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6. What is Datawarehousing?

• Problem: Data Analysis, Prediction, Mining
– Example: Walmart
– Transactional databases

• Run many “cheap” updates concurrently
• E.g., each store has a database storing its stock and sales

– Complex Analysis over Transactional Databases?
• Want to analyze across several transactional databases

– E.g., compute total Walmart sales per month
– Distribution and heterogeneity

• Want to run complex analysis over large datasets
– Resource consumption of queries affects normal operations on 

transactional databases
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6. What is Datawarehousing?

• Solution:
• Performance

– Store data in a different system (the 
datawarehouse) for analysis

– Bulk-load data to avoid wasting performance on 
concurrency control during analysis

• Heterogeneity and Distribution
– Preprocess data coming from transactional 

databases to clean it and translate it into a unified 
format before bulk-loading
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6. Datawarehousing Process

• 1) Design a schema for the warehouse
• 2) Create a process for preprocessing the data
• 3) Repeat

– A) Preprocess data from the transactional databases
– B) Bulk-load it into the warehouse
– C) Run analytics
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6. Overview
• The multidimensional datamodel (cube)

– Multidimensional data model
– Relational implementations

• Preprocessing and loading (ETL)
• Query language extensions

– ROLL UP, CUBE, …
• Query processing in datawarehouses

– Bitmap indexes
– Query answering with views
– Self-tuning
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6. Multidimensional Datamodel

• Analysis queries are typically aggregating 
lower level facts about a business
– The revenue of Walmart in each state (country, 

city)
– The amount of toy products in a warehouse of a 

company per week
– The call volume per zip code for the Sprint network
– …
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6. Multidimensional Datamodel

• Commonality among these queries:
– At the core are facts: a sale in a Walmart store, a 

toy stored in a warehouse, a call made by a certain 
phone

– Data is aggregated across one or more dimensions
• These dimensions are typically organized hierarchically: 

year – month – day – hour, country – state - zip

• Example 
– The revenue (sum of sale amounts) of Walmart in 

each state
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6. Example 2D
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2014 2015

1. Quarter 2.	Quarter 3.	Quarter 4.	Quarter 1. Quarter 2.	Qu…

Jan Feb Mar Ap r May Jun Ju l Aug Sep Oct Nov Dec Jan Feb Mar Ap r May

Toy
car 3 7 6 37 7 92 37 7 92 37 7 92 37 7 92 2 ...

puppet 9 4 5 31 1 1 1 1 1 1 1 1 1 2 2 2 …

Fishing	 rod 11 12 22 22 22 22 22 22 7 6 6 6 6 65 4 33 …

Books

Moby	Dick 3 40 39 37 7 92 81 6 51 7 48 51 5 7 3 3 …

Mobile	
devel.

3 2 5 43 7 0 81 6 51 7 48 51 5 7 3 3 …

King	Lear 3 9 6 37 7 92 5 6 51 7 48 51 5 7 3 3 …

6. Generalization to multiple 
dimensions
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• Given a fixed number of dimensions
– E.g., product type, location, time

• Given some measure
– E.g., number of sales, items in stock, …

• In the multidimensional datamodel we store 
facts: the values of measures for a combination 
of values for the dimensions

6. Data cubes
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• Given n dimensions
– E.g., product type, location, time

• Given m measures
– E.g., number of sales, items in stock, …

• A datacube (datahypercube) is an n-
dimensional datastructure that maps values in 
the dimensions to values for the m measures 
– Schema: D1, …, Dn, M1, …, Mm

– Instance: a function
dom(D1) x … x dom(Dn) ->  dom(M1) x ... x dom(Mm)

6. Dimensions
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• Purpose
– Selection of descriptive data
– Grouping with desired level of granularity

• A dimension is define through a containment-
hierarchy

• Hierarchies typically have several levels
• The root level represents the whole dimensions 
• We may associate additional descriptive 

information with a elements in the hierarchy 
(e.g., number of residents in a city)
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6. Dimension Example
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• Location 
– Levels: location, state, city

Locations

Illinois Wisconsin

Chicago Schaumburg Madison Whitewater

location

state

city

Schema Instance

6. Dimension Schema
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• Schema of a Dimension
– A set D of category attributes D1, …, Dn, TopD

• These correspond to the levels
– A partial order → over D which represents parent-

child relationships in the hierarchy
• These correspond to upward edges in the hierarchy
• TopD is larger than anything else

– For every Di: Di → TopD

• There exists Dmin which is smaller than anything else
– For every Di: Dmin → Di

6. Dimension Schema Example
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• Schema of Location Dimension
– Set of categories D = {location, state, city}
– Partial order
{ city → state, city → location, state → location }
– TopD = location
– Dmin = city

Lo cation s

Il l in o is Wiscon sin

Ch icago Schaumbu rg Mad ison Wh itewater

lo cation

state

ci ty

Schema Instance

6. Remarks
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• In principle there does not have to exist an 
order among the elements at one level of the 
hierarchy
– E.g., cities

• Hierarchies do not have to be linear

Schema

year

quarter

mon th

day

week

6. Cells, Facts, and Measures
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• Each cell in the cube corresponds to a combination of 
elements from each dimension
– Facts are non-empty cells
– Cells store measures

• Cube for a combination of levels of the dimension

Fact:
Items	in	stock	in	 Janat	
Chicago that	belong	to	

category	Tool

Time

5 1
4 9
3 4

Product

Location

Book

Too l

Electron ic

Aud io

Garden in g

JanFeb
Mar

Ap r
May

Facts

• Targets of analytics
– E.g., revenue, #sales, #stock

• A fact is uniquely defined by the combination 
of values from the dimensions
– E.g., for dimensions time and and location

Revenue in Illinois during Jan 2015

• Granularity: Levels in the dimension 
hierarchy corresponding to the fact
– E.g., state, month
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year

quar t er

m ont h

day

week

locat ion

st at e

cit y



5/5/16

4

Facts (Event vs. Snapshot)

• Event Facts
– Model real-world events
– E.g., Sale of an item 

• Snapshot Facts
– Temporal state
– A single object (e.g., a book) may contribute to 

several facts
– E.g., number of items in stock
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Measures

• A measure describes a fact
– May be derived from other measures

• Two components
– Numerical value
– Formula (optional): how to derive it

• E.g., avg(revenue) = sum(revenue) / count(revenue)

• We may associate multiple measures to each 
cell
– E.g., number of sales and total revenue
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Measures - Granularity

• Similar to facts, measures also have a granularity
• How to change granularity of a measure?
• Need algorithm to combine measures

– Additive measures
• Can be aggregated along any dimension

– Semi-additive/non-additive
• Cannot be aggregated along some/all dimensions

• E.g.,  snapshot facts along time dimension
– Number of items in stock at Jan + Feb + … != items in stock 

during year
– Median of a measure
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Design Process (after Kimball)

• Comparison to classical relational modeling
– Analysis driven

• No need to model all existing data and relationships relevant 
to a domain

• Limit modeling to information that is relevant for predicted 
analytics

– Redundancy
• Tolerate redundancy for performance if reasonable

– E.g.,  in dimension tables to reduce number of joins
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Design Process – Steps 

• 1) Select relevant business processes
– E.g., order shipping, sales, support, stock 

management
• 2) Select granuarity

– E.g., track stock at level of branches or regions
• 3) Design dimensions

– E.g., time, location, product, …
• 4) Select measures

– E.g., revenue, cost, #sales, items in stock, #support 
requests
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Design Process Example

• Coffee shop chain
– Processes

• Sell coffee to customers

• Buy ingredients from suppliers
• Ship supplies to branches
• Pay employees
• HR (hire, advertise positions, …)

– Which process is relevant to be analysed to increase 
profits?

23 CS520 - 6) Data Warehous ing



5/5/16

5

Design Process Example

• 1) Selecting process(es)
– sell coffee to customers

• 2) Select granularity
– Single sale?
– Sale per branch/day?
– Sale per city/year?
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Design Process Example

• 1) Selecting process(es)
– sell coffee to customers

• 2) Select granularity
– Sale of type of coffee per branch per day
– Sufficient for analysis

• Save storage
• 3) Determine relevant dimensions

– Location
– Time
– Product, …
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Design Process Example

• 1) Selecting process(es)
– sell coffee to customers

• 2) Select granularity
– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions
– Location (country, state, city, zip, shop)
– Time (year, month, day)
– Product (type, brand, product)

26 CS520 - 6) Data Warehous ing

Design Process Example

• 1) Selecting process(es)
– sell coffee to customers

• 2) Select granularity
– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions
– Location (country, state, city, zip, shop)
– Time (year, month, day)
– Product (type, brand, product)

• 4) Select measures
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Design Process Example

• 1) Selecting process(es)
– sell coffee to customers

• 2) Select granularity
– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions
– Location (country, state, city, zip, shop)
– Time (year, month, day)
– Product (type, brand, product)

• 4) Select measures 
– cost, revenue, profit?
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Relational representation

• How to model a datacube using the relational 
datamodel

• We start from 
– Dimension schemas
– Set of measures

29 CS520 - 6) Data Warehous ing
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Star Schema

• A data cube is represented as a set of dimension 
tables and a fact table

• Dimension tables
– For each dimension schema D = (D1,…,Dk,TopD) we create a 

relation
– D (PK, D1,…,Dk)

– Here PK is a primary key, e.g., Dmin

• Fact table
– F(FK1, …, FKn, M1, ..., Mm)
– Each FKi is a foreign key to Di

– Primary key is the combination of all Fki
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Star Schema - Remarks

• Dimension tables have redundancy
– Values for higher levels are repeated

• Fact table is in 3NF
• TopD does not have to be stored explicitly
• Primary keys for dimension tables are 

typically generated (surrogate keys)
– Better query performance by using integers
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Snowflake Schema

• A data cube is represented as a set of dimension 
tables and a fact table

• Dimension tables
– For each dimension schema D = (D1,…,Dk,TopD) we create a 

relation multiple relations connected through FKs
– Di (PK, A1, …, Al, FKj)

– Al is a descriptive attribute 
– FKj is foreign key to the immediate parent(s) of Di

• Fact table
– F(FK1, …, FKn, M1, ..., Mm)
– Each FKi is a foreign key to Di

– Primary key is the combination of all Fki
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Snowflake Schema - Remarks

• Avoids redundancy
• Results in much more joins during query 

processing
• Possible to find a compromise between 

snowflake and star schema
– E.g., use snowflake for very fine-granular 

dimensions with many levels
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Snowflake Schema - Example

– Coffee chain example
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6. Extract-Transform-Load (ETL)

• The preprocessing and loading phase is called 
extract-transform-load (ETL) in 
datawarehousing

• Many commercial and open-source tools available
• ETL process is modeled as a workflow of 

operators
– Tools typically have a broad set of build-in operators: 

e.g., key generation, replacing missing values, 
relational operators, 

– Also support user-defined operators

35 CS520 - 6) Data Warehous ing



5/5/16

7

6. Extract-Transform-Load (ETL)

• Some ETL tools
– Pentaho Data Integration
– Oracle Warehouse Builder (OWB)
– IBM Infosphere Information Server
– Talend Studio for Data Integration
– CloverETL
– Cognos Data Manager
– Pervasive Data Integrator
– …
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6. Extract-Transform-Load (ETL)

• Operators supported by ETL
– Many of the preprocessing and cleaning operators 

we already know
• Surrogate key generation (like creating existentials

with skolems)
• Fixing missing values

– With default value, using trained model (machine learning)

• Relational queries
– E.g.,  union of two tables or joining two tables

• Extraction of structured data from semi-structured 
data and/or unstructured data

• Entity resolution, data fusion 
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6. ETL Process

• Operators can be composed to form complex 
workflows
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Inv o ic e 
l ine i tems

Spl i t
Date -
time

Fi l ter
inv a l id

J o in Fi l ter
inv a l id

I nvalid 
dat es /t im es

I nvalid
it em s

Item
rec ords

Fi l ter
non -

matc h

I nvalid
cust om er s

Group by  
c us tomer

Cus tomer
balanc e

Cus tomer
rec ords

6. Typical ETL operators

• Elementizing
– Split values into more fine-granular elements

• Standardization
• Verification
• Matching with master data
• Key generation
• Schema matching, Entity 

resolution/Deduplication, Fusion
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6. Typical ETL operators

• Control flow operators
– AND/OR
– Fork
– Loops
– Termination

• Successful
• With warning/errors
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6. Typical ETL operators

• Elementizing
– Split non 1NF data into individual elements

• Examples
– name: “Peter Gertsen” -> firstname: “Peter”, lastname: 

“Gertsen”
– date: “12.12.2015” -> year: 2002, month: 12, day :12
– Address: “10 W 31st, Chicago, IL 60616” -> street = “10 

W 31st”, city = “Chicago”, state = “IL”, zip = “60616”
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6. Typical ETL operators

• Standardization
– Expand abbreviation
– Resolve synonyms
– Unified representation of, e.g., dates

• Examples
– “IL” -> “Illinois”
– “m/w”, “M/F” -> “male/female”
– “Jan”, “01”, “January”, “january” -> “January”
– “St” -> “Street”, “Dr” -> “Drive”, …
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6. Typical ETL operators

• Verification
– Same purpose as constraint based data cleaning but 

typically does not rely on constraints, but, e.g., 
regular expression matching

• Examples
– Phone matches “[0-9]{3}-[0-9]{3}-[0-9]{4}”
– For all t in Tokens(product description), t exists in 

English language dictionary
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6. Typical ETL operators

• Matching master data (lookup)
– Check and potentially repair data based on 

available master data
• Examples

– E.g., using a clean lookup table with (city,zip) replace 
the city in each tuple if the pair (city,zip) does not occur 
in the lookup table
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6. Metadata management

• As part of analysis in DW data is subjected to a 
complex pipeline of operations
– Sources
– ETL
– Analysis queries

• -> important, but hard, to keep track of what 
operations have been applied to data and from 
which sources it has been derived
– Need metadata management

• Including provenance (later in this course)

45 CS520 - 6) Data Warehous ing

6. Querying DW
• Targeted model (cube vs. relational)

– Design specific language for datacubes
– Add suitable extensions to SQL

• Support typical analytical query patterns
– Multiple parallel grouping criteria 

• Show total sales, subtotal per state, and subtotal per city
• -> three subqueries with different group-by in SQL

– Windowed aggregates and ranking
• Show 10 most successful stores
• Show cummulative sales for months of 2016

– E.g.,  the result for Feb would be the sum of the sales for Jan + Feb
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6. Querying DW

• Targeted model (cube vs. relational)
– Design specific language for datacubes

• MDX
– Add suitable extensions to SQL

• GROUPING SETS, CUBE, …
• Windowed aggregation using OVER(), PARTITION BY, 

ORDER BY, window specification
• Window functions

– RANK, DENSE_RANK()

47 CS520 - 6) Data Warehous ing
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6. Cube operations

• Roll-up
– Move from fine-granular to more coarse-granular 

in one or more dimensions of a datacube
• E.g., sales per (city,month,product category) to Sales 

per (state,year, product category

• Drill-down
– Move from coarse-granular to more fine-granular 

in one of more dimensions
• E.g., phonecalls per (city,month) to phonecalls per 

(zip,month)
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6. Cube operations

• Drill-out
– Add additional dimensions

• special case of drill-down starting from TopD in 
dimension(s)

• E.g., sales per (city, product category) to Sales per 
(city,year, product category)

• Drill-in
– Remove dimension

• special case for roll-up move to TopD for dimension(s)
• E.g., phonecalls per (city,month) to phonecalls per 

(month)
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6. Cube operations

• Slice
– Select data based on restriction of the values of one 

dimension
• E.g., sales per (city,month) -> sales per (city) in Jan

• Dice
– Select data based on restrictions of the values of 

multiple dimensions
• E.g., sales per (city,month) -> sales in Jan for Chicago 

and Washington DC
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6. SQL Extensions

• Recall that grouping on multiple sets of 
attributes is hard to express in SQL
– E.g., give me the total sales, the sales per year, and 

the sales per month
• Practice
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6. SQL Extensions

• Syntactic Sugar for multiple grouping
– GROUPING SETS
– CUBE
– ROLLUP

• These constructs are allowed as expressions in 
the GROUP BY clause
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6. GROUPING SETS
• GROUP BY GROUPING SETS ((set1), …, 
(setn))

• Explicitly list sets of group by attributes
• Semantics:

– Equivalent to UNION over duplicates of the query 
each with a group by clause GROUP BY seti

– Schema contains all attributes listed in any set
– For a particular set, the attribute not in this set are 

filled with NULL values

53 CS520 - 6) Data Warehous ing
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6. GROUPING SETS
SELECT quarter,

city,
product_typ,
SUM(profit) AS profit

FROM facttable F, time T, location L, product P

WHERE
F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID

GROUP BY GROUPING SETS 

( (quarter, city), (quarter, product_typ))
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quarter city product_typ profit
2010Q1 Books 8347
2012Q2 Books 7836
2012	Q2 Gardening 12300
2012	Q2 Chicago 12344
2012Q2 Seattle 124345

6. GROUPING SETS
SELECT quarter, city, NULL AS product_typ, 

SUM(profit) AS profit
FROM facttable F, time T, location L, product P
WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID
GROUP BY quarter, city

UNION
SELECT quarter, NULL AS city, product_typ, 

SUM(profit) AS profit

FROM facttable F, time T, location L, product P
WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID
GROUP BY quarter, product_type
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6. GROUPING SETS

• Problem:
– How to distinguish between NULLs based on 

grouping sets and NULL values in a group by 
column?

GROUP BY GROUPING SETS 

( (quarter, city), (quarter, product_typ), (quarter, product_typ, city)
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quarter city product_typ profit
2010Q1 Books 8347
2012Q2 Books 7836
2012	Q2 Gardening 12300
2012	Q2 Chicago 12344
2012Q2 Seattle 124345
2012	Q2 Seattle Gardening 12343

Did	not	group	on	
product_typor	this	 is	
the	group	for	all	NULL	
values	in	product_typ?

6. GROUPING SETS

• Solution:
– GROUPING predicate 
– GOUPING(A) = 1 if grouped on attribute A, 0 else

SELECT … GROUPING(product_typ) AS grp_prd

…

GROUP BY GROUPING SETS 

( (quarter, city), (quarter, product_typ), (quarter, product_typ, city)
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quarter city product_typ profit grp_prd
2010Q1 Books 8347 1
2012Q2 Books 7836 1
2012	Q2 Gardening 12300 1
2012	Q2 Chicago 12344 0
2012Q2 Seattle 124345 1
2012	Q2 Seattle Gardening 12343 1

Now	it’s	 clear!

6. GROUPING SETS

• Combining GROUPING SETS 

GROUP BY A, B 

= GROUP BY GROUPING SETS ((A,B))

GROUP BY GROUPING SETS ((A,B), (A,C), (A))

= GROUP BY A, GROUPING SETS ((B), (C), ())

GROUP BY GROUPING SETS ((A,B), (B,C),
GROUPING SETS ((D,E), (D))

= GROUP BY GROUPING SETS (
(A,B,D,E), (A,B,D), (B,C,D,E), (B,C,D) 

)
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6. CUBE
• GROUP BY CUBE (set)

• Group by all 2n subsets of set
GROUP BY CUBE (A,B,C)

= GROUP BY GROUPING SETS (

(),

(A), (B), (C),

(A,B), (A,C), (B,C),

(A,B,C)

)

59 CS520 - 6) Data Warehous ing
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6. CUBE
• GROUP BY ROLLUP(A1, …, An)
• Group by all prefixes
• Typically different granularity levels from single 

dimension hierarchy, e.g., year-month-day
– Database can often find better evaluation strategy
GROUP BY ROLLUP (A,B,C)
= GROUP BY GROUPING SETS (

(A,B,C),
(A,B),

(A),
()

)
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6. OVER clause
• Agg OVER (partition-clause, order-
by,window-specification)

• New type of aggregation and grouping where
– Each input tuple is paired with the aggregation result for the group it 

belongs too
– More flexible grouping based on order and windowing
– New aggregation functions for ranking queries

• E.g., RANK(), DENSE_RANK()
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6. OVER clause
• Agg OVER (partition-clause, order-
by,window-specification)

• New type of aggregation and grouping where
SELECT shop, sum(profit) OVER()

- aggregation over full table

SELECT shop, sum(profit) OVER(PARTITION BY state)

- like group-by

SELECT shop, sum(profit) OVER(ORDER BY month)

- rolling sum including everything with smaller month

SELECT shop, sum(profit) OVER(ORDER BY month 6 
PRECEDING 3 FOLLOWING)
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6. OVER clause
• Agg OVER (partition-clause order-
by,window-specification)

• New type of aggregation and grouping where
<window frame preceding> ::= { 

UNBOUNDED PRECEDING 

| n PRECEDING 
| CURRENT ROW } 

<window frame following> ::= { 
UNBOUNDED FOLLOWING 

| n FOLLOWING 
| CURRENT ROW 

}
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6. OVER clause
SELECT year, month, city, profit

SUM(profit) OVER () AS ttl
FROM sales

• For each tuple build a set of tuples belonging to the same window
– Compute aggregation function over window
– Return each input tuple paired with the aggregation result for its window

• OVER() = one window containing all tuples
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 92

2010 2 Chicago 5 92

2010 3 Chicago 20 92

2011 1 Chicago 45 92

2010 1 New York 12 92

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (PARTITION BY year) AS ttl
FROM sales

• PARITION BY
– only tuples with same partition-by attributes belong to the same window

• Like GROUP BY
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 47

2010 2 Chicago 5 47

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 47
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6. OVER clause
SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl
FROM sales

• ORDER BY 
– Order tuples on these expressions
– Only tuples which are <= to the order as the current tuple belong to the same 

window

• E.g., can be used to compute an accumulate total
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 47

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 47

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl
FROM sales

• ORDER BY 
– Order tuples on these expressions
– Only tuples which are <= to the order as the current tuple belong to the same 

window

• E.g., can be used to compute an accumulate total
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl
FROM sales

• ORDER BY 
– Order tuples on these expressions
– Only tuples which are <= to the order as the current tuple belong to the same 

window

• E.g., can be used to compute an accumulate total
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl
FROM sales

• ORDER BY 
– Order tuples on these expressions
– Only tuples which are <= to the order as the current tuple belong to the same 

window

• E.g., can be used to compute an accumulate total
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 92

2010 1 New York 12 22

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (PARTIION BY year ORDER BY month) 
AS ttl
FROM sales

• Combining PARTITION BY and ORDER BY 
– First partition, then order tuples within each partition
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause
SELECT year, month, city

SUM(profit) OVER (PARTITION BY year ORDER BY month
RANGE BETWEEN 1 PRECEDING 

AND 1 FOLLOWING) AS ttl

FROM sales

• Explicit window specification
– Requires ORDER BY
– Determines which tuples “surrounding” the tuple according to the sort order to 

include in the window
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 27

2010 2 Chicago 5 47

2010 3 Chicago 20 25

2011 1 Chicago 45 45

2010 1 New York 12 27
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6. OVER clause
SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month
ROWS BETWEEN 1 PRECEDING 

AND 1 FOLLOWING) AS ttl

FROM sales

• Explicit window specification
– Requires ORDER BY
– Determines which tuples “surrounding” the tuple according to the sort order to 

include in the window
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 37

2010 3 Chicago 20 70

2011 1 Chicago 45 65

2010 1 New York 12 27

6. MDX

• Multidimensional expressions (MDX)
– Introduced by Microsoft
– Query language for the cube data model
– SQL-like syntax

• Keywords have different meaning
– MDX queries return a multi-dimensional report

• 2D = spreadsheet
• 3D or higher, e.g., multiple spreadsheets
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6. MDX Query

• Basic Query Structure
SELECT <axis-spec1>, …

FROM <cube-spec1>, …

WHERE ( <select-spec> ) 

• Note!
– Semantics of SELECT, FROM, WHERE not what 

you would expect knowing SQL
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6. MXD
SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS
FROM PhoneCallsCube
WHERE ( Measures.numCalls, Carrier.Spring )

• Meaning of 
– [] interpret number as  name

– {} set notation
– () tuple in where clause
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2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

6. MXD
SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS
FROM PhoneCallsCube
WHERE ( Measures.numCalls, Carrier.Spring )
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2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

Determine	result	layout
rows	and	columns	of	

spreadsheet

Specify	sets	of	
dimensional	 concepts	

Datacube(s)	to	use

Select	measures	to	aggregate	
over

Slice	(egg.,	here	only	
aggregation	over	Spring	

calls)

6. MXD - SELECT
SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS
FROM PhoneCallsCube
WHERE ( Measures.numCalls, Carrier.Spring )

• Select specifies dimensions in result and how to visualize
– ON COLUMNS, ON ROWS, ON PAGES, ON SECTIONS, ON 
CHAPTERS

• Every dimension in result corresponds to one dimension in the cube
– Set of concepts from this dimensions which may be from different levels of 

granularity
– E.g., {2010, 2011 Jan, 2012 Jan, 2012 Feb, 2010 Jan 1st}
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2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425
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6. MXD - SELECT
• Specify concepts from dimensions

– List all values as set,  e.g., { [2010], [2011] }
– Not necessarily from same level of hierarchy (e.g.,  mix years and months)

• Language constructs for accessing parents and children or members 
of a level in the hierarchy
– CHILDREN: all direct children

• E.g., [2010].CHILDREN = {[2010 Jan], …, [2010 Dec]}

– PARENT: the direct parent
• E.g., [2010 Jan].PARENT = [2010]

– MEMBERS: all direct children
• E.g., Time.Years.MEMBERS = {[1990], [1991], …, [2016]}

– LASTCHILD: last child (according to order of children)
• E.g., [2010].LASTCHILD = [2010 Dec]

– NEXTMEMBER: right sibling on same level
• E.g., [2010].NEXTMEMBER = [2011]

– [a]:[b]: all members in interval between a and b
• E.g., [1990]:[1993] = {[1990], [1991], [1992], [1993]}
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6. MXD - SELECT
• Specify concepts from dimensions

– List all values as set,  e.g., { [2010], [2011] }
– Not necessarily from same level of hierarchy (e.g.,  mix years and months)

• Language constructs for accessing parents and children or members 
of a level in the hierarchy
– CHILDREN: all direct children

• E.g., [2010].CHILDREN = {[2010 Jan], …, [2010 Dec]}

– PARENT: the direct parent
• E.g., [2010 Jan].PARENT = [2010]

– MEMBERS: all direct children
• E.g., Time.Years.MEMBERS = {[1990], [1991], …, [2016]}

– LASTCHILD: last child (according to order of children)
• E.g., [2010].LASTCHILD = [2010 Dec]

– NEXTMEMBER: right sibling on same level
• E.g., [2010].NEXTMEMBER = [2011]

– [a]:[b]: all members in interval between a and b
• E.g., [1990]:[1993] = {[1990], [1991], [1992], [1993]}
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6. MXD - SELECT
• Nesting of sets: CROSSJOIN

– Project two dimensions into one
– Forming all possible combinations

SELECT CROSSJOIN (
{ Chicago, Schaumburg },
{ [2010], [2011] }

) ON ROWS
{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE ( Measures.numCalls )

80 CS520 - 6) Data Warehous ing

Chicago
2010 123411

2011 3231

Schaumburg
2010 32321132

2011 12355

6. MXD - SELECT
• Conditional selection of members: FILTER

– One use members that fulfill condition
– E.g.,  condition over aggregation result

• Show results for all month of 2010 where there are more Sprint 
calls than ATT calls

SELECT FILTER([2010].CHILDREN, 
(Sprint, numCalls) > (ATT, numCalls)
) ON ROWS

{ Chicago } ON COLUMNS

FROM PhoneCallsCube
WHERE ( Measures.numCalls )
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6. Query Processing in DW

• Large topic, here we focus on two aspects
– Partitioning
– Query answering with materialized views
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6. Partitioning

• Partitioning splits a table into multiple 
fragments that are stored independently
– E.g., split across X disks, across Y servers

• Vertical partitioning
– Split columns across fragments

• E.g., R = {A,B,C,D}, fragment F1 = {A,B}, F2 = {C,D}
• Either add a row id to each fragment or the primary key 

to be able to reconstruct

• Horizontal partitioning
– Split rows
– Hash vs. range partitioning83 CS520 - 6) Data Warehous ing
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6. Partitioning

• Why partitioning?
– Parallel/distributed query processing

• read/write fragments in parallel
• Distribute storage load across disks/servers

– Avoid reading data that is not needed to answer a 
query
• Vertical

– Only read columns that are accessed by query

• Horizontal
– only read tuples that may match queries selection conditions
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6. Partitioning

• Vertical Partitioning
– Fragments F1 to Fn of relation R such that 

• Sch(F1) u Sch(F2) u … u Sch(Fn) = Sch(R)
• Store row id or PK of R with every fragment 
• Restore relation R through natural joins

85 CS520 - 6) Data Warehous ing

Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Rowid Name Salary

1 Peter 12,000

2 Alice 24,000

3 Bob 20,000

4 Gertrud 50,000

5 Pferdegert 14,000

Rowid Age Gender

1 45 M

2 34 F

3 22 M

4 55 F

5 23 M

6. Partitioning

• Horizontal Partitioning
– Range partitioning on attribute A

• Split domain of A into intervals representing fragments
• E.g., tuples with A = 15 belong to fragment [0,20]

– Fragments F1 to Fn of relation R such that 
• Sch(F1) = Sch(F2) = … = Sch(Fn) = Sch(R)
• R = F1 u … u Fn
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Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Name Salary Age Gender

Peter 12,000 45 M

Pferdegert 14,000 23 M

Name Salary Age Gender

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Salary
[0,15000]

Salary
[15001,10000]

6. Partitioning

• Horizontal Partitioning
– Hash partitioning on attribute A

• Split domain of A into x buckets using hash function
• E.g., tuples with h(A) = 3 belong to fragment F3

• Sch(F1) = Sch(F2) = … = Sch(Fn) = Sch(R)
• R = F1 u … u Fn
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Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Salary
h(24,000)	=	0
H(14,000)	=	0

Salary
h(12,000)	=	1
H(20,000)	=	1
H(50,000)	=	1

Name Salary Age Gender

Alice 24,000 34 F

Pferdegert 14,000 23 M

Name Salary Age Gender

Peter 12,000 45 M

Bob 20,000 22 M

Gertrud 50,000 55 F

Outline

0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing 
7) Big Data Analytics
8) Data Provenance
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