
Outline

0) Course Info
1)  Introduction
2)  Data Preparation and Cleaning
3)  Schema matching and mapping
4)   Virtual Data Integration
5)  Data Exchange
6)  Data Warehousing
7)  Big Data Analytics
8)  Data Provenance

 1 CS520 - 3) Matching and Mapping

4. Virtual Data Integration

•  Virtual Data Integration

2 CS520 - 3) Matching and Mapping

Global	
Schema	

Local	
Schema	

1	

Local	
Schema	

2	

Local	
Schema	

n	

Query	

Mappings	

4. Virtual Data Integration

Problems:
•  How to create mappings?

– Discussed in previous part of the course
•  How to compute query Q

– This is the main focus of this part

3 CS520 - 3) Matching and Mapping

4. Query Answering with Views

•  How to compute query Q over global
schema based on source schemas only?
– What language is used to express mappings?
– What language due we allow for Q?
– What language(s) can we use to query local

sources?
– What language can we use to compute Q from

query results returned by local sources?
– How to deal with incompleteness?

4 CS520 - 5) Data Exchange

4.1 Query Answering with Views

5 CS520 - 5) Data Exchange

	
	
	
	
	
	

Query:										Q(Name) :- Person(Name, A, OP, OA, HP).

Example:	Solu-ons	

Person
Name
Address

Address
Id
City
Office-contact

Person
Name
Address
Office-phone
Office-address
Home-phone

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (465)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

8x, y, z, a : Person(x, y) ^Address(y, z, a) ! 9b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	

4.1 Query Answering with Views

6 CS520 - 5) Data Exchange

	
	
	
	
	
	
	
	
	
	
	

Query:										Q(Name) :- Person(Name, A, OP, OA, HP).

RewriKen	query	over	the	source:											
 Q(Name) :- Person(Name, AI),
 Address(AI,A,OP).

Example:	Solu-ons	

Person
Name
Address

Address
Id
City
Office-contact

Person
Name
Address
Office-phone
Office-address
Home-phone

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (465)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

8x, y, z, a : Person(x, y) ^Address(y, z, a) ! 9b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	

Name	

Peter	

Alice	

Bob	

4.1 Query Answering with Views

7 CS520 - 5) Data Exchange

	
	
	
	
	
	

Query:										Q(Home-ph) :- Person(N, A, OP, OA, Home-ph).

Example:	Solu-ons	

Person
Name
Address

Address
Id
City
Office-contact

Person
Name
Address
Office-phone
Office-address
Home-phone

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (465)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

8x, y, z, a : Person(x, y) ^Address(y, z, a) ! 9b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	

Values	of	home-phone		are	not	
available	in	the	source	

4. Query Answering with Views

•  Problems
– How to determine whether query can be answered

at all?
– Given a rewriting of the query using views, how

do we know it is correct?
– What to do if views can only return some of the

query results?

8 CS520 - 5) Data Exchange

Motivating Example (Part 1)

Movie(ID,Ttle,year,genre)	
Director(ID,director)	
Actor(ID,	actor)	

€

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"
Director(I,D),Actor(I,D)

€

V1(T,Y,D) :−Movie(I,T,Y,G),Y ≥1940,G ="comedy"
Director(I,D),Actor(I,D)

€

Q'(T,Y,D) :−V1(T,Y,D),Y ≥1950

€

V1 ⊇ Q ⇒

Containment	is	enough	to	show	that	V1	can	be	used	
to	answer	Q.	

Motivating Example (Part 2)

€

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"
Director(I,D),Actor(I,D)

€

V2(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

€

Q' '(T,Y,D) :−V2(I,T,Y),V3(I,D)€

V3(I,D) :−Director(I,D),Actor(ID,D)
Containment	does	not	hold,	but	intuiTvely,	V2	and	V3	are	
useful	for	answering	Q.		

How	do	we	express	that	intuiTon?	
	
Answering	queries	using	views!	

Problem Definition

Input:	Query	Q	
										View	definiTons:	V1	,…	,Vn	

A	rewriTng:	a	query	Q’	that	refers	only	
to	the	views	and	interpreted	predicates	
(comparisons)	

An	equivalent	rewriTng	of	Q	using	V1	,…	,Vn:	
	a	rewriTng	Q’,	such	that	Q’ ⇔	Q	

Naïve approach

•  Given Q and views
– Randomly combine views into a query Q’
– Check equivalence of Q’ and Q
–  If Q’ is equivalent we are done
– Else repeat

•  Why is this not good?
– There are infinitely many ways of combining

views
•  E.g., V, V x V, V x V x V, …

– We are not using any information in the query

Motivating Example (Part 3)

Movie(ID,Ttle,year,genre)	
Director(ID,director)	
Actor(ID,	actor)	

€

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"
Director(I,D),Actor(I,D)

€

V3(I,D) :−Director(I,D),Actor(ID,D)

€

V4 (I,T,Y) :−Movie(I,T,Y,G),Y ≥1960,G ="comedy"

€

Q' ' '(T,Y,D) :−V4 (I,T,Y),V3(I,D)

maximally-contained	rewri-ng	

Maximally-Contained Rewritings

Input: Query Q
 Rewriting query language L
 View definitions: V1,…,Vn
Q’ is a maximally-contained rewriting of
Q given V1,…,Vn and L if:

1. Q’ ∈ L,
2. Q’ ⊆ Q, and
3. there is no Q’’ in L such

that
 Q’’ ⊆ Q and Q’⊂ Q’’

Why again?

Global	
Schema	

Local	
Schema	

1	

Local	
Schema	

2	

Local	
Schema	

n	

Query	

Mappings	

LAV/GLAV!	

Other use-cases

•  Query	opTmizaTon	with	materialized	views	
– Need	equivalent	rewriTngs	
–  Implemented	in	many	commercial	DBMS	
– Here	interest	is	cost:	how	to	speed-up	query	
processing	by	using	materialized	views	

Exercise: which of these views
can be used to answer Q?

€

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"
Director(I,D),Actor(I,D)

€

V2(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

€

V3(I,D) :−Director(I,D),Actor(I,D)

€

V6(T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

€

V7(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,
G ="comedy",Award(I,W)

€

V8(I,T) :−Movie(I,T,Y,G),Y ≥1940,G ="comedy"

Algorithms for answering queries
using views

•  Step	1:	we’ll	bound	the	space	of	possible	
query	rewriTngs	we	need	to	consider	(no	
comparisons)	

•  Step	2:	we’ll	find	efficient	methods	for	
searching	the	space	of	rewriTngs	
– Bucket	Algorithm,	MiniCon	Algorithm	

•  Step	2b:	we	consider	“logical	approaches”	to	
the	problem:	
– The	Inverse-Rules	Algorithm	

Bounding the Rewriting Length

€

Q(X) :−p1(X1),..., pn (Xn)Query:

€

Q'(X) :−V1(X1),...,Vm (Xm)Rewriting:

€

Q' '(X) :−g1
1,...gk

1

   ,...,g1
m ,...,g j

m

    
Expansion:

Proof: Only n subgoals in Q can contribute to
the image of the containment mapping ϕ

ϕ

Theorem:	if	there	is	an	equivalent	rewriTng,	
there	is	one	with	at	most	n	subgoals.	

Complexity Result
[LMSS, 1995]

•  Applies	to	queries	with	no	interpreted	
predicates.	

•  Finding	an	equivalent	rewriTng	of	a	query	
using	views	is	NP-complete	
– Need	only	consider	rewriTngs	of	query	length	or	
less.	

•  Maximally-contained	rewriTng:	
– Union	of	all	conjuncTve	rewriTngs	of	length	n	or	
less.	

The Bucket Algorithm

Key	idea:		
– Create	a	bucket	for	each	subgoal	g	in	the	query.	
– The	bucket	contains	views	that	contribute	to	g.	
– Create	rewriTngs	from	the	Cartesian	product	of	
the	buckets	(select	one	view	for	each	goal)	

•  Step	1:	assign	views	with	renamed	vars	to	
buckets	

•  Step	2:	create	rewriTngs,	refine	them,	unTl	
equivalent/all	contained	rewriTng(s)	are	
found	

The Bucket Algorithm

Step	1:		
– We	want	to	construct	buckets	with	views	that	
have	parTally	mapped	variables	

– For	each	goal	g	=	R	in	query	
– For	each	view	V		
– For	each	goal	v	=	R	in	V	

•  If	the	goal	has	head	variables	in	the	same	places	as	g	
then		

–  rename	the	view	head	variables	to	match	the	query	goal	vars	
–  choose	a	new	unique	name	for	each	other	var	
–  add	the	resulTng	view	atom	to	the	bucket	

The Bucket Algorithm

Step	1	Intui-on		
– A	view	can	only	be	used	to	provide	informaTon	
about	a	goal	R(X)	if	it	has	a	goal	R(Y)	

•  Q(X) :- R(X,Y)
•  V(X) :- S(X,Y)

–  If	the	query	goal	contains	variables	that	are	in	the	
head	of	the	query,	then	the	view	is	only	useful	if	it	
gives	access	to	these	values	(they	are	in	the	head)	

•  Q(X) :- R(X,Y)
•  V(X) :- S(X,Y), R(Y,Z)

Bucket Algorithm in Action

Q(ID,Dir) :−Movie(ID, title, year,genre),Revenues(ID,amount),
Director(ID,dir),amount ≥ $100M

View atoms that can contribute to Movie:
 V1(ID,year’), V2(ID,A’), V4(ID,D’,year’’)

V1(I,Y) :−Movie(I,T,Y,G),Revenues(I,A), I ≥ 5000,A ≥ $200M
V2 (I,A) :−Movie(I,T,Y,G),Revenues(I,A)
V3(I,A) :−Revenues(I,A),A ≤ $50M
V4 (I,D,Y) :−Movie(I,T,Y,G),Director(I,D), I ≤ 3000

Buckets and Cartesian product

Movie(ID,-tle,					
year,genre)

Revenues(ID,	
amount)

Director(ID,dir)

V1(ID,year) V1(ID,Y’) V4(ID,Dir,Y’)

V2(ID,A’) V2(ID,amount)

V4(ID,D’,year)

€

q1'(ID,dir) :−V1(ID,year),V1(ID,y '),V4 (ID,dir,y')

Consider	first	candidate	rewriTng:	first	V1	subgoal	
is	redundant,	and	V1	and	V4	are	mutually	
exclusive.	

Next Candidate Rewriting

Movie(ID,-tle,year,genre) Revenues(ID,amount) Director(ID,dir)

V1(ID,year) V1(ID,Y’) V4(ID,Dir,Y’)

V2(ID,A’) V2(ID,amount)

V4(ID,D’,year)

€

q2 '(ID,dir) :−V2(ID,A'),V2(ID,amount),V4 (ID,dir,y')

€

q2 '(ID,dir) :−V2(ID,amount),V4 (ID,dir,y '),
amount ≥ $100M

The Bucket Algorithm

Step	2:		
– For	each	combinaTon	of	one	element	of	each	
bucket:	

– Create	query	Q’	with	query	Q’s		head	and	list	all	
these	view	atoms	in	the	body	

–  If	Q’	equivalent	to	Q	(or	contained	in	Q)	
•  Done	(equivalent)	
•  Add	to	union	of	CQs	for	contained	case	

–  If	not	try	to	add	comparisons	

The Bucket Algorithm: Summary

•  Cuts	down	the	number	of	rewriTng	that	need	
to	be	considered,	especially	if	views	apply	
many	interpreted	predicates.		

•  The	search	space	can	sTll	be	large	because	the	
algorithm	does	not	consider	the	interacTons	
between	different	subgoals.	
– See	next	example.	

The MiniCon Algorithm

€

Q(title,year,dir) :−Movie(ID,title,year,genre),
Director(ID,dir),Actor(ID,dir)

€

V5(D,A) :−Director(I,D),Actor(I,A)

Intuition: The variable I is not in the head of V5,
hence V5 cannot be used in a rewriting.
MiniCon discards this option early on, while the
Bucket algorithm does not notice the interaction.

MinCon Algorithm Steps

•  1)	Create	MiniCon	descrip-ons	(MCDs):	
– Homomorphism	on	view	heads	
– Each	MCD	covers	a	set	of	subgoals	in	the	query	
with	a	set	of	subgoals	in	a	view	

•  2)	Combina-on	step:	
– Any	set	of	MCDs	that	covers	the	query	subgoals	
(without	overlap)	is	a	rewriTng	

– No	need	for	an	addiTonal	containment	check!	

MiniCon Descriptions (MCDs)
An atomic fragment of the ultimate containment mapping

€

Q(title,act,dir) :−Movie(ID,title,year,genre),
Director(ID,dir),Actor(ID,act)

€

V (I,D,A) :−Director(I,D),Actor(I,A)

MCD:
 mapping:

 covered subgoals of Q: {2,3}

€

ID→ I
dir→ D
act→ A

MCDs: Detail 1

€

Q(title,year,dir) :−Movie(ID,title,year,genre),
Director(ID,dir),Actor(ID,dir)

€

V (I,D,A) :−Director(I,D),Actor(I,A)

MCD:
 mapping:

 covered subgoals of Q: {2,3}

€

ID→ I
dir→ D€

V '(I,D,D) :−Director(I,D),Actor(I,D)
Need to specialize the view first:

MCDs: Detail 2

€

Q(title,year,dir) :−Movie(ID,title,year,genre),
Director(ID,dir),Actor(ID,dir)

€

V (I,D,D) :−Director(I,D),Actor(I,D),
Movie(I,T,Y,G)

MCD:
 mapping:

 covered subgoals of Q still: {2,3}

€

ID→ I
dir→ D

Note:	the	third	subgoal	of	the	view	is	not	included	
in	the	MCD.	

Inverse-Rules Algorithm

•  A	“logical”	approach	to	AQUV	
•  Produces	maximally-contained	rewriTng	in	
polynomial	Tme	
– To	check	whether	the	rewriTng	is	equivalent	to	
the	query,	you	sTll	need	a	containment	check.	

•  Conceptually	simple	and	elegant	
– Depending	on	your	comfort	with	Skolem	
funcTons…	

Inverse Rules by Example

€

V7(I,T,Y,G) :−Movie(I,T,Y,G),Director(I,D),Actor(I,D)

And	the	following	tuple	in	V7:		
										V7(79,ManhaKan,1979,Comedy)	
	
Then	we	can	infer	the	tuple:	
											Movie(79,ManhaKan,1979,Comedy)	
Hence,	the	following	‘rule’	is	sound:	
IN1:	Movie(I,T,Y,G)	:-	V7(I,T,Y,G)	

Given	the	following	view:		

Skolem Functions

€

V7(I,T,Y,G) :−Movie(I,T,Y,G),Director(I,D),Actor(I,D)
Now suppose we have the tuple
 V7(79,Manhattan,1979,Comedy)

Then we can infer that there exists some
director. Hence, the following rules hold (note
that they both use the same Skolem function):

IN2: Director(I,f1(I,T,Y,G)):- V7(I,T,Y,G)
IN3: Actor(I,f1(I,T,Y,G)):- V7(I,T,Y,G)

Inverse Rules in General
Rewriting = Inverse Rules + Query

Given	Q2,	the	rewriTng	would	include:	
	IN1,	IN2,	IN3,	Q2.		

€

Q2(title,year,genre) :−Movie(ID,title,year,genre)

Given	input:	V7(79,ManhaKan,1979,Comedy)	
Inverse	rules	produce:	
			Movie(79,ManhaKan,1979,Comedy)	
				Director(79,f1(79,Manha>an,1979,Comedy))	
				Actor(79,f1(79,Manha>an,1979,Comedy))	
				Movie(Manha>an,1979,Comedy)	
(the	last	tuple	is	produced	by	applying	Q2).	

Comparing Algorithms

•  Bucket	algorithm:	
– Good	if	there	are	many	interpreted	predicates	
– Requires	containment	check.	Cartesian	product	
can	be	big	

•  MiniCon:		
– Good	at	detecTng	interacTons	between	subgoals	

Algorithm Comparison
(Continued)

•  Inverse-rules	algorithm:	
– Conceptually	clean	
– Can	be	used	in	other	contexts	(see	later)	
– But	may	produce	inefficient	rewriTngs	because	it	
“undoes”	the	joins	in	the	views	(see	next	slide)	

•  Experiments	show	MiniCon	is	most	efficient.	
•  Even	faster:	
Konstantinidis, G. and Ambite, J.L, Scalable query rewriting: a
graph-based approach. SIGMOD ‘11	

Inverse Rules Inefficiency
Example

Query and view :
Q(X,Y) :−e1(X,Z),e2 (Z,Y)
V (A,B) :−e1(A,C),e2 (C,B)

Inverse rules :
e1(A, f1(A,B)) :−V (A,B)
e2 (f1(A,B),B) :−V (A,B)

Now we need to re-compute the join…

View-Based Query Answering

•  Maximally-contained	rewriTngs	are	
parameterized	by	query	language.	

•  More	general	quesTon:	
– Given	a	set	of	view	definiTons,	view	instances	and	
a	query,	what	are	all	the	answers	we	can	find?	

•  We	introduce	certain	answers	as	a	
mechanism	for	providing	a	formal	answer.	

View Instances = Possible DB’s

V8(dir) :−Movie(ID,dir,actor)
V9 (actor) :−Movie(ID,dir,actor)

V8: {Allen, Copolla}
V9: {Keaton, Pacino}

Consider	the	two	views:	

And	suppose	the	extensions	of	the	views	
are:		

Possible Databases

There	are	mulTple	databases	that	saTsfy	the	
above	view	definiTons:	(we	ignore	the	first	
argument	of	Movie	below)	
	
DB1.	{(Allen,	Keaton),	(Coppola,	Pacino)}	
DB2.	{(Allen,	Pacino),	(Coppola,	Keaton)}	
	
If	we	ask	whether	Allen	directed	a	movie	in	
which	Keaton	acted,	we	can’t	be	sure.	

Certain	answers	are	those	true	in	all	databases	that	are	
consistent	with	the	views	and	their	extensions.	

Certain Answers: Formal Definition
[Open-world Assumption]

•  Given:	
– Views:	V1,…,Vn	
– View	extensions	v1,…vn	
– A	query	Q	

•  A	tuple	t	is	a	certain	answer	to	Q	under	the	
open-world	assumpTon	if	t	∈	Q(D)	for	all	
databases	D	such	that:	
– Vi(D)	⊆	vi		for	all	i.	

Certain Answers
[Closed-world Assumption]

•  Given:	
– Views:	V1,…,Vn	
– View	extensions	v1,…vn	
– A	query	Q	

•  A	tuple	t	is	a	certain	answer	to	Q	under	the	
open-world	assumpTon	if	t	∈	Q(D)	for	all	
databases	D	such	that:	
– Vi(D)	=	vi		for	all	i.	

Certain Answers: Example

€

V8(dir) :−Director(ID,dir)
V9(actor) :−Actor(ID,actor)

Q(dir,actor) :−Director(ID,dir),Actor(ID,actor)

V8: {Allen}
V9: {Keaton}

Under	closed-world	assumpTon:	
	single	DB	possible	⇒	(Allen,	Keaton)		

	
Under	open-world	assumpTon:	

	no	certain	answers.	

The Good News

•  The	MiniCon	and	Inverse-rules	algorithms	
produce	all	certain	answers	
– Assuming	no	interpreted	predicates	in	the	query	
(ok	to	have	them	in	the	views)	

– Under	open-world	assumpTon	
– Corollary:	they	produce	a	maximally-contained	
rewriTng	

In Other News…

•  Under closed-world assumption finding all
certain answers is co-NP hard!

€

v1(X) :−color(X,Y)
v2(Y) :−color(X,Y)
v3(X,Y) :−edge(X,Y)

Proof: encode a graph - G = (V,E)

€

I(V1) =V
I(V2) = {red,green,blue}
I(V3) = E

€

q() :−edge(X,Y),color(X,Z),color(Y,Z)
q has a certain tuple iff G is not 3-colorable

Interpreted Predicates

•  In	the	views:	no	problem	(all	results	hold)	
•  In	the	query	Q:	

–  If	the	query	contains	interpreted	predicates,	
finding	all	certain	answers	is	co-NP-hard	even	
under	open-world	assumpTon	

– Proof:	reducTon	to	CNF.		

Outline

0) Course Info
1)  Introduction
2)  Data Preparation and Cleaning
3)  Schema matching and mapping
4)  Virtual Data Integration
5)   Data Exchange
6)  Data Warehousing
7)  Big Data Analytics
8)  Data Provenance

 50 CS520 - 3) Matching and Mapping

