

CS520 Data Integration, Warehousing, and Provenance

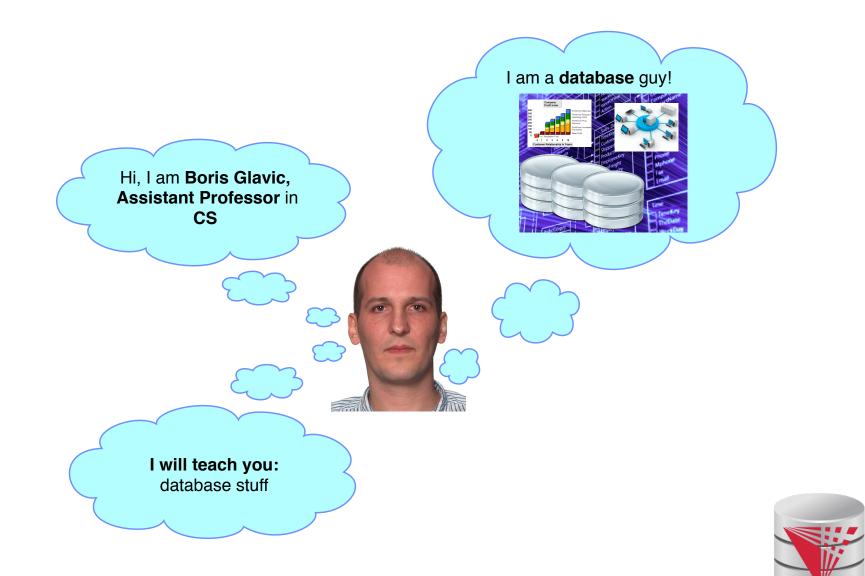
Course Info

IIT DBGroup

Boris Glavic <u>http://www.cs.iit.edu/~glavic/</u> <u>http://www.cs.iit.edu/~cs520/</u> <u>http://www.cs.iit.edu/~dbgroup/</u>

Outline

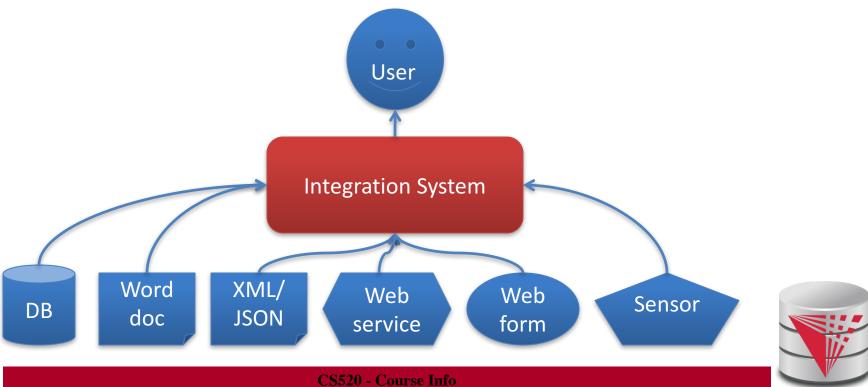
0) Course Info


- 1) Introduction
- 2) Data Preparation and Cleaning
- 3) Data Translation: Schema mappings, Virtual Data Integration, and Data Exchange
- 4) Data Warehousing
- 5) Big Data Analytics
- 6) Data Provenance

About me

2

CS520 - Course Info


What is information integration?

• Combination of data and content from multiple sources into a common format

ILLINOIS INSTITUTE

OF TECHNOLOGY

- Completeness
- Correctness
- Efficiency

Why Information Integration?

- Data is already available, right?
- ..., but
- Heterogeneity
 - Structural
 - Data model (relational, XML, unstructured)
 - Schema (if exists)
 - Semantic
 - Naming and identity conflicts
 - Data conflicts
 - Syntactic
 - Interfaces (web form, query language, binary file)

Why Information Integration?

• Autonomy

- Sources may not give you unlimited access
 - Web form only support a fixed format of queries
 - Does not allow access to unlimited amounts of data
- Source may not be available all the time
- Data, schema, and interfaces of sources may change
 - Potentially without notice

"Real World" Examples?

- Portal websites
 - Flight websites (e.g., Expedia) gather data from multiple airlines, hotels
- Google News
 - Integrates information from a large number of news sources
- Science
 - Biomedical data sources
- Business
 - Warehouses: integrate transactional data

Example Integration Problem [1]

- Integrate stock ticker data from two web services A and B
 - Service A: Web form
 (Company name, year)
 - Service B: Web form

(year)

ILLINOIS INSTITUTE OF TECHNOLOGY

Steps

) Interfaces

- 2) Schema integration
- 3) Translate queries
- 4) Optimization
- 5) Send queries to sources
- 6) Gather query results
- 7) Entity resolution
- 8) Fusion
- 9) Return final results

Example Integration Problem [2]

• Service A:

<Stock>

<Company>IBM</Company> <DollarValue>155.8</DollarValue>

<Month>12</Month>

</Stock>

• Service B:

<Stock>

<Company>International Business Machines</Company>

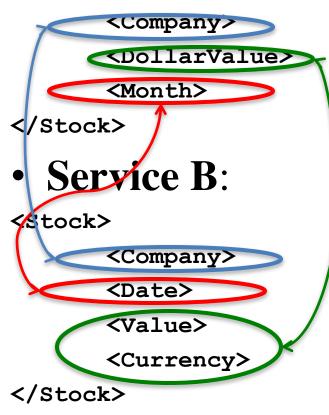
<Date>2014-08-01</Date>

<Value>106.8</Value>

<Currency>Euro</Currency>

</Stock>

<u>Steps</u>


- 1) Interfaces
- 2) Schema integration
- 3) Translate queries
- 4) Optimization
- 5) Send queries to sources
- 6) Gather query results
- 7) Entity resolution
- 8) Fusion
- 9) Return final results

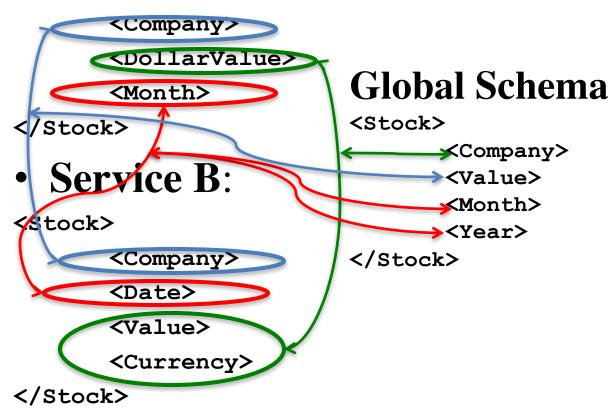
Example Integration Problem [2]

• Service A:

<Stock>

ILLINOIS INSTITUTE OF TECHNOLOGY

<u>Steps</u>


- 1) Interfaces
- 2) Schema integration
- 3) Translate queries
- 4) Optimization
- 5) Send queries to sources
- 6) Gather query results
- 7) Entity resolution
- 8) Fusion
- 9) Return final results

Example Integration Problem [2] ILLINOIS INSTITUTE

• Service A:

<Stock>

<u>Steps</u>

- 1) Interfaces
- 2) Schema integration
- 3) Translate queries
- 4) Optimization
- 5) Send queries to sources
- 6) Gather query results
- 7) Entity resolution
- 8) Fusion
- 9) Return final results

Example Integration Problem [3]

- SQL interface for integrated service
- **SELECT** month, value
- FROM ticker
- **WHERE** year = 2014

AND cmp = 'IBM'

<u>Steps</u>

OF TECHNOLOGY

- 1) Interfaces
- 2) Schema integration
 - B) Translate queries
- 4) Optimization

ILLINOIS INSTITUTE

- 5) Send queries to sources
- 6) Gather query results
- 7) Entity resolution
- 8) Fusion
- 9) Return final results

- Service A: (IBM, 2014)
- Service B: (2014)

11

Example Integration Problem [4]

- For web service A we can either
 - Get stocks for **IBM** in all years
 - Get stocks for all companies in 2014
 - Get stocks for **IBM** in **2014**
- Trade-off between amount of processing that we have to do locally, amount of data that is shipped, ...

OF TECHNOLOGY

<u>Steps</u>

- 1) Interfaces
- 2) Schema integration
- 3) Translate queries
 - 1) Optimization

ILLINOIS INSTITUTE

- 5) Send queries to sources
- 6) Gather query results
- 7) Entity resolution
- 8) Fusion
- 9) Return final results

Example Integration Problem [5]

ILLINOIS INSTITUTE OF TECHNOLOGY

- Service A: (IBM, 2014)
- Service B: (2014)

<u>Steps</u>

- 1) Interfaces
- 2) Schema integration
- 3) Translate queries
- 4) Optimization
- 5) Send queries to

sources

- 6) Gather query results
- 7) Entity resolution
- 8) Fusion
- 9) Return final results

Example Integration Problem [6]

• Service A:

<Stock>

<Company>IBM</Company> <DollarValue>155.8</DollarValue> <Month>12</Month>

• Service B:

<Stock>

...

<Company>International Business Machines</Company> <Date>2014-12-01</Date> <Value>106.8</Value> <Currency>Euro</Currency>

<u>Steps</u>

OF TECHNOLOGY

1) Interfaces

ILLINOIS INSTITUTE

- 2) Schema integration
- 3) Translate queries
- 4) Optimization
- 5) Send queries to sources
- 6) Gather query results
- 7) Entity resolution
- 8) Fusion
- 9) Return final results

...

Example Integration Problem [7]

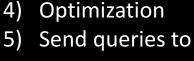
• IBM vs. Integrated Business Machines

OF TECHNOLOGY

torfoooo

ILLINOIS INSTITUTE

- 1) Interfaces
- 2) Schema integration
- 3) Translate queries
- 4) Optimization
- 5) Send queries to sources
- 6) Gather query results
 -) Entity resolution
- 8) Fusion
- 9) Return final results


Granularity of time attribute – Month vs. day

- What if both services return different values (after adapting granularity)
 - Average?
 - Median?
 - Trust-based?

16

Example Integration Problem [8]

ILLINOIS INSTITUTE

Interfaces

1)

2)

3)

OF TECHNOLOGY

sources

6) Gather query results

Steps

Schema integration

Translate queries

- 7) Entity resolution
- 8) Fusion
- Return final results

Example Integration Problem [9]

<Stock>

<Month>01</Month>

<Value>105</Value>

</Stock>

<Stock>

...

<Month>12</Month> <Value>107</Value>

</Stock>

Steps

OF TECHNOLOGY

1) Interfaces

ILLINOIS INSTITUTE

- 2) Schema integration
- 3) Translate queries
- 4) Optimization
- 5) Send queries to sources
- 6) Gather query results
- 7) Entity resolution
- 8) Fusion
 - 9) Return final results

Why hard?

- System challenges
 - Different platforms (OS/Software)
 - Efficient query processing over multiple heterogeneous systems
- Social challenges
 - Find relevant data
 - Convince people to share their data
- Heterogeneity of data and schemas
 - A problem that even exists if we use same system

- Often called **AI-complete**
 - Meaning: "It requires human intelligence to solve the problem"
 - Unlikely that general completely automated solutions will exist
- So why do you still sit here
 - There exist automated solutions for relevant less general problems
 - Semi-automated solutions can reduce user effort (and may be less error prone)

- Yes, but still why is this problem really so hard?
 - Lack of information: e.g., the attributes of a database schema have only names and data types, but no machine interpretable information on what type of information is stored in the attribute
 - Undecidable computational problems: e.g., to decide whether a user query can be answered from a set of sources that provide different views on the data requires **query containment** checks which are undecidable for certain query types

Relevant less general problems

- Data Extraction
 - Extract data from unstructured sources / text

• Data cleaning:

- Clean dirty data before integration
- Conformance with a set of constraints
- Deal with missing and outlier values

• Entity resolution

- Determine which objects from multiple dataset represent the same real world entity
- Data fusion

- Merge (potentially conflicting) data for the same entity

Relevant less general problems

Schema matching

 Given two schemas determine which elements store the same type of information

Schema mapping

- Describe the relationships between schemas
 - Allows us to rewrite queries written against one schema into queries of another schema
 - Allows us to translate data from one schema into

- Virtual data integration
 - Answer queries written against a global mediated schema by running queries over local sources
- Data exchange
 - Map data from one schema into another
- Warehousing: Extract, Transform, Load
 - Clean, transform, fuse data and load it into a data warehouse to make it available for analysis

- Integration in Big Data Analytics
 - Often "pay-as-you-go":
 - No or limited schema
 - Engines support wide variety of data formats

• Provenance

- Information about the origin and creation process of data
- Very important for integrated data
 - E.g., "from which data source is this part of my query result"

Webpage and Faculty

- Course Info
 - Course Webpage: <u>http://cs.iit.edu/~cs520</u>
 - Google Group: <u>https://groups.google.com/d/forum/cs520-2016-</u> spring-group
 - Used for announcements
 - Use it to discuss with me, TA, and fellow students
 - Syllabus: <u>http://cs.iit.edu/~cs520/files/syllabus.pdf</u>
- Faculty
 - Boris Glavic (<u>http://cs.iit.edu/~glavic</u>)
 - Email: <u>bglavic@iit.edu</u>
 - **Phone**: 312.567.5205
 - Office: SB 206B
 - Office Hours: Wednesdays, 12:30pm-1:30pm

(and by appointment)

- TAs (TBA)
 - Email:
 - Phone:
 - Office:
 - Office Hours:

(and by appointment)

Workload and Grading

- Exams (60%)
 - Final (30%), Midterm (30%)
- Homework Assignments (preparation for exams!)
 - Theory part: Practice theory for final exam
 - Lab part: Practice the tools we discuss in class
- Literature Review (20%)
 - In groups of 3 students
 - Topics will be announced soon
 - You have to read a research paper
 - Papers will be assigned in the first few weeks of the course
 - You will give a short presentation (15min) on the topic in class
 - You will write a report summarizing and criticizing the paper (up to 4 pages)

Workload and Grading

- Data Curation Project(20%)
 - In groups of 3 students (same groups as for literature review)
 - You will have to acquire and curate (clean, integrate, ...) a real world dataset
 - This is open-ended, you can choose whatever tools you need, whatever domain you think is interesting, ...
 - Only limitation is that you need to document your cleaning workflow using a **Jupyter notebook** (so at lease some python is required)
 - Steps:
 - Acquire or extract one or more real world datasets for a domain of choice
 - Gain an understanding of the data and identify data quality issues
 - Research tools that are suited for the data cleaning, integration, extraction tasks that you need to apply to create a correct and clean output dataset
 - Apply the tools and produce an output
 - Work will be submitted through git repositories on bitbucket.org that we will create for each

Workload and Grading

• Timeline:

- See course webpage for detailed dates
 - You are required to meet with the TA/Prof. several times for discussing the progress for the literature review and data curation project
- Literature reviews and project presentations will be blocked towards the end of the semester (1-2 days)

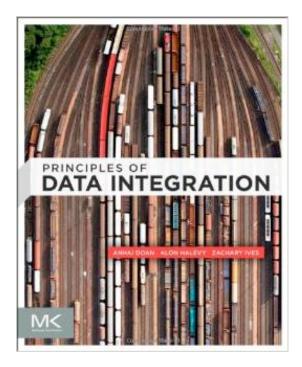
- Understand the problems that arise with querying heterogeneous and autonomous data sources
- Understand the differences and similarities between the data integration/exchange, data warehouse, and Big Data analytics approaches
- Be able to build parts of a small data integration pipeline by "glueing" existing systems with new code

Course Objectives cont.

- Have learned formal languages for expressing schema mappings
- Understand the difference between virtual and materialized integration (data integration vs. data exchange)
- Understand notions of data provenance and know how to compute provenance

- All work has to be original!
 - Cheating = 0 points for review/exam
 - Possibly E in course and further administrative sanctions
 - Every dishonesty will be reported to office of academic honesty
- Late policy:
 - -20% per day
 - You have to give your presentation to pass the course!
 - No exceptions!

- Literature Review:
 - Every student has to contribute in the presentation, report, and data curation project!
 - Don't let others freeload on you hard work!
 - Inform me or TA immediately


Reading and Prerequisites

- **Textbook:** Doan, Halevy, and Ives.
 - Principles of Data Integration, 1st Edition

CS520 - Course Info

- Morgan Kaufmann
- Publication date: 2012
- ISBN-13: 978-0124160446
- Prerequisites:
 - CS 425

Additional Reading

- Papers assigned for literature review
- Optional: Standard database textbook

Outline

0) Course Info

- 1) Introduction
- 2) Data Preparation and Cleaning
- 3) Schema mappings and Virtual Data Integration
- 4) Data Exchange
- 5) Data Warehousing
- 6) Big Data Analytics
- 7) Data Provenance

