Outline

- 0) Course Info
- 1) Introduction
- 2) Data Preparation and Cleaning
- 3) Schema matching and mapping
- 4) Virtual Data Integration
- 5) Data Exchange
- 6) Data Warehousing
- 7) Big Data Analytics
- 8) Data Provenance

2. Overview

- Topics covered in this part
 - Causes of Dirty Data
 - Constraint-based Cleaning
 - Outlier-based and Statistical Methods
 - Entity Resolution
 - Data Fusion

2. Causes of "Dirty" Data

- Manual data entry or result of erroneous integration
 - Typos:
 - "Peter" vs. "Pteer"
 - Switching fields
 - "FirstName: New York, City: Peter"
 - Incorrect information
 - "City:New York, Zip: 60616"
 - Missing information
 - "City: New York, Zip: "

2. Causes of "Dirty" Data

- Manual data entry or result of erroneous integration (cont.)
 - Redundancy:
 - (**ID**:1, **City**: Chicago, **Zip**: 60616)
 - (**ID**:2, **City**: Chicago, **Zip**: 60616)
 - Inconsistent references to entities
 - Dept. of Energy, DOE, Dep. Of Energy, ...

2. Cleaning Methods

- Enforce Standards
 - Applied in real world
 - How to develop a standard not a fit for this lecture
 - Still relies on no human errors
- Constraint-based cleaning
 - Define constraints for data
 - "Make" data fit the constraints
- Statistical techniques
 - Find outliers and smoothen or remove
 - E.g., use a clustering algorithm

2. Overview

- Topics covered in this part
 - Causes of Dirty Data
 - Constraint-based Cleaning
 - Outlier-based and Statistical Methods
 - Entity Resolution
 - Data Fusion

2.1 Cleaning Methods

Constraint-based cleaning

- Choice of constraint language
- Detecting violations to constraints
- Fixing violations (automatically?)

2.1 Constraint Languages

- First work focused on functional dependencies (FDs)
- Extensions of FDs have been proposed to allow rules that cannot be expressed with FDs
 - E.g., conditional FDs only enforce the FD is a condition is met
 - -> finer grained control, e.g., zip -> city only if country is US
- Constraints that consider master data
 - Master data is highly reliable data such as a government issued zip, city lookup table

2.1 Constraint Languages (cont.)

- Denial constraints
 - Generalize most other proposed constraints
 - State what should not be true
 - Negated conjunction of relational and comparison atoms

$$\forall \vec{x} : \neg (\phi(\vec{x}))$$

- Here we will look at FDs mainly and a bit at denial constraints
 - Sometimes use logic based notation introduced previously

Example: Constraints Languages

SSN	zip	city	name	boss	salary
333-333-3333	60616	New York	Peter	Gert	50,000
333-333-9999	60615	Chicago	Gert	NULL	40,000
333-333-5599	60615	Schaumburg	Gertrud	Hans	10,000
333-333-6666	60616	Chicago	Hans	NULL	1,000,000
333-355-4343	60616	Chicago	Malcom	Hans	20,000

 C_1 : The zip code uniquely determines the city

 $\mathbf{C_2}$: Nobody should earn more than their direct superior

 C_3 : Salaries are non-negative

Example: Constraints Languages

SSN	zip	city	name	boss	salary
333-333-3333	60616	New York	Peter	Gert	50,000
333-333-9999	60615	Chicago	Gert	NULL	40,000
333-333-5599	60615	Schaumburg	Gertrud	Hans	10,000
333-333-6666	60616	Chicago	Hans	NULL	1,000,000
333-355-4343	60616	Chicago	Malcom	Hans	20,000

C₁: The zip code uniquely determines the city
 - expressible as functional dependency

C₂: Nobody should earn more than their direct superior
 - e.g., denial constraint

C₃: Salaries are non-negative
 - e.g., denial constraint

Example: Constraints Languages

SSN	zip	city	name	boss	salary
333-333-3333	60616	New York	Peter	Gert	50,000
333-333-9999	60615	Chicago	Gert	NULL	40,000
333-333-5599	60615	Schaumburg	Gertrud	Hans	10,000
333-333-6666	60616	Chicago	Hans	NULL	1,000,000
333-355-4343	60616	Chicago	Malcom	Hans	20,000

 C_1 : The zip code uniquely determines the city

FD₁: zip -> city

$$\forall \neg (E(x, y, z, u, v, w) \land E(x', y', z', u', v', w') \land x = x' \land y \neq y')$$

 C_2 : Nobody should earn more than their direct superior

$$\forall \neg (E(x, y, z, u, v, w) \land E(x', y', z', u', v', w') \land v = u' \land w > w')$$

C3: Salaries are non-negative

$$\forall \neg (E(x, y, z, u, v, w) \land w < 0)$$

2.1 Constraint based Cleaning Overview

• Define constraints

- Given database D
 - 1) Detect violations of constraints
 - We already saw example of how this can be done using queries. Here a bit more formal
 - -2) Fix violations
 - In most cases there are many different ways to fix the violation by modifying the database (called **solution**)
 - What operations do we allow: insert, delete, update
 - How do we choose between alternative solutions

2.1 Constraint Repair Problem

Definition: Constraint Repair Problem

Given set of constraints Σ and an database instance I which violates the constraints find a clean instance I' so that I' fulfills Σ

- This would allow us to take any I'
 - E.g., empty for FD constraints
- We do not want to loose the information in I (unless we have to)
- Let us come back to that later

2.1 Constraint based Cleaning Overview

• Study 1) + 2) for FDs

- Given database D
 - 1) Detect violations of constraints
 - We already saw example of how this can be done using queries. Here a bit more formal
 - -2) Fix violations
 - In most cases there are many different ways to fix the violation by modifying the database (called **solution**)
 - What operations do we allow: insert, delete, update
 - How do we choose between alternative solutions

Example: Constraints

SSN	zip	city	name
333-333-3333	60616	New York	Peter
333-333-9999	60615	Chicago	Gert
333-333-5599	60615	Schaumburg	Gertrud
333-333-6666	60616	Chicago	Hans
333-355-4343	60616	Chicago	Malcom

FD₁: zip -> city

Example: Constraint Violations

SSN	zip	city	name
333-333-3333	60616	New York	Peter
333-333-9999	60615	Chicago	Gert
333-333-5599	60615	Schaumburg	Gertrud
333-333-6666	60616	Chicago	Hans
333-355-4343	60616	Chicago	Malcom

 $FD_1: zip \rightarrow city$

Example: Constraint Violations

SSN	zip	city	name
333-333-3333	60616	New York	Peter
333-333-9999	60615	Chicago	Gert
333-333-5599	60615	Schaumburg	Gertrud
333-333-6666	60616	Chicago	Hans
333-355-4343	60616	Chicago	Malcom

How to repair?

Deletion:

- remove some conflicting tuples
- quite destructive

Update:

- modify values to resolve the conflict
- equate RHS values (city here)
- disequate LHS value (zip)

2.1 Constraint based Cleaning Overview

How to repair?

Deletion:

- remove some conflicting tuples
- quite destructive

• Update:

- modify values to resolve the conflict
- equate RHS values (city here)
- disequate LHS value (zip)

Insertion?

- Not for FDs, but e.g., FKs

Example: Constraint Repair

SSN	zip	city	name
333-333-3333	60616	New York	Peter
333-333-9999	60615	Chicago	Gert
333-333-5599	60615	Schaumburg	Gertrud
333-333-6666	60616	Chicago	Hans
333-355-4343	60616	Chicago	Malcom

Deletion:

Delete Chicago or Schaumburg?

Delete New York or the two Chicago tuples?
- one tuple deleted vs. two tuples deleted

Example: Constraint Repair

SSN	zip	city	name
333-333-3333	60616	New York	Peter
333-333-9999	60615	Chicago	Gert
333-333-5599	60615	Schaumburg	Gertrud
333-333-6666	60616	Chicago	Hans
333-355-4343	60616	Chicago	Malcom

Update equate RHS:

Update Chicago->Schaumburg or Schaumburg->Chicago

Update New York->Chicago or Chicago->New York
 - one tuple deleted vs. two cells updated

Update disequate LHS:

Which tuple to update?
What value do we use here? How to avoid creating other conflicts?

2.1 Constraint based Cleaning Overview

- Principle of minimality
 - Choose repair that minimally modifies database
 - Motivation: consider the solution that deletes every tuple

- Most update approaches equate RHS because there is usually no good way to choose LHS values unless we have master data
 - E.g., update zip to 56423 or 52456 or 22322 ...

2.1 Detecting Violations

- Given FD A -> B on R
 - Recall logical representation
 - Forall X, X': R(X) and R(X') and A=A' -> B=B'
 - Only violated if we find two tuples where A=A',
 but B != B'
 - In datalog
 - Q(): R(X), R(X'), A=A', B!=B'
 - In SQL

```
SELECT EXISTS (SELECT *

FROM R x, R y

WHERE A=A' AND B<>B')
```


Example: SQL Violation Detection

```
Relation: Person (name, city, zip)
FD1: zip -> city
Violation Detection Query
SELECT EXISTS (SELECT *
              FROM Person x, Person y
              WHERE x.zip = y.zip
                    AND x.city <> y.city)
To know which tuples caused the conflict:
SELECT *
FROM Person x, Person y
WHERE x.zip = y.zip
      AND x.city <> y.city)
```

2.1 Fixing Violations

- Principle of minimality
 - Choose solution that minimally modifies the database
 - Updates:
 - Need a cost model
 - Deletes:
 - Minimal number of deletes

2.1 Constraint Repair Problem

Definition: Constraint Repair Problem (restated)

Given set of constraints Σ and an database instance I which violates the constraints find a clean instance I' (does not violate the constraints) with cost(I,I') being minimal

- Cost metrics that have been used
 - Deletion + Insertion

$$\Delta(I, I') = (I - I') \cup (I' - I)$$

- S-repair: minimize measure above under set inclusion
- C-repair: minimize cardinality
- Update
 - Assume distance metric d for attribute values

2.1 Cost Metrics

Deletion + Insertion

$$\Delta(I, I') = (I - I') \cup (I' - I)$$

- S-repair: minimize measure above under set inclusion
- C-repair: minimize cardinality

Update

- Assume single relation R with uniquely identified tuples
- Assume distance metric **d** for attribute values
- Schema(\mathbf{R}) = attributes in schema of relation \mathbf{R}
- t' is updated version of tuple t
- Minimize:

$$\sum_{t \in R} \sum_{A \in Schema(R)} d(t.A, t'.A)$$

2.1 Cost Metrics

Update

- Assume single relation R with uniquely identified tuples
- Assume distance metric **d** for attribute values
- Schema(\mathbf{R}) = attributes in schema of relation \mathbf{R}
- t' is updated version of tuple t

• Minimize:
$$\sum_{t \in R} \sum_{A \in Schema(R)} d(t.A, t'.A)$$

- We focus on this one
- This is NP-hard
 - Heuristic algorithm

2.1 Naïve FD Repair Algorithm

• FD Repair Algorithm: 1. Attempt

- For each FD $X \rightarrow Y$ in Σ run query to find pairs of tuples that violate the constraint
- For each pair of tuples t and t' that violate the constraint
 - update **t.Y** to **t'.Y**
 - choice does not matter because cost is symmetric, right?

2.1 Constraint Repair

Example: Constraint Repair

	SSN	zip	city	name
t_1	333-333-3333	60616	New York	Peter
t_2	333-333-9999	60615	Chicago	Gert
t_3	333-333-5599	60615	Schaumburg	Gertrud
t_4	333-333-6666	60616	Chicago	Hans
t ₅	333-355-4343	60616	Chicago	Malcom

```
t_1 and t_4: set t_1.city = Chicago

t_1 and t_5: set t_1.city = Chicago

t_2 and t_3: set t_2.city = Schaumburg
```


2.1 Problems with the Algorithm

• FD Repair Algorithm: 1. Attempt

- For each FD $X \rightarrow Y$ in Σ run query to find pairs of tuples that violate the constraint
- For each pair of tuples t and t' that violate the constraint: t.X = t'.X and t.Y != t'.Y
 - update **t.Y** to **t'.Y**
 - choice does not matter because cost is symmetric, right?
- Our updates may cause new violations!

2.1 Constraint Repair

Example: Constraint Repair

	SSN	zip	city	name
t_1	333-333-3333	60616	New York	Peter
t_2	333-333-9999	60615	Chicago	Gert
t_3	333-333-5599	60615	Schaumburg	Gertrud
t_4	333-333-6666	60616	Chicago	Hans
t_5	333-355-4343	60616	Chicago	Malcom

```
t_4 and t_1: set t_4.city = New York t_1 and t_5: set t_1.city = Chicago t_2 and t_3: set t_2.city = Schaumburg
```

Now t_1 and t_4 and t_5 in violation!

2.1 Problems with the Algorithm

• FD Repair Algorithm: 2. Attempt

- -I'=I
- 1) For each FD $X \rightarrow Y$ in Σ run query to find pairs of tuples that violate the constraint
- 2) For each pair of tuples t and t' that violate the constraint: t.X = t'.X and t.Y != t'.Y
 - update **t.Y** to **t'.Y**
 - choice does not matter because cost is symmetric, right?
- -3) If we changed I' goto 1)

2.1 Problems with the Algorithm

• FD Repair Algorithm: 2. Attempt

- -I'=I
- 1) For each FD $X \rightarrow Y$ in Σ run query to find pairs of tuples that violate the constraint
- 2) For each pair of tuples t and t' that violate the constraint: t.X = t'.X and t.Y != t'.Y
 - update **t.Y** to **t'.Y**
 - choice does not matter because cost is symmetric, right?
- -3) If we changed I' goto 1)
 - May never terminate

2.1 Constraint Repair

Example: Constraint Repair

	SSN	zip	city	name
$t_{\scriptscriptstyle 1}$	333-333-3333	60616	New York	Peter
t_2	333-333-9999	60615	Chicago	Gert
t_3	333-333-5599	60615	Schaumburg	Gertrud
t_4	333-333-6666	60616	Chicago	Hans
t ₅	333-355-4343	60616	Chicago	Malcom

```
t_4 and t_1: set t_4.city = New York t_1 and t_5: set t_1.city = Chicago
```

Now t_1 and t_4 and t_5 in violation!

```
t_4 and t_1: set t_1.city = New York T_5 and t_4: set t_4.city = Chicago
```

repeat

2.1 Problems with the Algorithm

- FD Repair Algorithm: 2. Attempt
 - Even if we succeed the repair may not be minimal. There may be many tuples with the same X values
 - They all have to have the same Y value
 - Choice which to update matters!

2.1 Constraint Repair

Example: Constraint Repair

	SSN	zip	city	name
t_1	333-333-3333	60616	New York	Peter
t_2	333-333-9999	60615	Chicago	Gert
t_3	333-333-5599	60615	Schaumburg	Gertrud
t_4	333-333-6666	60616	Chicago	Hans
t ₅	333-355-4343	60616	Chicago	Malcom

Cheaper: t_1 .city = Chicago

Not so cheap: set t_4 .city and t_5 .city = New York

2.1 Problems with the Algorithm

• FD Repair Algorithm: 3. Attempt

- Equivalence Classes
 - Keep track of sets of cells (tuple,attribute) that have to have the same values in the end (e.g., all Y attribute values for tuples with same X attribute value)
 - These classes are updated when we make a choice
 - Choose Y value for equivalence class using minimality, e.g., most common value

Observation

- Equivalence Classes may merge, but never split if we only update RHS of all tuples with same X at once
- -> we can find an algorithm that terminates

2.1 Problems with the Algorithm

• FD Repair Algorithm: 3. Attempt

- Initialize:
 - Each cell in its own equivalence class
 - Put all cells in collection unresolved
- While **unresolved** is not empty
 - Remove tuple t from unresolved
 - Pick FD X->Y (e.g., random)
 - Compute set of tuples S that have same value in X
 - Merge all equivalence classes for all tuples in S and attributes in Y
 - Pick values for Y (update all tuples in S to Y)

2.1 Problems with the Algorithm

- FD Repair Algorithm: 3. Attempt
- Algorithm using this idea:
 - More heuristics to improve quality and performance
 - Cost-based pick of next EQ's to merge
 - Also for FKs (Inclusion Constraints)

A Cost-Based Model and Effective Heuristic for Repairing Constraints by Value Modification

2.1 Consistent Query Answering

- As an alternative to fixing the database which requires making a choice we could also leave it dirty and try to resolve conflicts at query time
 - Have to reason over answers to the query without knowing which of the possible repairs will be chosen
 - Intuition: return tuples that would be in the query result for every possible repair

2.1 Constraint Repair

Example: Constraint Repair

	SSN	zip	city	name
$t_{\scriptscriptstyle 1}$	333-333-3333	60616	New York	Peter
t_2	333-333-9999	60615	Chicago	Gert
t_3	333-333-5599	60615	Schaumburg	Gertrud
t_4	333-333-6666	60616	Chicago	Hans
t ₅	333-355-4343	60616	Chicago	Malcom

Cheaper: t_1 .city = Chicago

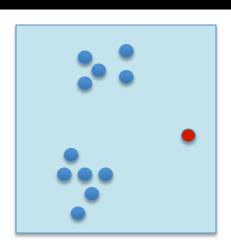
Not so cheap: set t_4 .city and t_5 .city = New York

2. Overview

- Topics covered in this part
 - Causes of Dirty Data
 - Constraint-based Cleaning
 - Outlier-based and Statistical Methods
 - Entity Resolution
 - Data Fusion

2.2 Statistical and Outlier

- Assumption
 - Errors can be identified as outliers
- How do we find outliers?
 - Similarity-based:
 - Object is dissimilar to all (many) other objects
 - E.g., clustering, objects not in cluster are outliers
 - Some type of statistical test:
 - Given a distribution (e.g., fitted to the data)
 - How probable is it that the point has this value?
 - If low probability -> outlier



2. Overview

- Topics covered in this part
 - Causes of Dirty Data
 - Constraint-based Cleaning
 - Outlier-based and Statistical Methods
 - Entity Resolution
 - Data Fusion

- Entity Resolution (ER)
- Alternative names
 - Duplicate detection
 - Record linkage
 - Reference reconciliation
 - Entity matching

— ...

Definition: Entity Resolution Problem

Given sets of tuples A compute equivalence relation **E(t,t')** which denotes that tuple **t** and **t'** represent the same entity.

- Intuitively, E should be based on how similar t and t' are
 - Similarity measure?
- E should be an equivalence relation
 - If t is the same as t' and t' is the same as t" then t should be the same as t"

Example: Two tuples (objects) that represent the same entity

SSN	zip	city	name
333-333-3333	60616	Chicago	Peter

SSN	zip	city	name
333333333	IL 60616		Petre

- Similarity based on similarity of attribute values
 - Which distance measure is appropriate?
 - How do we combine attribute-level distances?
 - Do we consider additional information?
 - E.g., foreign key connections
 - How similar should duplicates be?
 - E.g., fixed similarity threshold
 - How to guarantee transitivity of E
 - E.g., do this afterwards

Example: Per attribute similarity SSN zip city name 333-333-3333 60616 Chicago Peter 0? 8.0 0.6 SSN zip city name 333333333 IL 60616 Petre

2.3 Entity Resolution – Distance Measures

• Edit-distance

- measures similarity of two strings
- d(s,s') = minimal number of insert, replace,
 delete operations (single character) that
 transform s into s'
- Is symmetric (actually a metric)
 - Why?

Definition: Edit Distance

Given two strings s, s' we define the edit distance d(s,s') as the minimum number of single character insert, replacements, deletions that transforms s into s'

Example:

```
NEED -> STREET
```

Trivial solution: delete all chars in NEED, then insert all chars in STREET

- gives upper bound on distance len(NEED) +
 len(STREET) = 10

Example:

```
NEED -> STREET
```

Minimal solution:

- insert S
- insert T
- replace N with R
- replace D with T

d(NEED, STREET) = 4

Principal of optimality

 Best solution of a subproblem is part of the best solution for the whole problem

Dynamic programming algorithm

- D(i,j) is the edit distance between prefix of len i of s and prefix of len j of s'
- D(len(s),len(s')) is the solution
- Represented as matrix
- Populate based on rules shown on the next slide

Recursive definition

- -D(i,0) = i
 - Cheapest way of transforming prefix s[i] into empty string is by deleting all i characters in s[i]
- -D(0,j) = j
 - Same holds for s'[j]
- $-D(i,j) = \min \{$
 - D(i-1,j) + 1
 - D(i,j-1) + 1
 - D(i-1,j-1) + d(i,j) with d(i,j) = 1 if s[i] != s[j] and 0 else

}

Example:

		S	T	R	E	E	T
	0	1	2	3	4	5	6
N	1						
E	2						
E	3						
D	4						

Example:

		S	T	R	E	E	T
	0	1	2	3	4	5	6
N	1	1					
E	2						
E	3						
D	4						

Example:

		S	T	R	E	E	T
	0	1	2	ო	4	5	6
N	1	1	2				
E	2	2					
E	3						
D	4						

Example:

		S	Т	R	E	E	Т
	0	1	2	3	4	5	6
N	1	1	2	3			
E	2	2	2				
E	3	3					
D	4						

Example:

		S	T	R	E	E	Т
	0	1	2	3	4	5	6
N	1	1	2	თ	4		
E	2	2	2	3			
E	3	3	3				
D	4	4					

Example:

		ಬ	Т	R	E	E	Т
	0	1	2	ო	4	5	6
N	1	1	2	თ	4	5	
E	2	2	2	3	3		
E	3	3	3	3			
D	4	4	4				

Example:

		S	Т	R	E	E	T
	0	1	2	თ	4	5	6
N	1	1	2	თ	4	5	6
E	2	2	2	3	3	4	
E	3	3	3	3	3		
D	4	4	4	4			

Example:

		ಬ	Т	R	E	E	Т
	0	1	2	ო	4	5	6
N	1	1	2	3	4	5	6
E	2	2	2	3	3	4	5
E	3	3	3	3	3	3	4
D	4	4	4	4	4	4	4

Measures

- Other sequence-based measures for string similarity
 - Needleman-Wunsch
 - Missing character sequences can be penalized differently from character changes
 - Affine Gap Measure
 - Limit influence of longer gaps
 - E.g., Peter Friedrich Mueller vs. Peter Mueller
 - Smith-Waterman Measure
 - More resistant to reordering of elements in the string
 - E.g., Prof. Franz Mueller vs. F. Mueller, Prof.

Measures

- Other sequence-based measures for string similarity
 - Jaro-Winkler
 - Consider shared prefixes
 - Consider distance of same characters in strings
 - E.g., johann vs. ojhann vs. ohannj
 - See textbook for details!

Measures

- Token-set based measures
 - Split string into tokens
 - E.g., single characters
 - E.g., words if string represents a longer text
 - Potentially normalize tokens
 - E.g., word tokens replace word with its stem
 - Generating, generated, generates are all replaced with generate
 - Represent string as set (multi-set) of tokens

Example: Tokenization

```
Input string:
S = "the tokenization of strings is commonly used in
information retrieval"
Set of tokens:
Tok(S) = \{commonly, in, information, is, of, \}
          retrieval, strings, the, tokenization, used}
Bag of tokens:
Tok(S) = \{commonly:1, in:1, information:1, is:1,
         of:1, retrieval:1, strings:1, the:1,
         tokenization:1, used:1}
```

Measures

Jaccard-Measure

- $-\mathbf{B}_{\mathbf{s}} = \mathbf{Tok(s)} = \mathbf{token} \ \mathbf{set} \ \mathbf{of} \ \mathbf{string} \ \mathbf{s}$
- Jaccard measures relative overlap of tokens in two strings
 - Number of common tokens divided by total number of tokens

$$d_{jacc}(s, s') = \frac{\|B_s \cap B_{s'}\|}{\|B_s \cup B_{s'}\|}$$

Example: Tokenization

Input string:

```
S = "nanotubes are used in these experiments to..."

S' = "we consider nanotubes in our experiments..."

S' = "we prove that P=NP, thus solving ..."

Tok(S) = {are, experiments, in, nanotubes, these, to, used}

Tok(S') = {consider, experiments, in, nanotubes, our, we}

Tok(S'') = {P=NP, prove, solving, that, thus, we}

d<sub>jacc</sub>(S, S') = d<sub>jacc</sub>(S, S'') = d<sub>jacc</sub>(S', S'') =
```


Example: Tokenization

Input string:

```
S = "nanotubes are used in these experiments to..."

S' = "we consider nanotubes in our experiments..."

S'' = "we prove that P=NP, thus solving ..."

Tok(S) = {are,experiments,in,nanotubes,these,to,used}

Tok(S') = {consider,experiments,in,nanotubes,our,we}

Tok(S'') = {P=NP,prove,solving,that,thus,we}

d_{jacc}(S,S'') = 3 / 10 = 0.3

d_{jacc}(S,S'') = 0 / 13 = 0

d_{jacc}(S',S'') = 1 / 11 = 0.0909
```


Other set-based measures

- TF/IDF: term frequency, inverse document frequency
 - Take into account that certain tokens are more common than others
 - If two strings (called documents for TF/IDF) overlap on uncommon terms they are more likely to be similar than if they overlap on common terms
 - E.g., the vs. carbon nanotube structure

- **TF/IDF**: term frequency, inverse document frequency
 - Represent documents as feature vectors
 - One dimension for each term
 - Value computed as frequency times IDF
 - Inverse of frequency of term in the set of all documents
 - Compute cosine similarity between two feature vectors
 - Measure how similar they are in term distribution (weighted by how uncommon terms are)
 - Size of the documents does not matter
 - See textbook for details

- Concatenate attribute values of tuples and use string similarity measure
 - Loose information encoded by tuple structure
 - E.g., [Gender:male,Salary:9000]
 - -> "Gender:male,Salary:9000" or -> "male,9000"
- Combine distance measures for single attributes
 - Weighted sum or more complex combinations

- E.g.,
$$d(t,t') = w_1 \times d_A(t.A,t'.A) + w_2 \times d_B(t.B,t'.B)$$

- Use quadratic distance measure
 - E.g., earth-movers distance

- Rule-based approach
 - Set of if this than that rules
- Learning-based approaches
- Clustering-based approaches
- Probabilistic approaches to matching
- Collective matching

Weighted linear combination

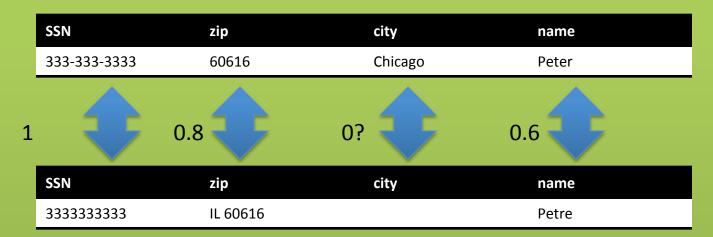
- Say tuples have **n** attributes
- $-\mathbf{w_i}$: predetermined weight of an attribute
- $-d_{i}(t,t')$: similarity measure for the i^{th} attribute

$$d(t,t') = \sum_{i=0}^{n} w_i \times d_i(t,t')$$

• Tuples match if $d(t,t') > \beta$ for a threshold β

= 0.68

Example: Weighted sum of attribute similarities



Assumption: SSNs and names are most important, city and zip are not very predictive

$$w_{SSN} = 0.4, w_{zip} = 0.05, w_{city} = 0.15, w_{name} = 0.4$$

$$d(t, t') = 0.4 \times 1 + 0.05 \times 0.8 + 0.15 \times 0 + 0.4 \times 0.6$$
$$= 0.4 + 0.04 + 0 + 0.24$$

- Weighted linear combination
 - How to determine weights?
 - E.g., have labeled training data and use ML to learn weights
 - Use non-linear function?

- Rule-based approach
- Learning-based approaches
- Clustering-based approaches
- Probabilistic approaches to matching
- Collective matching

Rule-based approach

- Collection (list) of rules
- $-if d_{name}(t,t') < 0.6$ then unmatched
- if $d_{zip}(t,t') = 1$ and t.country = USA then matched
- if t.country != t'.country then unmatched

Advantages

Easy to start, can be incrementally improved

Disadvantages

 Lot of manual work, large rule-bases hard to understand

- Rule-based approach
- Learning-based approaches
- Clustering-based approaches
- Probabilistic approaches to matching
- Collective matching

Learning-based approach

- Build all pairs (t,t') for training dataset
- Represent each pair as feature vector from, e.g., similarities
- Train classifier to return {match,no match}

Advantages

automated

Disadvantages

Requires training data

- Rule-based approach
- Learning-based approaches
- Clustering-based approaches
- Probabilistic approaches to matching
- Collective matching

Clustering-based approach

- Apply clustering method to group inputs
- Typically hierarchical clustering method
- Clusters now represent entities
 - Decide how to merge based on similarity between clusters

Advantages

Automated, no training data required

Disadvantages

- Choice of cluster similarity critical

- Rule-based approach
- Learning-based approaches
- Clustering-based approaches
- Probabilistic approaches to matching
- Collective matching
 - See text book

2. Overview

- Topics covered in this part
 - Causes of Dirty Data
 - Constraint-based Cleaning
 - Outlier-based and Statistical Methods
 - Entity Resolution
 - Data Fusion

2.4 Data Fusion

- Data Fusion = how to combine (possibly conflicting) information from multiple objects representing the same entity
 - Choose among conflicting values
 - If one value is missing (NULL) choose the other one
 - Numerical data: e.g., median, average
 - Consider sources: have more trust in certain data sources
 - Consider value frequency: take most frequent value
 - Timeliness: latest value

Outline

- 0) Course Info
- 1) Introduction
- 2) Data Preparation and Cleaning
- 3) Schema matching and mapping
- 4) Virtual Data Integration
- 5) Data Exchange
- 6) Data Warehousing
- 7) Big Data Analytics
- 8) Data Provenance

