

"Real World" Examples?

ILLINOIS INSTITUTE

- · Portal websites
 - Flight websites (e.g., Expedia) gather data from multiple airlines, hotels
- · Google News
 - Integrates information from a large number of news sources
- Science
 - Biomedical data sources
- Business
 - Warehouses: integrate transactional data

Example Integration Problem [1] ILLINOIS INSTITUTE

- Integrate stock ticker data from two web services A and B
 - Service A: Web form
 - (Company name, year) - Service B: Web form
 - (year)

Example Integration Problem [6]	ILLINOIS INSTITUTE
• Service A: <stock> <company>IBM</company> <dollarvalue>155.8 <month>12</month> • Service B: <stock></stock></dollarvalue></stock>	Steps 1) Interfaces 2) Schema integration 3) Translate queries 4) Optimization 5) Send queries to sources 6) Gather query results 7) Entity resolution 8) Fusion 9) Return final results
<company>International Business Machines</company>	
<date>2014-12-01</date>	
<value>106.8</value>	
<currency>Euro</currency>	
14 CS520 - Course Info	

ILLINOIS INSTITUTE

Why hard?

- System challenges
 - Different platforms (OS/Software)
 - Efficient query processing over multiple heterogeneous systems
- Social challenges
 - Find relevant data
 - Convince people to share their data
- · Heterogeneity of data and schemas
 - A problem that even exists if we use same system

18

20

Why hard? Cont. • Often called AI-complete - Meaning: "It requires human intelligence to solve the problem"

- Unlikely that general completely automated solutions will exist
- So why do you still sit here
 - There exist automated solutions for relevant less general problems
 - Semi-automated solutions can reduce user effort (and may be less error prone)

AI completeness

ILLINOIS INSTITUTE

ILLINOIS INSTITUTE

- Yes, but still why is this problem really so hard?
 - Lack of information: e.g., the attributes of a database schema have only names and data types, but no machine interpretable information on what type of information is stored in the attribute
 - Undecidable computational problems: e.g., to decide whether a user query can be answered from a set of sources that provide different views on the data requires query containment checks which are undecidable for certain query types

Relevant less general problems ILLINOIS INSTITUTE

Data Extraction

- Extract data from unstructured sources / text
- Data cleaning:
 - Clean dirty data before integration
 - Conformance with a set of constraints
 - Deal with missing and outlier values
- Entity resolution
 - Determine which objects from multiple dataset represent the same real world entity

Data fusion

- Merge (potentially conflicting) data for the same entity

Relevant less general problems

Schema matching

- Given two schemas determine which elements store the same type of information

Schema mapping

- Describe the relationships between schemas
 - · Allows us to rewrite queries written against one schema into queries of another schema
 - · Allows us to translate data from one schema into

Relevant less general problems ILLINOIS INSTITUTE

- Virtual data integration
 - Answer queries written against a global mediated schema by running queries over local sources
- Data exchange
 - Map data from one schema into another
- Warehousing: Extract, Transform, Load
 - Clean, transform, fuse data and load it into a data warehouse to make it available for analysis

Relevant less general problems ILLINOIS INSTITUTE OF TECHNOLOGY Integration in Big Data Analytics Often "pay-as-you-go": No or limited schema Engines support wide variety of data formats Provenance Information about the origin and creation process of data

- Very important for integrated data

24

• E.g., "from which data source is this part of my query result"

Webpage and Faculty ILLINOIS INSTITUTE Course Info - Course Webpage: http://cs.iit.edu/~cs520 - Google Group: https://groups.google.com/d/forum/cs520-2016spr · Used for announcements · Use it to discuss with me, TA, and fellow students - Syllabus: http://cs.iit.edu/~cs520/files/syllabus.pdf Faculty - Boris Glavic (http://cs.iit.edu/~glavic) - Email: bglavic@iit.edu - Phone: 312.567.5205 - Office: SB 206B - Office Hours: Wednesdays, 12:30pm-1:30pm (and by appointment)

Workload and Grading

- Data Curation Project(20%)
 - In groups of 3 students (same groups as for literature review)
 - You will have to acquire and curate (clean, integrate, ...) a real world dataset
 - This is open-ended, you can choose whatever tools you need, whatever domain you think is interesting, ...
 - Only limitation is that you need to document your cleaning workflow using a Jupyter notebook (so at lease some python is required)
 - Steps:

28

- · Acquire or extract one or more real world datasets for a domain of choice
- · Gain an understanding of the data and identify data quality issues
- · Research tools that are suited for the data cleaning, integration, extraction
- tasks that you need to apply to create a correct and clean output dataset

 Apply the tools and produce an output
- Work will be submitted through git repositories on bitbucket.org that we will create for each

Workload and Grading

Timeline:

- See course webpage for detailed dates
 You are required to meet with the TA/Prof. several times for discussing the progress for the literature review and data curation project
- Literature reviews and project presentations will be blocked towards the end of the semester (1-2 days)

ILLINOIS INSTITUTE

Course Objectives

ILLINOIS INSTITUTE

- Understand the problems that arise with querying heterogeneous and autonomous data sources
- Understand the differences and similarities between the data integration/exchange, data warehouse, and Big Data analytics approaches
- Be able to build parts of a small data integration pipeline by "glueing" existing systems with new code

Course Objectives cont.

• Have learned formal languages for expressing schema mappings

- Understand the difference between virtual and materialized integration (data integration vs. data exchange)
- Understand notions of data provenance and know how to compute provenance

Fraud Policies

30

32

ILLINOIS INSTITUTE OF TECHNO

- All work has to be original!
 - Cheating = 0 points for review/exam
 - Possibly E in course and further administrative sanctions
 - Every dishonesty will be reported to office of academic honesty
- Late policy:
 - -20% per day
 - You have to give your presentation to pass the course!
 - No exceptions!

Fraud Policies cont. Literature Review: Every student has to contribute in the presentation, report, and data curation project! Don't let others freeload on you hard work! Inform me or TA immediately

Reading and Prerequisites ILINOIS INSTITUTE OF TECHNOLOGY Textbook: Doan, Halevy, and Ives. Principles of Data Integration, 1st Edition Morgan Kaufmann Publication date: 2012 ISBN-13: 978-0124160446 Prerequisites: CS 425

Outline	ILLINOIS INSTITUTE
0) Course Info	
 Data Preparation and Cleanin 	ng
 Schema mappings and Virtua Integration 	al Data
4) Data Exchange	
5) Data Warehousing	
6) Big Data Analytics	
7) Data Provenance	
36 CS520 - Course Info	