Map
– Takes as input a set of key-value pairs and a user-

defined function f:(k,v) -> {(k,v)}
– Map applies f to every input key-value pair and

returns the union of the outputs produced by f
{(k1,v1),…,(kn,vn)}
->
f((k1,v1)) ∪ … ∪ f((kn,vn))

27 CS520 - 7) Big Data Analytics

3. MapReduce Computional
Model
•  Example
– Input: Set of (city,population) pairs
– Task: multiply population by 1.05

•  Map function
–  f: (city,population) ->
{(city,population*1.05)}

•  Application of f through map
–  Input: {(chicago, 3), (nashville, 1)}
– Output: {(chicago, 3.15)} ∪ {(nashville, 1.05)}
 = {(chicago, 3.15), (nashville, 1.05)}

 28 CS520 - 7) Big Data Analytics

3. MapReduce Computional
Model
•  Reduce
– Takes as input a key with a list of associated values

a user-defined function
g: (k,list(v)) -> {(k,v)}

– Reduce groups all values with the same key in the
input key-value set and passes each key and its list
of values to g. and returns the union of the outputs
produced by g

{(k1,v11),…,(k1,v1n1), … (km,vm1),…,(km,vmnm)}
->
g((k1,(v11,…,v1n1)) ∪ … ∪ g((km,(vm1,…,vmnm))

29 CS520 - 7) Big Data Analytics

3. MapReduce Computional
Model
•  Example
– Input: Set of (state, population) pairs one for each

city in the state
– Task: compute the total population per state

•  Reduce function
–  f: (state,[p1, …, pn]) ->
{(state,SUM([p1,…,pn)}

•  Application of f through map
–  Input: {(illinois, 3), (illinois, 1), (oregon, 15)}
– Output: {(illinois, 4), (oregon, 15)}
 30 CS520 - 7) Big Data Analytics

3. MapReduce Workflows

•  Workflows
– Computations in MapReduce consists of map

phases followed by reduce phases
•  The input to the reduce phase is the output of the map

phase

– Complex computations may require multiple map-
reduce phases to be chained together

31 CS520 - 7) Big Data Analytics

3. MapReduce Implementations

•  MapReduce
– Developed by google
– Written in C
– Runs on top of GFS (Google’s distributed

filesystem)
•  Hadoop
– Open source Apache project
– Written in Java
– Runs on-top of HDFS

32 CS520 - 7) Big Data Analytics

3. Hadoop

•  Anatomy of a Hadoop cluster
– Job tracker

•  Clients submit MR jobs to the job tracker
•  Job tracker monitors progress

– Task tracker aka workers
•  Execute map and reduce jobs

•  Job
– Input: files from HDFS
– Output: written to HDFS
– Map/Reduce UDFs

33 CS520 - 7) Big Data Analytics

3. Hadoop

•  Fault tolerance
– Handling stragglers

•  Job tracker will reschedule jobs to a different worker if
the worker falls behind too much with processing

– Materialization
•  Inputs are read from HDFS
•  Workers write results of map jobs assigned to them to

local disk
•  Workers write results of reduce jobs to HDFS for

persistence

34 CS520 - 7) Big Data Analytics

3. Hadoop – MR Job

35 CS520 - 7) Big Data Analytics

HD
FS
	

HD
FS
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Clients	sends	job	to	job	
tracker	

-  Job	tracker	decides	
#mappers,	#reducers	
and	which	nodes	to	use	

3. Hadoop – MR Job

36 CS520 - 7) Big Data Analytics

HD
FS
	

HD
FS
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Job	tracker	sends	jobs	
to	task	tracker	on	
worker	nodes	
-  Try	to	schedule	

map	jobs	on	nodes	
that	store	the	
chunk	processed	
by	a	job	

-  Job	tracker	monitors	
progress	

3. Hadoop – MR Job

37 CS520 - 7) Big Data Analytics

HD
FS
	

HD
FS
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Each	mapper	reads	its	
chunk	from	HDFS,	
translates	the	input	into	
key-value	pairs	and	
applies	the	map	UDF	to	
every	(k,v)		

-  Outputs	are	wriLen	to	
disk	with	one	file	per	
reducer	(hashing	on	
key)	

-  Job	tracker	may	spawn	
addiNonal	mappers	if	
mappers	are	not	
making	progress	

3. Hadoop – MR Job

38 CS520 - 7) Big Data Analytics

HD
FS
	

HD
FS
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Mappers	send	files	to	
reducers	(scp)		
-	Called	shuffle	

3. Hadoop – MR Job

39 CS520 - 7) Big Data Analytics

HD
FS
	

HD
FS
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Reducers	merge	and	
sort	these	input	files	on	
key	values	
-  External	merge	

sort	where	runs	
already	exists	

-  Reducer	applies	reduce	
UDF	to	each	key	and	
associated	list	of	values	

3. Combiners

•  Certain reduce functions lend themselves to
pre-aggregation
– E.g., SUM(revenue) group by state

•  Can compute partial sums over incomplete groups and
then sum up the pre-aggregated results

– This can be done at the mappers to reduce amount
of data send to the reducers

•  Supported in Hadoop through a user provided
combiner function
– The combiner function is applied before writing

the mapper results to local disk
40 CS520 - 7) Big Data Analytics

3. Combiners

•  Certain reduce functions lend themselves to
pre-aggregation
– E.g., SUM(revenue) group by state

•  Can compute partial sums over incomplete groups and
then sum up the pre-aggregated results

– This can be done at the mappers to reduce amount
of data send to the reducers

•  Supported in Hadoop through a user provided
combiner function
– The combiner function is applied before writing

the mapper results to local disk
41 CS520 - 7) Big Data Analytics

3. Example code – Word count

•  https://hadoop.apache.org/docs/r1.2.1/
mapred_tutorial.html

42 CS520 - 7) Big Data Analytics

3. Example code – Word count

•  https://hadoop.apache.org/docs/r1.2.1/
mapred_tutorial.html

43 CS520 - 7) Big Data Analytics

3. Example code – Word count

44 CS520 - 7) Big Data Analytics

3. Systems/Languages on top of
MapReduce
•  Pig
– Scripting language, compiled into MR
– Akin to nested relational algebra

•  Hive
– SQL interface for warehousing
– Compiled into MR

•  …

45 CS520 - 7) Big Data Analytics

3. Hive

•  Hive
– HiveQL: SQL dialect with support for directly

applying given Map+Reduce functions as part of a
query

– HiveQL is compiled into MR jobs
– Executed of Hadoop cluster

46 CS520 - 7) Big Data Analytics

FROM	(
	MAP	doctext	USING	'python	wc_mapper.py'	AS	(word,	cnt)	 		

																	FROM	docs	
	CLUSTER	BY	word		

)	a	
REDUCE	word,	cnt	USING	'python	wc_reduce.py';		

3. Hive Architecture

47 CS520 - 7) Big Data Analytics

CREATE TABLE test_delimited(c1 string, c2 int)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\002'

 LINES TERMINATED BY '\012';

specifies that the data for table test_delimited uses ctrl-B
(ascii code 2) as a column delimiter and uses ctrl-L(ascii code

12) as a row delimiter. In addition, delimiters can be specified

to delimit the serialized keys and values of maps and different

delimiters can also be specified to delimit the various

elements of a list (collection). This is illustrated by the

following statement.

CREATE TABLE test_delimited2(c1 string,

 c2 list<map<string, int>>)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\002'

 COLLECTION ITEMS TERMINATED BY '\003'
 MAP KEYS TERMINATED BY '\004';

 Apart from LazySerDe, some other interesting SerDes are

present in the hive_contrib.jar that is provided with the

distribution. A particularly useful one is RegexSerDe which

enables the user to specify a regular expression to parse

various columns out from a row. The following statement can

be used for example, to interpret apache logs.

add jar 'hive_contrib.jar';

CREATE TABLE apachelog(
 host string,

 identity string,

 user string,

 time string,

 request string,

 status string,

 size string,

 referer string,

 agent string)

 ROW FORMAT SERDE

 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'

 WITH SERDEPROPERTIES(
 'input.regex' = '([^]*) ([^]*) ([^]*) (-|\\[[^\\]]*\\]) ([^

\"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^

\"]*|\"[^\"]*\"))?',

 'output.format.string' = '%1$s %2$s %3$s %4$s %5$s %6$s

%7$s %8$s %9$s');

The input.regex property is the regular expression applied on

each record and the output.format.string indicates how the

column fields can be constructed from the group matches in

the regular expression. This example also illustrates how

arbitrary key value pairs can be passed to a serde using the
WITH SERDEPROPERTIES clause, a capability that can be

very useful in order to pass arbitrary parameters to a custom

SerDe.

C. File Formats

Hadoop files can be stored in different formats. A file

format in Hadoop specifies how records are stored in a file.

Text files for example are stored in the TextInputFormat and

binary files can be stored as SequenceFileInputFormat. Users

can also implement their own file formats. Hive does not

impose an restrictions on the type of file input formats, that
the data is stored in. The format can be specified when the

table is created. Apart from the two formats mentioned above,

Hive also provides an RCFileInputFormat which stores the

data in a column oriented manner. Such an organization can

give important performance improvements specially for

queries that do not access all the columns of the table. Users

can add their own file formats and associate them to a table as

shown in the following statement.

CREATE TABLE dest1(key INT, value STRING)

 STORED AS

 INPUTFORMAT
 'org.apache.hadoop.mapred.SequenceFileInputFormat'

 OUTPUTFORMAT

 'org.apache.hadoop.mapred.SequenceFileOutputFormat'

The STORED AS clause specifies the classes to be used to

determine the input and output formats of the files in the

table’s or partition’s directory. This can be any class that

implements the FileInputFormat and FileOutputFormat java

interfaces. The classes can be provded to Hadoop in a jar in

ways similar to those shown in the examples on adding

custom SerDes.

IV. SYSTEM ARCHITECTURE AND COMPONENTS

Fig. 1: Hive System Architecture

As an example, the statement

1000

3. Hive Datamodel

•  Tables
–  Attribute-DataType pairs
–  User can instruct Hive to partition the table in a certain way

•  Datatypes
–  Primitive: integer, float, string
–  Complex types

•  Map: Key->Value
•  List
•  Struct

–  Complex types can be nested
•  Example:

CREATE TABLE t1(st string, fl float, li list<map<string, struct<p1:int,
p2:int>>);

•  Implementation:
–  Tables are stored in HDFS
–  Serializer/Deserializer - transform for querying48 CS520 - 7) Big Data Analytics

3. Hive - Query Processing

•  Compile HiveQL query into DAG of map and
reduce functions.
–  A single map/reduce may implement several

traditional query operators
•  E.g., filtering out tuples that do not match a condition

(selection) and filtering out certain columns (projection)
–  Hive tries to use the partition information to avoid

reading partitions that are not needed to answer the
query
•  For example

–  table instructor(name,department) is partitioned on
department

–  SELECT name FROM instructor WHERE department = ‘CS’
–  This query would only access the partition of the table for

department ‘CS’

49 CS520 - 7) Big Data Analytics

3. Operator implementations

•  Join implementations
– Broadcast join
• Send the smaller table to all nodes
• Process the other table partitioned
– Each node finds all the join partners for a partition

of the larger table and the whole smaller table

– Reduce join (partition join)
• Use a map job to create key-value pairs where

the key is the join attributes
• Reducer output joined rows

50 CS520 - 7) Big Data Analytics

3. Example plan

51 CS520 - 7) Big Data Analytics

set hive.groupby.skewindata=true;

SELECT t1.c1, sum(t1.c2)

FROM t1

GROUP BY t1;

ii. Hash based partial aggregations in the

mappers – Hash based partial aggregations

can potentially reduce the data that is sent

by the mappers to the reducers. This in turn

reduces the amount of time spent in sorting

and merging this data. As a result a lot of

performance gains can be achieved using

this strategy. Hive enables users to control

the amount of memory that can be used on

the mapper to hold the rows in a hash table

for this optimization. The parameter

hive.map.aggr.hash.percentmemory
specifies the fraction of mapper memory

that can be used to hold the hash table, e.g.

0.5 would ensure that as soon as the hash

table size exceeds half of the maximum

memory for a mapper, the partial aggregates

stored therein are sent to the reducers. The

parameter hive.map.aggr.hash.min.reduction

is also used to control the amount of

memory used in the mappers.

• Generation of the physical plan – The logical plan
generated at the end of the optimization phase is then

split into multiple map/reduce and hdfs tasks. As an

example a group by on skewed data can generate two

map/reduce tasks followed by a final hdfs task which

moves the results to the correct location in hdfs. At the

end of this stage the physical plan looks like a DAG of

tasks with each task encapsulating a part of the plan.

We show a sample multi-table insert query and its

corresponding physical plan after all optimizations below.

FROM (SELECT a.status, b.school, b.gender

 FROM status_updates a JOIN profiles b
 ON (a.userid = b.userid

 AND a.ds='2009-03-20')) subq1

INSERT OVERWRITE TABLE gender_summary

 PARTITION(ds='2009-03-20')

SELECT subq1.gender, COUNT(1)

GROUP BY subq1.gender

INSERT OVERWRITE TABLE school_summary

 PARTITION(ds='2009-03-20')

SELECT subq1.school, COUNT(1)
GROUP BY subq1.school

This query has a single join followed by two different

aggregations. By writing the query as a multi-table-insert, we

make sure that the join is performed only once. The plan for

the query is shown in Fig 3 below.

The nodes in the plan are physical operators and the edges

represent the flow of data between operators. The last line in

each node represents the output schema of that operator. For

lack of space, we do not describe the parameters specified
within each operator node. The plan has three map-reduce

jobs.

Fig. 3: Query plan for multi-table insert query with 3 map/reduce jobs

Within the same map-reduce job, the portion of the operator

tree below the repartition operator (ReduceSinkOperator) is

executed by the mapper and the portion above by the reducer.
The repartitioning itself is performed by the execution engine.

Notice that the first map-reduce job writes to two

temporary files to HDFS, tmp1 and tmp2, which are

consumed by the second and third map-reduce jobs

1003

Spark

•  MR uses heavy materialization to achieve fault
tolerance
– A lot of I/O

•  Spark
– Works in main memory (where possible)
–  Inputs and final outputs stored in HDFS
– Recomputes partial results instead of materializing

them - resilient distributed datasets (RDD)
•  Lineage: Need to know from which chunk a chunk was

derived from and by which computation

52 CS520 - 7) Big Data Analytics

Summary

•  Big data storage systems
•  Big data computation platforms
•  Big data “databases”
•  How to achieve scalability
– Fault tolerance
– Load balancing

•  Big data integration
– Pay-as-you-go
– Schema later

53 CS520 - 7) Big Data Analytics

Outline

0) Course Info
1)  Introduction
2)  Data Preparation and Cleaning
3)  Schema matching and mapping
4)  Virtual Data Integration
5)  Data Exchange
6)  Data Warehousing
7)  Big Data Analytics
8)   Data Provenance

 54 CS520 - 7) Big Data Analytics

