
5/5/16

1

CS520
Data Integration, Warehousing, and

Provenance

6. Data Warehousing

Boris Glavic
http://www.cs.iit.edu/~glavic/
http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance

1 CS520 - 6) Data Warehous ing

6. What is Datawarehousing?

• Problem: Data Analysis, Prediction, Mining
– Example: Walmart
– Transactional databases

• Run many “cheap” updates concurrently
• E.g., each store has a database storing its stock and sales

– Complex Analysis over Transactional Databases?
• Want to analyze across several transactional databases

– E.g., compute total Walmart sales per month
– Distribution and heterogeneity

• Want to run complex analysis over large datasets
– Resource consumption of queries affects normal operations on

transactional databases

2 CS520 - 6) Data Warehous ing

6. What is Datawarehousing?

• Solution:
• Performance

– Store data in a different system (the
datawarehouse) for analysis

– Bulk-load data to avoid wasting performance on
concurrency control during analysis

• Heterogeneity and Distribution
– Preprocess data coming from transactional

databases to clean it and translate it into a unified
format before bulk-loading

3 CS520 - 6) Data Warehous ing

6. Datawarehousing Process

• 1) Design a schema for the warehouse
• 2) Create a process for preprocessing the data
• 3) Repeat

– A) Preprocess data from the transactional databases
– B) Bulk-load it into the warehouse
– C) Run analytics

4 CS520 - 6) Data Warehous ing

Data Warehouse

ETL ETL ETL ETL

RDBMS1 RDBMS2
HTML1 XML1

ETL p ipel ine
outputs

ETL

6. Overview
• The multidimensional datamodel (cube)

– Multidimensional data model
– Relational implementations

• Preprocessing and loading (ETL)
• Query language extensions

– ROLL UP, CUBE, …
• Query processing in datawarehouses

– Bitmap indexes
– Query answering with views
– Self-tuning

5 CS520 - 6) Data Warehous ing

5/5/16

2

6. Multidimensional Datamodel

• Analysis queries are typically aggregating
lower level facts about a business
– The revenue of Walmart in each state (country,

city)
– The amount of toy products in a warehouse of a

company per week
– The call volume per zip code for the Sprint network
– …

6 CS520 - 6) Data Warehous ing

6. Multidimensional Datamodel

• Commonality among these queries:
– At the core are facts: a sale in a Walmart store, a

toy stored in a warehouse, a call made by a certain
phone

– Data is aggregated across one or more dimensions
• These dimensions are typically organized hierarchically:

year – month – day – hour, country – state - zip

• Example
– The revenue (sum of sale amounts) of Walmart in

each state

7 CS520 - 6) Data Warehous ing

6. Example 2D

8 CS520 - 6) Data Warehous ing

2014 2015

1. Quarter 2.	Quarter 3.	Quarter 4.	Quarter 1. Quarter 2.	Qu…

Jan Feb Mar Ap r May Jun Ju l Aug Sep Oct Nov Dec Jan Feb Mar Ap r May

Toy
car 3 7 6 37 7 92 37 7 92 37 7 92 37 7 92 2 ...

puppet 9 4 5 31 1 1 1 1 1 1 1 1 1 2 2 2 …

Fishing	 rod 11 12 22 22 22 22 22 22 7 6 6 6 6 65 4 33 …

Books

Moby	Dick 3 40 39 37 7 92 81 6 51 7 48 51 5 7 3 3 …

Mobile	
devel.

3 2 5 43 7 0 81 6 51 7 48 51 5 7 3 3 …

King	Lear 3 9 6 37 7 92 5 6 51 7 48 51 5 7 3 3 …

6. Generalization to multiple
dimensions

9 CS520 - 6) Data Warehous ing

• Given a fixed number of dimensions
– E.g., product type, location, time

• Given some measure
– E.g., number of sales, items in stock, …

• In the multidimensional datamodel we store
facts: the values of measures for a combination
of values for the dimensions

6. Data cubes

10 CS520 - 6) Data Warehous ing

• Given n dimensions
– E.g., product type, location, time

• Given m measures
– E.g., number of sales, items in stock, …

• A datacube (datahypercube) is an n-
dimensional datastructure that maps values in
the dimensions to values for the m measures
– Schema: D1, …, Dn, M1, …, Mm

– Instance: a function
dom(D1) x … x dom(Dn) -> dom(M1) x ... x dom(Mm)

6. Dimensions

11 CS520 - 6) Data Warehous ing

• Purpose
– Selection of descriptive data
– Grouping with desired level of granularity

• A dimension is define through a containment-
hierarchy

• Hierarchies typically have several levels
• The root level represents the whole dimensions
• We may associate additional descriptive

information with a elements in the hierarchy
(e.g., number of residents in a city)

5/5/16

3

6. Dimension Example

12 CS520 - 6) Data Warehous ing

• Location
– Levels: location, state, city

Locations

Illinois Wisconsin

Chicago Schaumburg Madison Whitewater

location

state

city

Schema Instance

6. Dimension Schema

13 CS520 - 6) Data Warehous ing

• Schema of a Dimension
– A set D of category attributes D1, …, Dn, TopD

• These correspond to the levels
– A partial order → over D which represents parent-

child relationships in the hierarchy
• These correspond to upward edges in the hierarchy
• TopD is larger than anything else

– For every Di: Di → TopD

• There exists Dmin which is smaller than anything else
– For every Di: Dmin → Di

6. Dimension Schema Example

14 CS520 - 6) Data Warehous ing

• Schema of Location Dimension
– Set of categories D = {location, state, city}
– Partial order
{ city → state, city → location, state → location }
– TopD = location
– Dmin = city

Lo cation s

Il l in o is Wiscon sin

Ch icago Schaumbu rg Mad ison Wh itewater

lo cation

state

ci ty

Schema Instance

6. Remarks

15 CS520 - 6) Data Warehous ing

• In principle there does not have to exist an
order among the elements at one level of the
hierarchy
– E.g., cities

• Hierarchies do not have to be linear

Schema

year

quarter

mon th

day

week

6. Cells, Facts, and Measures

16 CS520 - 6) Data Warehous ing

• Each cell in the cube corresponds to a combination of
elements from each dimension
– Facts are non-empty cells
– Cells store measures

• Cube for a combination of levels of the dimension

Fact:
Items	in	stock	in	 Janat	
Chicago that	belong	to	

category	Tool

Time

5 1
4 9
3 4

Product

Location

Book

Too l

Electron ic

Aud io

Garden in g

JanFeb
Mar

Ap r
May

Facts

• Targets of analytics
– E.g., revenue, #sales, #stock

• A fact is uniquely defined by the combination
of values from the dimensions
– E.g., for dimensions time and and location

Revenue in Illinois during Jan 2015

• Granularity: Levels in the dimension
hierarchy corresponding to the fact
– E.g., state, month

17 CS520 - 6) Data Warehous ing

year

quar t er

m ont h

day

week

locat ion

st at e

cit y

5/5/16

4

Facts (Event vs. Snapshot)

• Event Facts
– Model real-world events
– E.g., Sale of an item

• Snapshot Facts
– Temporal state
– A single object (e.g., a book) may contribute to

several facts
– E.g., number of items in stock

18 CS520 - 6) Data Warehous ing

Measures

• A measure describes a fact
– May be derived from other measures

• Two components
– Numerical value
– Formula (optional): how to derive it

• E.g., avg(revenue) = sum(revenue) / count(revenue)

• We may associate multiple measures to each
cell
– E.g., number of sales and total revenue

19 CS520 - 6) Data Warehous ing

Measures - Granularity

• Similar to facts, measures also have a granularity
• How to change granularity of a measure?
• Need algorithm to combine measures

– Additive measures
• Can be aggregated along any dimension

– Semi-additive/non-additive
• Cannot be aggregated along some/all dimensions

• E.g., snapshot facts along time dimension
– Number of items in stock at Jan + Feb + … != items in stock

during year
– Median of a measure

20 CS520 - 6) Data Warehous ing

Design Process (after Kimball)

• Comparison to classical relational modeling
– Analysis driven

• No need to model all existing data and relationships relevant
to a domain

• Limit modeling to information that is relevant for predicted
analytics

– Redundancy
• Tolerate redundancy for performance if reasonable

– E.g., in dimension tables to reduce number of joins

21 CS520 - 6) Data Warehous ing

Design Process – Steps

• 1) Select relevant business processes
– E.g., order shipping, sales, support, stock

management
• 2) Select granuarity

– E.g., track stock at level of branches or regions
• 3) Design dimensions

– E.g., time, location, product, …
• 4) Select measures

– E.g., revenue, cost, #sales, items in stock, #support
requests

22 CS520 - 6) Data Warehous ing

Design Process Example

• Coffee shop chain
– Processes

• Sell coffee to customers

• Buy ingredients from suppliers
• Ship supplies to branches
• Pay employees
• HR (hire, advertise positions, …)

– Which process is relevant to be analysed to increase
profits?

23 CS520 - 6) Data Warehous ing

5/5/16

5

Design Process Example

• 1) Selecting process(es)
– sell coffee to customers

• 2) Select granularity
– Single sale?
– Sale per branch/day?
– Sale per city/year?

24 CS520 - 6) Data Warehous ing

Design Process Example

• 1) Selecting process(es)
– sell coffee to customers

• 2) Select granularity
– Sale of type of coffee per branch per day
– Sufficient for analysis

• Save storage
• 3) Determine relevant dimensions

– Location
– Time
– Product, …

25 CS520 - 6) Data Warehous ing

Design Process Example

• 1) Selecting process(es)
– sell coffee to customers

• 2) Select granularity
– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions
– Location (country, state, city, zip, shop)
– Time (year, month, day)
– Product (type, brand, product)

26 CS520 - 6) Data Warehous ing

Design Process Example

• 1) Selecting process(es)
– sell coffee to customers

• 2) Select granularity
– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions
– Location (country, state, city, zip, shop)
– Time (year, month, day)
– Product (type, brand, product)

• 4) Select measures

27 CS520 - 6) Data Warehous ing

Design Process Example

• 1) Selecting process(es)
– sell coffee to customers

• 2) Select granularity
– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions
– Location (country, state, city, zip, shop)
– Time (year, month, day)
– Product (type, brand, product)

• 4) Select measures
– cost, revenue, profit?

28 CS520 - 6) Data Warehous ing

Relational representation

• How to model a datacube using the relational
datamodel

• We start from
– Dimension schemas
– Set of measures

29 CS520 - 6) Data Warehous ing

5/5/16

6

Star Schema

• A data cube is represented as a set of dimension
tables and a fact table

• Dimension tables
– For each dimension schema D = (D1,…,Dk,TopD) we create a

relation
– D (PK, D1,…,Dk)

– Here PK is a primary key, e.g., Dmin

• Fact table
– F(FK1, …, FKn, M1, ..., Mm)
– Each FKi is a foreign key to Di

– Primary key is the combination of all Fki

30 CS520 - 6) Data Warehous ing

Star Schema - Remarks

• Dimension tables have redundancy
– Values for higher levels are repeated

• Fact table is in 3NF
• TopD does not have to be stored explicitly
• Primary keys for dimension tables are

typically generated (surrogate keys)
– Better query performance by using integers

31 CS520 - 6) Data Warehous ing

Snowflake Schema

• A data cube is represented as a set of dimension
tables and a fact table

• Dimension tables
– For each dimension schema D = (D1,…,Dk,TopD) we create a

relation multiple relations connected through FKs
– Di (PK, A1, …, Al, FKj)

– Al is a descriptive attribute
– FKj is foreign key to the immediate parent(s) of Di

• Fact table
– F(FK1, …, FKn, M1, ..., Mm)
– Each FKi is a foreign key to Di

– Primary key is the combination of all Fki

32 CS520 - 6) Data Warehous ing

Snowflake Schema - Remarks

• Avoids redundancy
• Results in much more joins during query

processing
• Possible to find a compromise between

snowflake and star schema
– E.g., use snowflake for very fine-granular

dimensions with many levels

33 CS520 - 6) Data Warehous ing

Snowflake Schema - Example

– Coffee chain example

34 CS520 - 6) Data Warehous ing

6. Extract-Transform-Load (ETL)

• The preprocessing and loading phase is called
extract-transform-load (ETL) in
datawarehousing

• Many commercial and open-source tools available
• ETL process is modeled as a workflow of

operators
– Tools typically have a broad set of build-in operators:

e.g., key generation, replacing missing values,
relational operators,

– Also support user-defined operators

35 CS520 - 6) Data Warehous ing

5/5/16

7

6. Extract-Transform-Load (ETL)

• Some ETL tools
– Pentaho Data Integration
– Oracle Warehouse Builder (OWB)
– IBM Infosphere Information Server
– Talend Studio for Data Integration
– CloverETL
– Cognos Data Manager
– Pervasive Data Integrator
– …

36 CS520 - 6) Data Warehous ing

6. Extract-Transform-Load (ETL)

• Operators supported by ETL
– Many of the preprocessing and cleaning operators

we already know
• Surrogate key generation (like creating existentials

with skolems)
• Fixing missing values

– With default value, using trained model (machine learning)

• Relational queries
– E.g., union of two tables or joining two tables

• Extraction of structured data from semi-structured
data and/or unstructured data

• Entity resolution, data fusion

37 CS520 - 6) Data Warehous ing

6. ETL Process

• Operators can be composed to form complex
workflows

38 CS520 - 6) Data Warehous ing

Inv o ic e
l ine i tems

Spl i t
Date -
time

Fi l ter
inv a l id

J o in Fi l ter
inv a l id

I nvalid
dat es /t im es

I nvalid
it em s

Item
rec ords

Fi l ter
non -

matc h

I nvalid
cust om er s

Group by
c us tomer

Cus tomer
balanc e

Cus tomer
rec ords

6. Typical ETL operators

• Elementizing
– Split values into more fine-granular elements

• Standardization
• Verification
• Matching with master data
• Key generation
• Schema matching, Entity

resolution/Deduplication, Fusion

39 CS520 - 6) Data Warehous ing

6. Typical ETL operators

• Control flow operators
– AND/OR
– Fork
– Loops
– Termination

• Successful
• With warning/errors

40 CS520 - 6) Data Warehous ing

6. Typical ETL operators

• Elementizing
– Split non 1NF data into individual elements

• Examples
– name: “Peter Gertsen” -> firstname: “Peter”, lastname:

“Gertsen”
– date: “12.12.2015” -> year: 2002, month: 12, day :12
– Address: “10 W 31st, Chicago, IL 60616” -> street = “10

W 31st”, city = “Chicago”, state = “IL”, zip = “60616”

41 CS520 - 6) Data Warehous ing

5/5/16

8

6. Typical ETL operators

• Standardization
– Expand abbreviation
– Resolve synonyms
– Unified representation of, e.g., dates

• Examples
– “IL” -> “Illinois”
– “m/w”, “M/F” -> “male/female”
– “Jan”, “01”, “January”, “january” -> “January”
– “St” -> “Street”, “Dr” -> “Drive”, …

42 CS520 - 6) Data Warehous ing

6. Typical ETL operators

• Verification
– Same purpose as constraint based data cleaning but

typically does not rely on constraints, but, e.g.,
regular expression matching

• Examples
– Phone matches “[0-9]{3}-[0-9]{3}-[0-9]{4}”
– For all t in Tokens(product description), t exists in

English language dictionary

43 CS520 - 6) Data Warehous ing

6. Typical ETL operators

• Matching master data (lookup)
– Check and potentially repair data based on

available master data
• Examples

– E.g., using a clean lookup table with (city,zip) replace
the city in each tuple if the pair (city,zip) does not occur
in the lookup table

44 CS520 - 6) Data Warehous ing

6. Metadata management

• As part of analysis in DW data is subjected to a
complex pipeline of operations
– Sources
– ETL
– Analysis queries

• -> important, but hard, to keep track of what
operations have been applied to data and from
which sources it has been derived
– Need metadata management

• Including provenance (later in this course)

45 CS520 - 6) Data Warehous ing

6. Querying DW
• Targeted model (cube vs. relational)

– Design specific language for datacubes
– Add suitable extensions to SQL

• Support typical analytical query patterns
– Multiple parallel grouping criteria

• Show total sales, subtotal per state, and subtotal per city
• -> three subqueries with different group-by in SQL

– Windowed aggregates and ranking
• Show 10 most successful stores
• Show cummulative sales for months of 2016

– E.g., the result for Feb would be the sum of the sales for Jan + Feb

46 CS520 - 6) Data Warehous ing

6. Querying DW

• Targeted model (cube vs. relational)
– Design specific language for datacubes

• MDX
– Add suitable extensions to SQL

• GROUPING SETS, CUBE, …
• Windowed aggregation using OVER(), PARTITION BY,

ORDER BY, window specification
• Window functions

– RANK, DENSE_RANK()

47 CS520 - 6) Data Warehous ing

5/5/16

9

6. Cube operations

• Roll-up
– Move from fine-granular to more coarse-granular

in one or more dimensions of a datacube
• E.g., sales per (city,month,product category) to Sales

per (state,year, product category

• Drill-down
– Move from coarse-granular to more fine-granular

in one of more dimensions
• E.g., phonecalls per (city,month) to phonecalls per

(zip,month)

48 CS520 - 6) Data Warehous ing

6. Cube operations

• Drill-out
– Add additional dimensions

• special case of drill-down starting from TopD in
dimension(s)

• E.g., sales per (city, product category) to Sales per
(city,year, product category)

• Drill-in
– Remove dimension

• special case for roll-up move to TopD for dimension(s)
• E.g., phonecalls per (city,month) to phonecalls per

(month)

49 CS520 - 6) Data Warehous ing

6. Cube operations

• Slice
– Select data based on restriction of the values of one

dimension
• E.g., sales per (city,month) -> sales per (city) in Jan

• Dice
– Select data based on restrictions of the values of

multiple dimensions
• E.g., sales per (city,month) -> sales in Jan for Chicago

and Washington DC

50 CS520 - 6) Data Warehous ing

6. SQL Extensions

• Recall that grouping on multiple sets of
attributes is hard to express in SQL
– E.g., give me the total sales, the sales per year, and

the sales per month
• Practice

51 CS520 - 6) Data Warehous ing

6. SQL Extensions

• Syntactic Sugar for multiple grouping
– GROUPING SETS
– CUBE
– ROLLUP

• These constructs are allowed as expressions in
the GROUP BY clause

52 CS520 - 6) Data Warehous ing

6. GROUPING SETS
• GROUP BY GROUPING SETS ((set1), …,
(setn))

• Explicitly list sets of group by attributes
• Semantics:

– Equivalent to UNION over duplicates of the query
each with a group by clause GROUP BY seti

– Schema contains all attributes listed in any set
– For a particular set, the attribute not in this set are

filled with NULL values

53 CS520 - 6) Data Warehous ing

5/5/16

10

6. GROUPING SETS
SELECT quarter,

city,
product_typ,
SUM(profit) AS profit

FROM facttable F, time T, location L, product P

WHERE
F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID

GROUP BY GROUPING SETS

((quarter, city), (quarter, product_typ))

54 CS520 - 6) Data Warehous ing

quarter city product_typ profit
2010Q1 Books 8347
2012Q2 Books 7836
2012	Q2 Gardening 12300
2012	Q2 Chicago 12344
2012Q2 Seattle 124345

6. GROUPING SETS
SELECT quarter, city, NULL AS product_typ,

SUM(profit) AS profit
FROM facttable F, time T, location L, product P
WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID
GROUP BY quarter, city

UNION
SELECT quarter, NULL AS city, product_typ,

SUM(profit) AS profit

FROM facttable F, time T, location L, product P
WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID
GROUP BY quarter, product_type

55 CS520 - 6) Data Warehous ing

6. GROUPING SETS

• Problem:
– How to distinguish between NULLs based on

grouping sets and NULL values in a group by
column?

GROUP BY GROUPING SETS

((quarter, city), (quarter, product_typ), (quarter, product_typ, city)

56 CS520 - 6) Data Warehous ing

quarter city product_typ profit
2010Q1 Books 8347
2012Q2 Books 7836
2012	Q2 Gardening 12300
2012	Q2 Chicago 12344
2012Q2 Seattle 124345
2012	Q2 Seattle Gardening 12343

Did	not	group	on	
product_typor	this	 is	
the	group	for	all	NULL	
values	in	product_typ?

6. GROUPING SETS

• Solution:
– GROUPING predicate
– GOUPING(A) = 1 if grouped on attribute A, 0 else

SELECT … GROUPING(product_typ) AS grp_prd

…

GROUP BY GROUPING SETS

((quarter, city), (quarter, product_typ), (quarter, product_typ, city)

57 CS520 - 6) Data Warehous ing

quarter city product_typ profit grp_prd
2010Q1 Books 8347 1
2012Q2 Books 7836 1
2012	Q2 Gardening 12300 1
2012	Q2 Chicago 12344 0
2012Q2 Seattle 124345 1
2012	Q2 Seattle Gardening 12343 1

Now	it’s	 clear!

6. GROUPING SETS

• Combining GROUPING SETS

GROUP BY A, B

= GROUP BY GROUPING SETS ((A,B))

GROUP BY GROUPING SETS ((A,B), (A,C), (A))

= GROUP BY A, GROUPING SETS ((B), (C), ())

GROUP BY GROUPING SETS ((A,B), (B,C),
GROUPING SETS ((D,E), (D))

= GROUP BY GROUPING SETS (
(A,B,D,E), (A,B,D), (B,C,D,E), (B,C,D)

)

58 CS520 - 6) Data Warehous ing

6. CUBE
• GROUP BY CUBE (set)

• Group by all 2n subsets of set
GROUP BY CUBE (A,B,C)

= GROUP BY GROUPING SETS (

(),

(A), (B), (C),

(A,B), (A,C), (B,C),

(A,B,C)

)

59 CS520 - 6) Data Warehous ing

5/5/16

11

6. CUBE
• GROUP BY ROLLUP(A1, …, An)
• Group by all prefixes
• Typically different granularity levels from single

dimension hierarchy, e.g., year-month-day
– Database can often find better evaluation strategy
GROUP BY ROLLUP (A,B,C)
= GROUP BY GROUPING SETS (

(A,B,C),
(A,B),

(A),
()

)

60 CS520 - 6) Data Warehous ing

6. OVER clause
• Agg OVER (partition-clause, order-
by,window-specification)

• New type of aggregation and grouping where
– Each input tuple is paired with the aggregation result for the group it

belongs too
– More flexible grouping based on order and windowing
– New aggregation functions for ranking queries

• E.g., RANK(), DENSE_RANK()

61 CS520 - 6) Data Warehous ing

6. OVER clause
• Agg OVER (partition-clause, order-
by,window-specification)

• New type of aggregation and grouping where
SELECT shop, sum(profit) OVER()

- aggregation over full table

SELECT shop, sum(profit) OVER(PARTITION BY state)

- like group-by

SELECT shop, sum(profit) OVER(ORDER BY month)

- rolling sum including everything with smaller month

SELECT shop, sum(profit) OVER(ORDER BY month 6
PRECEDING 3 FOLLOWING)

62 CS520 - 6) Data Warehous ing

6. OVER clause
• Agg OVER (partition-clause order-
by,window-specification)

• New type of aggregation and grouping where
<window frame preceding> ::= {

UNBOUNDED PRECEDING

| n PRECEDING
| CURRENT ROW }

<window frame following> ::= {
UNBOUNDED FOLLOWING

| n FOLLOWING
| CURRENT ROW

}

63 CS520 - 6) Data Warehous ing

6. OVER clause
SELECT year, month, city, profit

SUM(profit) OVER () AS ttl
FROM sales

• For each tuple build a set of tuples belonging to the same window
– Compute aggregation function over window
– Return each input tuple paired with the aggregation result for its window

• OVER() = one window containing all tuples

64 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 92

2010 2 Chicago 5 92

2010 3 Chicago 20 92

2011 1 Chicago 45 92

2010 1 New York 12 92

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (PARTITION BY year) AS ttl
FROM sales

• PARITION BY
– only tuples with same partition-by attributes belong to the same window

• Like GROUP BY

65 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 47

2010 2 Chicago 5 47

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 47

5/5/16

12

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl
FROM sales

• ORDER BY
– Order tuples on these expressions
– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

66 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 47

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 47

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl
FROM sales

• ORDER BY
– Order tuples on these expressions
– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

67 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl
FROM sales

• ORDER BY
– Order tuples on these expressions
– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

68 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl
FROM sales

• ORDER BY
– Order tuples on these expressions
– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

69 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 92

2010 1 New York 12 22

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (PARTIION BY year ORDER BY month)
AS ttl
FROM sales

• Combining PARTITION BY and ORDER BY
– First partition, then order tuples within each partition

70 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (PARTITION BY year ORDER BY month
RANGE BETWEEN 1 PRECEDING

AND 1 FOLLOWING) AS ttl

FROM sales

• Explicit window specification
– Requires ORDER BY
– Determines which tuples “surrounding” the tuple according to the sort order to

include in the window

71 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 27

2010 2 Chicago 5 47

2010 3 Chicago 20 25

2011 1 Chicago 45 45

2010 1 New York 12 27

5/5/16

13

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month
ROWS BETWEEN 1 PRECEDING

AND 1 FOLLOWING) AS ttl

FROM sales

• Explicit window specification
– Requires ORDER BY
– Determines which tuples “surrounding” the tuple according to the sort order to

include in the window

72 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 37

2010 3 Chicago 20 70

2011 1 Chicago 45 65

2010 1 New York 12 27

6. MDX

• Multidimensional expressions (MDX)
– Introduced by Microsoft
– Query language for the cube data model
– SQL-like syntax

• Keywords have different meaning
– MDX queries return a multi-dimensional report

• 2D = spreadsheet
• 3D or higher, e.g., multiple spreadsheets

73 CS520 - 6) Data Warehous ing

6. MDX Query

• Basic Query Structure
SELECT <axis-spec1>, …

FROM <cube-spec1>, …

WHERE (<select-spec>)

• Note!
– Semantics of SELECT, FROM, WHERE not what

you would expect knowing SQL

74 CS520 - 6) Data Warehous ing

6. MXD
SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS
FROM PhoneCallsCube
WHERE (Measures.numCalls, Carrier.Spring)

• Meaning of
– [] interpret number as name

– {} set notation
– () tuple in where clause

75 CS520 - 6) Data Warehous ing

2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

6. MXD
SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS
FROM PhoneCallsCube
WHERE (Measures.numCalls, Carrier.Spring)

76 CS520 - 6) Data Warehous ing

2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

Determine	result	layout
rows	and	columns	of	

spreadsheet

Specify	sets	of	
dimensional	 concepts	

Datacube(s)	to	use

Select	measures	to	aggregate	
over

Slice	(egg.,	here	only	
aggregation	over	Spring	

calls)

6. MXD - SELECT
SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS
FROM PhoneCallsCube
WHERE (Measures.numCalls, Carrier.Spring)

• Select specifies dimensions in result and how to visualize
– ON COLUMNS, ON ROWS, ON PAGES, ON SECTIONS, ON
CHAPTERS

• Every dimension in result corresponds to one dimension in the cube
– Set of concepts from this dimensions which may be from different levels of

granularity
– E.g., {2010, 2011 Jan, 2012 Jan, 2012 Feb, 2010 Jan 1st}

77 CS520 - 6) Data Warehous ing

2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

5/5/16

14

6. MXD - SELECT
• Specify concepts from dimensions

– List all values as set, e.g., { [2010], [2011] }
– Not necessarily from same level of hierarchy (e.g., mix years and months)

• Language constructs for accessing parents and children or members
of a level in the hierarchy
– CHILDREN: all direct children

• E.g., [2010].CHILDREN = {[2010 Jan], …, [2010 Dec]}

– PARENT: the direct parent
• E.g., [2010 Jan].PARENT = [2010]

– MEMBERS: all direct children
• E.g., Time.Years.MEMBERS = {[1990], [1991], …, [2016]}

– LASTCHILD: last child (according to order of children)
• E.g., [2010].LASTCHILD = [2010 Dec]

– NEXTMEMBER: right sibling on same level
• E.g., [2010].NEXTMEMBER = [2011]

– [a]:[b]: all members in interval between a and b
• E.g., [1990]:[1993] = {[1990], [1991], [1992], [1993]}

78 CS520 - 6) Data Warehous ing

6. MXD - SELECT
• Specify concepts from dimensions

– List all values as set, e.g., { [2010], [2011] }
– Not necessarily from same level of hierarchy (e.g., mix years and months)

• Language constructs for accessing parents and children or members
of a level in the hierarchy
– CHILDREN: all direct children

• E.g., [2010].CHILDREN = {[2010 Jan], …, [2010 Dec]}

– PARENT: the direct parent
• E.g., [2010 Jan].PARENT = [2010]

– MEMBERS: all direct children
• E.g., Time.Years.MEMBERS = {[1990], [1991], …, [2016]}

– LASTCHILD: last child (according to order of children)
• E.g., [2010].LASTCHILD = [2010 Dec]

– NEXTMEMBER: right sibling on same level
• E.g., [2010].NEXTMEMBER = [2011]

– [a]:[b]: all members in interval between a and b
• E.g., [1990]:[1993] = {[1990], [1991], [1992], [1993]}

79 CS520 - 6) Data Warehous ing

6. MXD - SELECT
• Nesting of sets: CROSSJOIN

– Project two dimensions into one
– Forming all possible combinations

SELECT CROSSJOIN (
{ Chicago, Schaumburg },
{ [2010], [2011] }

) ON ROWS
{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE (Measures.numCalls)

80 CS520 - 6) Data Warehous ing

Chicago
2010 123411

2011 3231

Schaumburg
2010 32321132

2011 12355

6. MXD - SELECT
• Conditional selection of members: FILTER

– One use members that fulfill condition
– E.g., condition over aggregation result

• Show results for all month of 2010 where there are more Sprint
calls than ATT calls

SELECT FILTER([2010].CHILDREN,
(Sprint, numCalls) > (ATT, numCalls)
) ON ROWS

{ Chicago } ON COLUMNS

FROM PhoneCallsCube
WHERE (Measures.numCalls)

81 CS520 - 6) Data Warehous ing

6. Query Processing in DW

• Large topic, here we focus on two aspects
– Partitioning
– Query answering with materialized views

82 CS520 - 6) Data Warehous ing

6. Partitioning

• Partitioning splits a table into multiple
fragments that are stored independently
– E.g., split across X disks, across Y servers

• Vertical partitioning
– Split columns across fragments

• E.g., R = {A,B,C,D}, fragment F1 = {A,B}, F2 = {C,D}
• Either add a row id to each fragment or the primary key

to be able to reconstruct

• Horizontal partitioning
– Split rows
– Hash vs. range partitioning83 CS520 - 6) Data Warehous ing

5/5/16

15

6. Partitioning

• Why partitioning?
– Parallel/distributed query processing

• read/write fragments in parallel
• Distribute storage load across disks/servers

– Avoid reading data that is not needed to answer a
query
• Vertical

– Only read columns that are accessed by query

• Horizontal
– only read tuples that may match queries selection conditions

84 CS520 - 6) Data Warehous ing

6. Partitioning

• Vertical Partitioning
– Fragments F1 to Fn of relation R such that

• Sch(F1) u Sch(F2) u … u Sch(Fn) = Sch(R)
• Store row id or PK of R with every fragment
• Restore relation R through natural joins

85 CS520 - 6) Data Warehous ing

Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Rowid Name Salary

1 Peter 12,000

2 Alice 24,000

3 Bob 20,000

4 Gertrud 50,000

5 Pferdegert 14,000

Rowid Age Gender

1 45 M

2 34 F

3 22 M

4 55 F

5 23 M

6. Partitioning

• Horizontal Partitioning
– Range partitioning on attribute A

• Split domain of A into intervals representing fragments
• E.g., tuples with A = 15 belong to fragment [0,20]

– Fragments F1 to Fn of relation R such that
• Sch(F1) = Sch(F2) = … = Sch(Fn) = Sch(R)
• R = F1 u … u Fn

86 CS520 - 6) Data Warehous ing

Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Name Salary Age Gender

Peter 12,000 45 M

Pferdegert 14,000 23 M

Name Salary Age Gender

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Salary
[0,15000]

Salary
[15001,10000]

6. Partitioning

• Horizontal Partitioning
– Hash partitioning on attribute A

• Split domain of A into x buckets using hash function
• E.g., tuples with h(A) = 3 belong to fragment F3

• Sch(F1) = Sch(F2) = … = Sch(Fn) = Sch(R)
• R = F1 u … u Fn

87 CS520 - 6) Data Warehous ing

Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Salary
h(24,000)	=	0
H(14,000)	=	0

Salary
h(12,000)	=	1
H(20,000)	=	1
H(50,000)	=	1

Name Salary Age Gender

Alice 24,000 34 F

Pferdegert 14,000 23 M

Name Salary Age Gender

Peter 12,000 45 M

Bob 20,000 22 M

Gertrud 50,000 55 F

Outline

0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance

88 CS520 - 6) Data Warehous ing

