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About me
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Hi, I am Boris Glavic, 
 Assistant Professor in 

CS

I am a database guy!

I will teach you:
database stuff



What is information integration?

• Combination of data and content from multiple 
sources into a common format
– Completeness

– Correctness

– Efficiency
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Why Information Integration?

• Data is already available, right?

• …, but

• Heterogeneity

– Structural

• Data model (relational, XML, unstructured)

• Schema (if exists)

– Semantic

• Naming and identity conflicts

• Data conflicts

– Syntactic

• Interfaces (web form, query language, binary file)
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Why Information Integration?

• Autonomy

– Sources may not give you unlimited access

• Web form only support a fixed format of queries

• Does not allow access to unlimited amounts of data

– Source may not be available all the time

– Data, schema, and interfaces of sources may 

change

• Potentially without notice
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“Real World” Examples?

• Portal websites

– Flight websites (e.g., Expedia) gather data from 
multiple airlines, hotels

• Google News

– Integrates information from a large number of 
news sources

• Science

– Biomedical data sources

• Business

–Warehouses: integrate transactional data 
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Example Integration Problem [1]

• Integrate stock ticker data 

from two web services A and 

B

– Service A: Web form 

(Company name, year)

– Service B: Web form

(year)
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Steps
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7) Entity	resolution

8) Fusion

9) Return	final	results



Example Integration Problem [2]

• Service A:
<Stock>

<Company>IBM</Company>

<DollarValue>155.8</DollarValue>

<Month>12</Month>

</Stock>

• Service B:
<Stock>

<Company>International Business Machines</Company>

<Date>2014-08-01</Date>

<Value>106.8</Value>

<Currency>Euro</Currency>

</Stock>
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Example Integration Problem [3]

• SQL interface for integrated 

service

SELECT month, value

FROM ticker

WHERE year = 2014

AND cmp = ‘IBM’

• Service A: (IBM, 2014)

• Service B: (2014)
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Example Integration Problem [4]

• For web service A we can 
either

– Get stocks for IBM in all years

– Get stocks for all companies in 
2014

– Get stocks for IBM in 2014

• Trade-off between amount of 
processing that we have to do 
locally, amount of data that is 
shipped, …
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Example Integration Problem [5]

• Service A: (IBM, 2014)

• Service B: (2014)  
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Example Integration Problem [6]

• Service A:
<Stock>

<Company>IBM</Company>

<DollarValue>155.8</DollarValue>

<Month>12</Month>

…

• Service B:
<Stock>

<Company>International Business 

Machines</Company>

<Date>2014-12-01</Date>

<Value>106.8</Value>

<Currency>Euro</Currency>

…
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Example Integration Problem [7]

• IBM vs. Integrated Business 

Machines
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Example Integration Problem [8]

• Granularity of time attribute

–Month vs. day

• What if both services return 

different values (after 

adapting granularity)

– Average?

–Median?

– Trust-based?
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Example Integration Problem [9]

• Return final results:
<Stock>

<Month>01</Month>

<Value>105</Value>

</Stock>

…

<Stock>

<Month>12</Month>

<Value>107</Value>

</Stock>
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Why hard?

• System challenges

– Different platforms (OS/Software)

– Efficient query processing over multiple 

heterogeneous systems

• Social challenges

– Find relevant data

– Convince people to share their data

• Heterogeneity of data and schemas

– A problem that even exists if we use same system
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Why hard? Cont.

• Often called AI-complete

–Meaning: “It requires human intelligence to solve 

the problem”

– Unlikely that general completely automated 

solutions will exist

• So why do you still sit here

– There exist automated solutions for relevant less 

general problems

– Semi-automated solutions can reduce user effort 

(and may be less error prone)
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AI completeness

• Yes, but still why is this problem really so 

hard?

– Lack of information: e.g., the attributes of a 

database schema have only names and data types, 

but no machine interpretable information on what 

type of information is stored in the attribute

– Undecidable computational problems: e.g., to 

decide whether a user query can be answered from 

a set of sources that provide different views on the 

data requires query containment checks which 

are undecidable for certain query types
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Relevant less general problems

• Data Extraction

– Extract data from unstructured sources / text

• Data cleaning: 

– Clean dirty data before integration

– Conformance with a set of constraints

– Deal with missing and outlier values

• Entity resolution

– Determine which objects from multiple dataset 
represent the same real world entity

• Data fusion

– Merge (potentially conflicting) data for the same entity

21
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Relevant less general problems

• Schema matching

– Given two schemas determine which elements 

store the same type of information

• Schema mapping

– Describe the relationships between schemas

• Allows us to rewrite queries written against one schema 

into queries of another schema

• Allows us to translate data from one schema into

22
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Relevant less general problems

• Virtual data integration

– Answer queries written against a global mediated 

schema by running queries over local sources

• Data exchange

–Map data from one schema into another

• Warehousing: Extract, Transform, Load

– Clean, transform, fuse data and load it into a data 

warehouse to make it available for analysis

23
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Relevant less general problems

• Integration in Big Data Analytics

– Often “pay-as-you-go”: 

• No or limited schema

• Engines support wide variety of data formats

• Provenance

– Information about the origin and creation process 

of data

– Very important for integrated data

• E.g., “from which data source is this part of my query 

result”

24
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Webpage and Faculty

• Course Info
– Course Webpage: http://cs.iit.edu/~cs520

– Google Group: https://groups.google.com/d/forum/cs520-2016-
spring-group

• Used for announcements

• Use it to discuss with me, TA, and fellow students

– Syllabus: http://cs.iit.edu/~cs520/files/syllabus.pdf

• Faculty
– Boris Glavic (http://cs.iit.edu/~glavic)

– Email: bglavic@iit.edu

– Phone: 312.567.5205

– Office: SB 206B

– Office Hours: Wednesdays, 12:30pm-1:30pm 

(and by appointment)



TAs

• TAs (TBA)

– Email: 

– Phone: 

– Office: 

– Office Hours: (and by appointment)



Workload and Grading
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• Exams (60%)

– Final (30%), Midterm (30%)

• Homework Assignments (preparation for exams!)

– Theory part: Practice theory for final exam

– Lab part: Practice the tools we discuss in class

• Literature Review (20%)

– In groups of 3 students

– Topics will be announced soon

– You have to read a research paper

– Papers will be assigned in the first few weeks of the course

– You will give a short presentation (15min) on the topic in class

– You will write a report summarizing and criticizing the paper (up to 4 

pages)



Workload and Grading

28
CS520 - Course Info

• Data Curation Project(20%)

– In groups of 3 students (same groups as for literature review)

– You will have to acquire and curate (clean, integrate, …) a real world 

dataset

– This is open-ended, you can choose whatever tools you need, whatever 

domain you think is interesting, …

• Only limitation is that you need to document your cleaning workflow using a 

Jupyter notebook (so at lease some python is required)

– Steps:

• Acquire or extract one or more real world datasets for a domain of choice

• Gain an understanding of the data and identify data quality issues 

• Research tools that are suited for the data cleaning, integration, extraction 

tasks that you need to apply to create a correct and clean output dataset

• Apply the tools and produce an output

– Work will be submitted through git repositories on bitbucket.org that 

we will create for each 



Workload and Grading
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• Timeline:
– See course webpage for detailed dates

• You are required to meet with the TA/Prof. several times for 

discussing the progress for the literature review and data curation 

project

– Literature reviews and project presentations will be blocked 

towards the end of the semester (1-2 days)



Course Objectives

• Understand the problems that arise with 

querying heterogeneous and autonomous data 

sources 

• Understand the differences and similarities 

between the data integration/exchange, data 

warehouse, and Big Data analytics approaches 

• Be able to build parts of a small data 

integration pipeline by “glueing” existing 

systems with new code
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Course Objectives cont.

• Have learned formal languages for expressing 

schema mappings 

• Understand the difference between virtual and 

materialized integration (data integration vs. 

data exchange) 

• Understand notions of data provenance and 

know how to compute provenance 

31
CS520 - Course Info



Fraud Policies

• All work has to be original!

– Cheating = 0 points for review/exam

– Possibly E in course and further administrative 
sanctions

– Every dishonesty will be reported to office of 
academic honesty

• Late policy:

– -20% per day

– You have to give your presentation to pass the 
course!

– No exceptions!

32
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Fraud Policies cont.

• Literature Review:

– Every student has to contribute in the presentation, 

report, and data curation project!

– Don’t let others freeload on you hard work!

• Inform me or TA immediately

33
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Reading and Prerequisites

• Textbook: Doan, Halevy, and Ives.

– Principles of Data Integration, 1st Edition 

–Morgan Kaufmann

– Publication date: 2012

– ISBN-13: 978-0124160446 

– Prerequisites:

• CS 425

34
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Additional Reading

• Papers assigned for literature review

• Optional: Standard database textbook
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Overview

• Topics covered in this part

– Heterogeneity and Autonomy

– Data Integration Tasks

– Data Integration Architectures (Methods)

– Some Formal Background (sorry!)

2
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1.1 Heterogeneity +Autonomy

• Taxonomy of Heterogeneity

3
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Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema Naming Identity
Value 

conflicts



1.1 System Heterogeneity

• Hardware/Software

– Different hardware capabilities of sources

– Different protocols, binary file formats, …

– Different access control mechanism

• Interface Heterogeneity

– Different interfaces for accessing data from a 

source

• HTML forms

• XML-Webservices

• Declarative language

4
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1.1 System Heterogeneity

• Hardware/Software

– Different hardware capabilities of sources

• Mobile phone vs. server: Cannot evaluate cross-

product of two 1GB relations on a mobile phone

– Different protocols, binary file formats, …

• Order information stored in text files: line ending 

differs between Mac/Window/Linux, character 

encoding

– Different access control mechanism

• FTP-access to files: public, ssh authentication, ..
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1.1 System Heterogeneity

• Interface Heterogeneity

– Different interfaces for accessing data from a 

source

• HTML forms

• Services (SOA)

• Declarative language

• Files

• Proprietary network protocol

• …
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1.1 System Heterogeneity

• Interface Heterogeneity – Expressiveness

– Keyword-search vs. query language

– Predicates: equality (=), inequality (<, !=)

– Logical connectives: conjunctive (AND), 

disjunctive (OR), negation

– Complex operations: aggregation, quantification

– Limitations: restriction to particular tables, 

predicates, fixed queries with parameters, …
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1.1 System Heterogeneity

• Interface Heterogeneity – Examples

– Google search (+/-, site:, intitle:, filetype:
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1.1 System Heterogeneity

• Interface Heterogeneity – Examples

– SQL

9
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1.1 System Heterogeneity

• Interface Heterogeneity – Examples

– SQL
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1.1 System Heterogeneity

• Interface Heterogeneity – Examples

– Web-form (with DB backend?)

11
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value 

conflicts

Keyword 

search

“Bound 

parameter”

Fixed 

choices



1.1 System Heterogeneity

• Interface Heterogeneity – Examples

– Email-client
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1.1 System Heterogeneity

• Problems with interface heterogeneity

– Global query language is more powerful

• User queries may not be executable

• Integration system has to evaluate part of the query

– Bound parameters are incompatible with query

• User query may not be executable
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1.1 System Heterogeneity

• Example: more expressive global language

– SQL with one table 

• books (title, author, year, isbn, genre)

– Web form for books about history shown below

– What problems do may arise translating user 

queries?
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1.1 System Heterogeneity

• Integration system has to process part of the 

query
SELECT title

FROM books

WHERE author = ‘Steven King’

AND year = 2012;
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1.1 System Heterogeneity

• Query requires multiple requests
SELECT title

FROM books

WHERE author LIKE ‘%King%;
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Stephen King, 2014, …
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Larry Kin, …

Stephen King, 2012, Misery

Stephen King, 2012, Misery

…

Larry King
King Author

Larry King, …

How do we 

know what 

authors exist?



1.1 System Heterogeneity

• Query cannot be answered
SELECT title

FROM books

WHERE genre = ‘SciFi’;
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1.1 Heterogeneity +Autonomy

• Taxonomy of Heterogeneity
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1.1 Structural Heterogeneity

• Data model

– Different semantic/expressiveness

– Different structure

• Schema

– Integrity constraints, keys

– Schema elements:

• use attribute or separate relations)

– Structure: 

• e.g., normalized vs. denormalized relational schema
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1.1 Structural Heterogeneity

• Data model

– Relational model

– XML model

– Object-oriented model

– Ontological model

– JSON

– …
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1.1 Structural Heterogeneity

• Example: data model

– Relational model

– XML model

– JSON

– OO

• Person and their addresses
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1.1 Structural Heterogeneity

• Schema

– Modeling choices

• Relation vs. attribute

• Attribute vs. value

• Relation vs. value

– Naming

– Normalized vs. denormalized (relational concept)

– Nesting vs. reference

22
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1.1 Structural Heterogeneity
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Example: Modeling choices

Male(Id, firstname, lastname)

Female(id, firstname, lastname)

Person(Id, firstname, lastname, gender)

Person(Id, firstname, lastname, male, female)Relation vs. Value

Relation vs. Attribute

Value vs. Attribute



1.1 Structural Heterogeneity

• Relation-relation conflicts

– Naming conflicts

• Relations with different name representing the same 

data (synonym)

• Relations with same name representing different 

information (homonym)

– Structural conflicts

• Missing attributes

• Many-to-one

• Missing, but derivable attributes

– Integrity constraint conflicts

24
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1.1 Structural Heterogeneity

25
CS520 - 1) Introduction

Heterogeneity

System Structural Structural

Software Interface Datamodel Schema
Namin

g

Identit

y

Value 

conflicts

Example: Conflicts between relations

Person(Id, name, gender, birthday)

Person(Id, firstname, lastname, male, female)

Manager(Id, name, gender, age)



1.1 Structural Heterogeneity
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Example: Conflicts between relations

Person(Id, name, gender, birthday)

Person(Id, firstname, lastname, male, female)

Manager(Id, name, gender, age)

Mutliple attribtue

vs one attribute

Derivable 

attribute:

Compute age 

from birthday

Missing derivable 

attribute:

Role



1.1 Structural Heterogeneity

• Attribute-attribute conflicts

– Naming conflicts

• Attributes with different name representing the same 

data (synonym)

• Attributes with same name representing different 

information (homonym)

– Default value conflict

– Integrity constraint conflicts

• Datatype

• Constraints restricting values
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1.1 Structural Heterogeneity
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Example: Conflicts between attributes and attributes

SSN FirstName

VARCHAR(40)

LastName Age

CHECK(Age > 18)

333-333-3333 Peter Schmeter 30

333-333-9999 Hans Glanz NULL

SSN FirstName

VARCHAR(25)

SurName Age

3333333333 Peter Schmeter 30

3333339999 Hans Glanz -1



1.1 Structural Heterogeneity
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Example: Conflicts between attributes and attributes

SSN FirstName

VARCHAR(40)

LastName Age

CHECK(Age > 18)

333-333-3333 Peter Schmeter 30

333-333-9999 Hans Glanz NULL

SSN FirstName

VARCHAR(25)

SurName Age

3333333333 Peter Schmeter 30

3333339999 Hans Glanz -1

Conflicting format Conflicting 

datatype

synonym

Conflicting 

constraint

Conflicting default 

value



1.1 Structural Heterogeneity

• Normalized vs. denormalized

– E.g., relational model: Association between 

entities can be represented using multiple 

relations and foreign keys or one relation
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Address

Address
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1.1 Structural Heterogeneity

• Nested vs. flat

– Association between entities can be represented 

using nesting or references (previous slides)
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Person

Name

{Address

Id

City
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}
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1.1 Structural Heterogeneity

• Problems caused by schema heterogeneity

– Unified access to multiple schemas or integrate 

schemas into new schema

• Schema level: schema mapping, model management 

operators, schema languages

• Data Level: virtual data integration, data exchange, 

warehousing (ETL)
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1.1 Heterogeneity +Autonomy

• Taxonomy of Heterogeneity
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1.1 Semantic Heterogeneity

• Semantic Heterogeneity

– Naming Conflicts

– Identity Conflicts (Entity resolution)

– Value Conflicts (Data Fusion)
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1.1 Semantic Heterogeneity

• Naming Conflicts

– Ontological (concepts)

• Birds vs. Animals

– Synonyms

• Surname vs. last name

– Homonyms

– Units

• Gallon vs. liter

– Values

• Manager vs. Boss
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1.1 Semantic Heterogeneity

• Ontological concepts

– Relationships between concepts

• A = B - Equivalence

• A ⊆B - Inclusion

• A ∩ B - Overlap

• A  ≠ B - Disjunction
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1.1 Semantic Heterogeneity

• Ontological concepts

– Relationships between concepts

• A = B - Equivalence

• A ⊆B - Inclusion

• A ∩ B - Overlap

• A  ≠ B - Disjunction
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Heterogeneity
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conflicts

Example

Equivalence: Human vs Homo sapiens

Inclusion:   Bird vs Animal

Overlap:     Animal vs aquatic lifeform

Disjunction: Fish vs Mamal



1.1 Semantic Heterogeneity

• Naming concepts (synonyms)

• Different words with same meaning

38
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Person(Name,Age)

Human(LastName,Age)



1.1 Semantic Heterogeneity

• Naming concepts (homonyms)

• Same words with different meaning
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Person(Title,Name)

Movie(Title,Year)



1.1 Semantic Heterogeneity

• Naming concepts (units)
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Person(Title,Name,Salary)

Person(Title,Name,Salary)
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1.1 Semantic Heterogeneity

• Identity Conflicts

– What is an object?

• E.g., multiple tuples in relational model

– Central question:

• Does object A represent the same entity as B

– This problem has been called

• Entity resolution

• Record linkage

• Deduplication

• …
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1.1 Semantic Heterogeneity

• Identity Conflicts
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(IBM,300000000,USA)

(International Business Machines Corporation,50000)



1.1 Semantic Heterogeneity

• Value Conflicts

– Objects representing the same entities have 

conflicting values for semantically equivalent 

attributes

• We have to identified that these objects are represent 

the same entitity first!

– Resolving such conflicts requires Data Fusion

• Pick value from conflicting values

• Numerical methods: e.g., average

• Preferred value

• …
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1.1 Autonomy

• How autonomous are data sources

– One company

• Can enforce, e.g., schema and software

– …

– The web

• Website decides

– Interface

– Determines access restrictions and limits

– Availability

– Format

– Query restrictions

– …
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1.2 Data integration tasks

• Cleaning and prepreparation

• Entity resolution

• Data Fusion

• Schema matching

• Schema mapping

• Query rewrite

• Data translation
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1.3 Data integration architectures

• Virtual data integration

• Data Exchange

• Peer-to-peer data integration

• Datawarehousing

• Big Data analytics
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1.4 Formal Background

• Query Equivalence

– Complexity for different query classes

• Query Containment

– Complexity for different query classes

• Datalog

– Recursion + Negation

• Integrity Constraints

– Logical encoding of integrity constraints

• Similarity Measures/Metrics
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1.4 Integrity constraints

• You know some types of integrity constraints 

already

– Functional dependencies

• Keys are a special case

– Foreign keys

• We have not really formalized that
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1.4 Integrity constraints

• Other types are

– Conditional functional dependencies

• E.g., used in cleaning

– Equality-generating dependencies

– Multi-valued dependencies

– Tuple-generating dependencies

– Join dependencies

– Denial constraints

– …
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1.4 Integrity constraints

• How to manage all these different types of 

constraints?

– Has been shown that these constraints can be 

expressed in a logical formalism.

– Formulas which consist of relational and 

comparison atoms. Variables represent values

• R(x,y,z)

• x = y
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1.4 Integrity Constraints
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Example

Primary Key R(A,B):

Functional Dependency R(A,B) with A->B:

Foreign Key R(A,B), S(C,D) where D is FK to R:

∀x, y, z, a : R(x, y) ∧R(z, a) ∧ x = z → y = a

∀x, y, z : R(x, y) ∧R(x, z) → y = z

∀x, y : S(x, y) → ∃z : R(y, z)



1.4 Integrity constraints

• Types of constraints we will use a lot

– Tuple-generating dependencies (tgds)

• Implication with conjunction of relational atoms

• Foreign keys and schema mappings (later)

– Equality-generating dependencies (egds)

• Generalizes keys, FDs
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∀~x : �(~x) → ∃~y :  (~x, ~y)

∀~x : �(~x) → ∧
n
k=1

xik = xjk



1.4 Datalog

• What is datalog?

– Prolog for databases (syntax very similar)

– A logic-based query language

• Queries (Program) expressed as set of rules

• One Q is specified as the answer relation (the 

relation returned by the query)
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Q(~x) : −R1( ~x1), . . . , Rn( ~xn).



1.4 Datalog - Intuition

• A Datalog rule

• For all bindings of variables in the right-hand 

side (RHS) that makes the RHS true 

(conjunction) return bindings of 
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Q(~x) : −R1( ~x1), . . . , Rn( ~xn).

Q(Name):- Person(Name,Age).

Return names of persons

Example



1.4 Datalog - Syntax

• A Datalog program is a set of datalog rules

– Optionally a distinguished answer predicate

• A Datalog rule is 

• X’s are lists of variables and constants

• Ri’s are relation names

• Q is a relation name
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Q(~x) : −R1( ~x1), . . . , Rn( ~xn).



1.4 Datalog - Terminology

• Left-hand side of a rule is called it’s head

• Right-hand side of a rule is called it’s body

• Relation are called predicates

• is called an atom

• An instance I of a database is the data

• The active domain adom(I) of an instance I is 

the set of all constants that occur in I
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Q(~x) : −R1( ~x1), . . . , Rn( ~xn).



1.4 Datalog - Terminology
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Q(N):- Person(N,A).

N, A are variables

Q(N), Person(N,A) are atoms

Person and Q are predicates

Activate domain 

adom(I) = {peter,bob,34,45}

Example

Name Age

peter 34

bob 45



1.4 Datalog - Terminology

• Intensional vs. extensional

– Extensional database (edb)

• What we usually call database

– Intensional database (idb)

• Relations that occur in the head of rules (are populated 

by the query)

– Usually we assume that these do not overlap
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Q(~x) : −R1( ~x1), . . . , Rn( ~xn).



1.4 Datalog - Safety

• A datalog program is safe if all its rules are 

safe

• A rule is safe if all variables in     occur in at 

least one 
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Q(~x) : −R1( ~x1), . . . , Rn( ~xn).

Q(Name):- Person(Name,Age).  (safe)

Q(Name,Sal):-Peron(Name,Age).(unsafe)

Example



1.4 Datalog - Semantics

• The instance of an idb predicate Q in a datalog

program for an edb instance I contains all facts 

that can be derived by applying rules with Q in 

the head

• A rule derives a fact Q(c) if we can find a 

binding of variables of the rule to constants 

from adom(I) such that x is bound to c and the 

body is true
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Q(~x) : −R1( ~x1), . . . , Rn( ~xn).



1.4 Datalog - Semantics
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Q(N):- Person(N,A).

N=peter,A=peter: Q(peter):- Person(peter,peter).

N=peter,A=bob: Q(peter):- Person(peter,bob).

N=peter,A=34: Q(peter):- Person(peter,34).

N=bob,A=peter: Q(bob):- Person(peter,peter).

N=bob,A=bob: Q(bob):- Person(peter,bob).

N=bob,A=34: Q(bob):- Person(bob,34).

N=34,A=peter: Q(34):- Person(34,peter).

N=34,A=bob: Q(34):- Person(34,bob).

N=34,A=34: Q(34):- Person(34,34).

Active domain 

adom(I) = {peter,bob,34}

Example

Name Age

peter 34

bob 34

N

peter

bob



1.4 Datalog

• Different flavors of datalog

– Conjunctive query

• Only one rule

• Expressible as Select-project-join (SPJ) query in 
relational algebra (only equality and AND in selection)

– Union of conjunctive queries

• Also allow union

• SPJ + set union in relational algebra

• Rules with the same head in Datalog

– Conjunctive queries with inequalities

• Also allow inequivalities, e.g., <
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1.4 Datalog

• Different flavors of datalog

– Recursion

• Rules may have recursion: 

– E.g., head predicate in the body

• Fix point semantics based on immediate consequence 
operator

– Negation (first-order queries)

• Negated relational atoms allowed

• Require that every variable used in a negated atom also 
occurs in at least on positive atom (safety)

– Combined Negation + recursion

• Stronger requirements (e.g., stratification)
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1.4 Datalog – Semantics (Negation)

• A rule derives a fact Q(c) if we can find a 

binding of variables of the rule to constants 

from adom(I) such that x is bound to c and the 

body is true

• A negated atom not R(X) is true if R(X) is not 

part of the instance

64
CS520 - 1) Introduction

Q(~x) : −R1( ~x1), . . . , Rn( ~xn).



1.4 Datalog - Semantics
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Q(N):- Person(N,A), not Lives(N).

N=peter,A=peter: Q(peter):- Person(peter,peter), 

not Lives(peter).

N=peter,A=bob: Q(peter):- Person(peter,bob),

not Lives(peter).

…
N=peter,A=34: Q(bob):- Person(bob,34),

not Lives(bob).

…

Active domain 

adom(I) = {peter,bob,34}

Example

Name Age

peter 34

bob 34

N

bob

Name

peter

Lives

Result

Person



1.4 Datalog
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Example

Relation hop(A,B) storing edges 

of a graph.

Q2hop(x,z): hop(x,y),hop(x,z).

Qreach(x,y): hop(x,y).

Qreach(x,z): Qreach(x,y),Qreach(y,z).

Qnode(x): hop(x,y).

Qnode(x): hop(y,x).



1.4 Datalog
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Example

Relation hop(A,B) storing edges 

of a graph.

Qnode(x): hop(x,y).

Qnode(x): hop(y,x).

QnotReach(x,y): Qnode(x), Qnode(y), 

not Qreach(x,y).



1.4 Containment and Equivalence
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Query Q is equivalent to Q’ iff for every database instance I both queries return 

the same result

Definition: Query Equivalence

Q ≡ Q0
⇔ ∀I : Q(I) = Q0(I)

Query Q is contained in query Q’ iff for every database instance I the result of Q 

is contained in the result of Q’

Definition: Query Containment

Q v Q0 , 8I : Q(I) ✓ Q0(I)



1.4 Equivalence

• The problem of checking query equivalence is 

of different complexity depending on the 

query language and whether we consider set 

or bag semantics

69
CS520 - 1) Introduction



1.4 Containment and Equiv.
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Example

Q1(x,y): R(x,y), R(x,z).

Q2(x,y): R(x,y).

Q3(x,x): R(x,x).

Q4(x,y): R(x,y).

Q5(x,x): R(x,y), R(x,x).

Q6(x,z): R(x,y), R(y,z).



1.4 Containment and Equiv.
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Example

Relation hop(A,B) storing edges 

of a graph.

Q2hop(x,z): hop(x,y),hop(x,z).

Qup2Hop(x,z): hop(x,y),hop(x,z).

Qup2Hop(x,z): hop(x,z).

Qsym(x,y): hop(x,y).

Qsym(x,y): hop(y,x).

Qsym2Hop(x,y): Qsym(x,y),Qsym(y,z).



1.4 Complexity of Eq. and Cont.
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Set

semantics

Relational 

Algebra

Conjunctive

Queries (CQ)

Union of 

Conjunctive 

Queries 

(UCQ)

Monotone 

Queries/

CQ≠

Query 

Evaluation 

(Combined 

Complexity)

PSPACE-

complete

NP-complete NP-complete NP-complete

Query 

Evaluation

(Data 

Complexity)

LOGSPACE

(that means 

in P)

LOGSPACE 

(that means 

in P)

LOGSPACE 

(that means 

in P)

LOGSPACE 

(that means 

in P)

Query 

Equivalence

Undecidable NP-complete NP-complete Π2
p-complete

Query 

Containment

Undecidable NP-complete NP-complete Π2
p-complete



1.4 Complexity of Eq. and Cont.
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Bag

semantics

Relational 

Algebra

Conjunctive

Queries (CQ)

Union of 

Conjunctive 

Queries (UCQ)

Query 

Equivalence

Undecidable Equivalent to 

graph 

isomorphism

Undecidable

Query 

Containment

Undecidable Open Problem Undecidable



1.4 Containment Mappings

• NP-completeness for set semantics  CQ and 

UCQ for the containment, evaluation, and 

equivalence problems is based on reducing 

these problems to the same problem

– [Chandra & Merlin, 1977]

• Notational Conventions:

– head(Q) = variables in head of query Q

– body(Q) = atoms in body of Q

– vars(Q) = all variable in Q
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1.4 Boolean Conjunctive Queries

• A conjunctive query is boolean if the head 

does not have any variables

– Q() :- hop(x,y), hop(y,z)

– We will use Q :- … as a convention for Q() :- …

– What is the result of a boolean query

• Empty result {}, e.g., no hop(x,y), hop(y,z)

• If  there are tuples matching the body, then a tuple 

with zero attributes is returned {()}

– -> We interpret {} as false and {()} as true

– Boolean query is essentially an existential check
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1.4 Boolean Conjunctive Queries

• BCQ in SQL
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Example

Hop relation: Hop(A,B)

Q :- hop(x,y) 

SELECT EXISTS (SELECT * FROM hop)

Note: in Oracle and DB2 we need a 

from clause



1.4 Boolean Conjunctive Queries
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Example

SELECT 

CASE WHEN EXISTS (SELECT * 

FROM hop)

THEN 1 ELSE 0

END AS x

FROM dual;

Notes:

- Oracle and DB2 FROM not optional

- Oracle has no boolean datatype



1.4 Boolean Conjunctive Queries

• BCQ in SQL
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Example

Q :- hop(x,y), hop(y,z)

SELECT EXISTS 

(SELECT * 

FROM hop l, hop r

WHERE l.B = r.A)



1.4 Containment Mappings

• How to check for containment of CQs (set)
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A variable mapping ψ from query Q to query Q’ maps the variables of Q to 

constants or variables from Q’

Definition: Variable Mapping

A containment mapping from query Q to Q’ is a variable mapping ψ such that:

Definition: Containment Mapping

Ψ(head(Q)) = head(Q0)



1.4 Containment Mappings
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Query Q is contained in query Q’ iff there exists a containment  mapping ψ from 

Q’ to Q

Theorem: Containment Mappings and Query Containment

Example

Q1(u,z): R(u,z).

Q2(x,y): R(x,y).

Can we find a containment mapping?



1.4 Containment Mappings
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Query Q is contained in query Q’ iff there exists a containment  mapping ψ from 

Q’ to Q

Theorem: Containment Mapping and Query Containment

Example

Q1(u,z): R(u,z).

Q2(x,y): R(x,y).

Q1 -> Q2 :Ψ(u)=x, Ψ(z)=y

Q2 -> Q1 :Ψ(x)=u, Ψ(y)=z



1.4 Containment Mappings
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Example

Q1(a,b): R(a,b), R(b,c).

Q2(x,y): R(x,y).



1.4 Containment Mappings
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Example

Q1(a,b): R(a,b), R(b,c).

Q2(x,y): R(x,y).

Do containment mappings exist?

Q1 -> Q2: none exists

Q2 -> Q1: Ψ(x)=a, Ψ(y)=b



1.4 Containment Mappings
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Example

Q1(a,b): R(a,b), R(c,b).

Q2(x,y): R(x,y).

Q1 -> Q2 :Ψ(a)=x, Ψ(b)=y, Ψ(c)=x

Q2 -> Q1 :Ψ(x)=a, Ψ(y)=b



1.4 Containment Background

• It was shown that query evaluation, 

containment, equivalence as all reducible to 

homomorphism checking for CQ

– Canonical conjunctive query QI for instance I

• Interpret attribute values as variables

• The query is a conjunction of all atoms for the tuples

• I = {hop(a,b), hop(b,c)} -> QI :- hop(a,b), hop(b,c)

– Canonical instance IQ for query Q

• Interpret each conjunct as a tuple

• Interpret variables as constants

• Q :- hop(a,a) -> IQ = {hop(a,a)}
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1.4 Containment Background

• Containment Mapping <-> Containment

• Proof idea (boolean queries)

– (if direction)

• Assume we have a containment mapping Q1 to Q2

• Consider database D

• Q2(D) is true then we can find  a mapping from vars(Q2) 

to D

• Compose this with the containment mapping and prove 

that this is a result for Q1
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1.4 Containment Mappings
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Example

Q1(): R(a,b), R(c,b).

Q2(): R(x,y).

Q2 -> Q1 :Ψ(x)=a, Ψ(y)=b

D={R(1,1), R(1,2)}

Q1(D)={(1,1),(1,2)}

φ(a)=1, φ(b)=2, φ(c)=1

Ψ φ(x)=1, Ψ φ(y)=2



1.4 Containment Background

• Containment Mapping <-> Containment

• Proof idea (boolean queries)

– (only-if direction)

• Assume Q2 contained in Q1

• Consider canonical (frozen) database IQ2

• Evaluating Q1 over IQ2 and taking a variable mapping 

that is produced as a side-effect gives us a containment 

mapping
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1.4 Containment Mappings
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Example

Q1(): R(a,b), R(c,b).

Q2(): R(x,y).

Q2 -> Q1 :Ψ(x)=a, Ψ(y)=b

IQ1 = {(a,b),(c,b)}

Q2(I
Q1)={()}

φ(x)=a, φ(y)=b

φ is our containment mapping Ψ



1.4 Containment Background

• If you are not scared and want to know more:

– Look up Chandra and Merlins paper(s)

– The text book provides a more detailed overview 

of the proof approach

– Look at the slides from Phokion Kolaitis excellent 

lecture on database theory

• https://classes.soe.ucsc.edu/cmps277/Winter10/
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1.4 Containment Background

• A more intuitive explanation why containment 

mappings work

– Variable naming is irrelevant for query results

– If there is a containment mapping Q to Q’

• Then every condition enforced in Q is also enforced by 

Q’

• Q’ may enforce additional conditions
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1.4 Containment Mappings
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Example

Q1(): R(a,b), R(c,b).

Q2(): R(x,y).

Q2 -> Q1 :Ψ(x)=a, Ψ(y)=b

If there exists tuples 

R(a,b) and R(c,b)

in R that make Q1 true, then we 

take

R(a,b)

to fulfill Q2



1.4 Containment Background

• From boolean to general conjunctive queries

– Instead of returning true or false, return bindings 

of variables

– Recall that containment mappings enforce that 

the head is mapped to the head

– -> same tuples returned, but again Q’ s condition 

is more restrictive
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1.4 Containment Mappings
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Example

Q1(a): R(a,b), R(c,b).

Q2(x): R(x,y).

Q2 -> Q1 :Ψ(x)=a, Ψ(y)=b

For every

R(a,b) and R(c,b)

Q1 returns (a) and for every

R(a,b)

Q2 returns (a)



1.4 Similarity Measures

• Problem faced by multiple integration tasks

– Given two objects, how similar are they

– E.g., given two attribute names in schema 

matching, given two values in data fusion/entity 

resolution, …
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1.4 Similarity Measures

• Object models

– Multidimensional (feature vector model)

• Object is described as a vector of values - one for each 

dimension out of a given set of dimensions

• E.g., Dimensions are gender (male/female), age (0-120), 

and salary (0-1,000,000). An example object is 

[male,80,70,000]

– Strings

• E.g., how similar is “Poeter” to “Peter”

– Graphs and Trees

• E.g., how similar are two XML models
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1.4 Similarity Measures

• Interpretation: the lower the score the “more similar” the objects are

• We require d(p,p)=0, because nothing can be more similar to an object than itself

• Note: often scores are normalized to the range [0,1]
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Function d(p,q) where p and q are objects, that returns a real score with

• d(p,p) = 0

• d(p,q) >= 0

Definition: Similarity Measure



1.4 Similarity Measures
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Software Interface Datamodel Schema
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Value 

conflicts

Example

String equality: d(p,q) = 0 if p=q

strings          d(p,q) = 1 else

Euclidian distance: d(p,q) =

N-dimensional space

Edit distance: d(p,q) = minimum number of 

strings                 single character

insertions, deletions,

replacements to

transform p into q

v

u

u

t

n
X

i=1

(p[i]− q[i])2



1.4 Similarity Measures

– Metric is a stricter definition

– Which of the previous similarity measure is a metric?
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Function d(p,q) where p and q are objects, that returns a real score with

• Non-negative d(p,q) >= 0

• Symmetry d(p,q) = d(q,p)

• Identity of indiscernibles d(p,q) = 0 iff p=q

• Triangle inequality d(p,q) + d(q,r) >= d(p,r)

Definition: Metric



1.4 Similarity Measures

– Metric is a stricter definition

– Which of the previous similarity measure is a metric?
• All of them!
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Function d(p,q) where p and q are objects, that returns a real score with

• Non-negative d(p,q) >= 0

• Symmetry d(p,q) = d(q,p)

• Identity of indiscernibles d(p,q) = 0 iff p=q

• Triangle inequality d(p,q) + d(q,r) >= d(p,r)

Definition: Metric



1.4 Similarity Measures

• Why do we care whether d is a metric?

– Some data mining algorithms only work for 

metrics

• E.g., some clustering algorithms such as k-means

• E.g., clustering has been used in entity resolution

– Metric spaces allow optimizations of some 
methods

• E.g., Nearest Neighboorhood-search: find the most 
similar object to an object p. This problem can be 
efficiently solved using index structures that only 
apply to metric spaces

101
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Summary

• Heterogeneity

– Types of heterogeneity

– Why do they arise?

– Hint at how to address them

• Autonomy

• Data Integration Tasks

• Data Integration Architectures

• Background

– Datalog + Query equivalence/containment + 
Similarity + Integrity constraints

102
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Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing 

7) Big Data Analytics

8) Data Provenance
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Outline 

0) Course Info 

1)  Introduction 

2)   Data Preparation and Cleaning 

3)  Schema matching and mapping 

4)  Virtual Data Integration 

5)  Data Exchange 

6)  Data Warehousing  

7)  Big Data Analytics 

8)  Data Provenance 
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2. Overview 

•  Topics covered in this part 

– Causes of Dirty Data 

– Constraint-based Cleaning 

– Outlier-based and Statistical Methods 

– Entity Resolution 

– Data Fusion 
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2. Causes of “Dirty” Data 

•  Manual data entry or result of erroneous 

integration 

– Typos:  

•  “Peter” vs. “Pteer” 

– Switching fields 

•  “FirstName: New York, City: Peter” 

–  Incorrect information 

•  “City:New York, Zip: 60616” 

– Missing information 

•  “City: New York, Zip: “ 
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2. Causes of “Dirty” Data 

•  Manual data entry or result of erroneous 

integration (cont.) 

– Redundancy:  

•  (ID:1, City: Chicago, Zip: 60616) 

•  (ID:2, City: Chicago, Zip: 60616) 

–  Inconsistent references to entities 

•  Dept. of Energy, DOE, Dep. Of Energy, … 
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2. Cleaning Methods 

•  Enforce Standards 

– Applied in real world 

– How to develop a standard not a fit for this lecture 

– Still relies on no human errors 

•  Constraint-based cleaning 

– Define constraints for data 

– “Make” data fit the constraints 

•  Statistical techniques 

– Find outliers and smoothen or remove 

•  E.g., use a clustering algorithm 
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2. Overview 

•  Topics covered in this part 

– Causes of Dirty Data 

– Constraint-based Cleaning 

– Outlier-based and Statistical Methods 

– Entity Resolution 

– Data Fusion 
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2.1 Cleaning Methods 

•  Constraint-based cleaning 

– Choice of constraint language 

– Detecting violations to constraints 

– Fixing violations (automatically?) 
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2.1 Constraint Languages 

•  First work focused on functional dependencies 

(FDs) 

•  Extensions of FDs have been proposed to 

allow rules that cannot be expressed with FDs 

– E.g., conditional FDs only enforce the FD is a 

condition is met 

•  -> finer grained control, e.g., zip -> city only if country 

is US 

•  Constraints that consider master data 

– Master data is highly reliable data such as a 

government issued zip, city lookup table 
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2.1 Constraint Languages (cont.) 

•  Denial constraints 

– Generalize most other proposed constraints 

– State what should not be true 

– Negated conjunction of relational and comparison 

atoms 

•  Here we will look at FDs mainly and a bit at 

denial constraints 

– Sometimes use logic based notation introduced 

previously 
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∀~x : ¬(�(~x))



2.1 Example Constraints 
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Example:	Constraints	Languages	

C1: The zip code uniquely determines the city 

 

 

C2: Nobody should earn more than their direct superior 

 

 

C3: Salaries are non-negative 

 

 

 

 

SSN	 zip	 city	 name	 boss	 salary	

333-333-3333	 60616	 New	York	 Peter	 Gert	 50,000	

333-333-9999	 60615	 Chicago	 Gert	 NULL	 40,000	

333-333-5599	 60615	 Schaumburg	 Gertrud	 Hans	 10,000	

333-333-6666	 60616	 Chicago	 Hans	 NULL	 1,000,000	

333-355-4343	 60616	 Chicago	 Malcom	 Hans	 20,000	



2.1 Example Constraints 

11 CS520 - 1) Introduction 

Example:	Constraints	Languages	

C1: The zip code uniquely determines the city 

    - expressible as functional dependency 

 

C2: Nobody should earn more than their direct superior 

    - e.g., denial constraint 

 

C3: Salaries are non-negative 

    - e.g., denial constraint 

 

 

 

SSN	 zip	 city	 name	 boss	 salary	

333-333-3333	 60616	 New	York	 Peter	 Gert	 50,000	

333-333-9999	 60615	 Chicago	 Gert	 NULL	 40,000	

333-333-5599	 60615	 Schaumburg	 Gertrud	 Hans	 10,000	

333-333-6666	 60616	 Chicago	 Hans	 NULL	 1,000,000	

333-355-4343	 60616	 Chicago	 Malcom	 Hans	 20,000	



2.1 Example Constraints 
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Example:	Constraints	Languages	

C1: The zip code uniquely determines the city 

FD1: zip -> city 

 

 

C2: Nobody should earn more than their direct superior 

 

 

 

C3: Salaries are non-negative 

 

 

 

SSN	 zip	 city	 name	 boss	 salary	

333-333-3333	 60616	 New	York	 Peter	 Gert	 50,000	

333-333-9999	 60615	 Chicago	 Gert	 NULL	 40,000	

333-333-5599	 60615	 Schaumburg	 Gertrud	 Hans	 10,000	

333-333-6666	 60616	 Chicago	 Hans	 NULL	 1,000,000	

333-355-4343	 60616	 Chicago	 Malcom	 Hans	 20,000	

8¬(E(x, y, z, u, v, w) ^ E(x0, y0, z0, u0, v0, w0) ^ x = x0 ^ y 6= y0)

∀¬(E(x, y, z, u, v, w) ∧ E(x0, y0, z0, u0, v0, w0) ∧ v = u0
∧ w > w0)

∀¬(E(x, y, z, u, v, w) ∧ w < 0)



2.1 Constraint based Cleaning 

Overview 

•  Define constraints 

•  Given database D 

– 1) Detect violations of constraints 

•  We already saw example of how this can be done using 

queries. Here a bit more formal 

– 2) Fix violations 

•  In most cases there are many different ways to fix the 

violation by modifying the database (called solution) 

– What operations do we allow: insert, delete, update 

– How do we choose between alternative solutions 
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2.1 Constraint Repair Problem 

•  This would allow us to take any I’ 

– E.g., empty for FD constraints 

•  We do not want to loose the information in I 

(unless we have to) 

•  Let us come back to that later 

14 CS520 - 1) Introduction 

Given	set	of	constraints	Σ	and	an	database	instance	I	which	violates	the	

constraints	find	a	clean	instance	I’	so	that	I’	fulfills	Σ	

Defini>on:	Constraint	Repair	Problem	



2.1 Constraint based Cleaning 

Overview 

•  Study 1) + 2) for FDs 

•  Given database D 

– 1) Detect violations of constraints 

•  We already saw example of how this can be done using 

queries. Here a bit more formal 

– 2) Fix violations 

•  In most cases there are many different ways to fix the 

violation by modifying the database (called solution) 

– What operations do we allow: insert, delete, update 

– How do we choose between alternative solutions 
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2.1 Example Constraints 

16 CS520 - 1) Introduction 

Example:	Constraints	

FD1: zip -> city 

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	



2.1 Example Constraints 
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Example:	Constraint	Viola>ons	

FD1: zip -> city 

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	



2.1 Example Constraints 

18 CS520 - 1) Introduction 

Example:	Constraint	Viola>ons	

How to repair? 

 

Deletion: 

  - remove some conflicting tuples 

  - quite destructive 

 

Update: 

  - modify values to resolve the conflict 

  - equate RHS values (city here) 

  - disequate LHS value (zip) 

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	



2.1 Constraint based Cleaning 

Overview 

•  How to repair? 

•  Deletion: 

–  remove some conflicting tuples 

– quite destructive 

•  Update: 

– modify values to resolve the conflict 

– equate RHS values (city here) 

– disequate LHS value (zip) 

•  Insertion? 

– Not for FDs, but e.g., FKs 
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2.1 Example Constraints 
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Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Deletion: 

 

Delete Chicago or Schaumburg? 

 

Delete New York or the two Chicago tuples? 

   - one tuple deleted vs. two tuples deleted 

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	



2.1 Example Constraints 
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Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Update equate RHS: 

 

Update Chicago->Schaumburg or Schaumburg->Chicago 

 

Update New York->Chicago or Chicago->New York 

   - one tuple deleted vs. two cells updated 

 

Update disequate LHS: 

 

Which tuple to update? 

What value do we use here? How to avoid creating other conflicts? 

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	



2.1 Constraint based Cleaning 

Overview 

•  Principle of minimality 

– Choose repair that minimally modifies database 

– Motivation: consider the solution that deletes every 

tuple 

•  Most update approaches equate RHS because 

there is usually no good way to choose LHS 

values unless we have master data 

– E.g., update zip to 56423 or 52456 or 22322 … 
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2.1 Detecting Violations 

•  Given FD A -> B on R 

– Recall logical representation 

– Forall X, X’: R(X) and R(X’) and A=A’ -> B=B’ 

– Only violated if we find two tuples where A=A’, 

but B != B’ 

–  In datalog 

•  Q(): R(X), R(X’), A=A’, B!=B’ 

–  In SQL 

SELECT EXISTS (SELECT * 

              FROM R x, R y 

         WHERE A=A’ AND B<>B’) 
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2.1 Example Constraints 
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Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	SQL	Viola>on	Detec>on	

Relation: Person(name,city,zip) 

 

FD1: zip -> city 

 

Violation Detection Query 

 

SELECT EXISTS (SELECT * 

      FROM Person x, Person y 

      WHERE x.zip = y.zip 

            AND x.city <> y.city) 

 

To know which tuples caused the conflict: 

 

SELECT * 

FROM Person x, Person y 

WHERE x.zip = y.zip 

      AND x.city <> y.city) 

 



2.1 Fixing Violations 

•  Principle of minimality 

– Choose solution that minimally modifies the 

database 

– Updates: 

•  Need a cost model 

– Deletes: 

•  Minimal number of deletes 
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2.1 Constraint Repair Problem 

•  Cost metrics that have been used 

– Deletion + Insertion 

•  S-repair: minimize measure above under set inclusion 

•  C-repair: minimize cardinality 

– Update 

•  Assume distance metric d for attribute values 

26 CS520 - 1) Introduction 

Given	set	of	constraints	Σ	and	an	database	instance	I	which	violates	the	

constraints	find	a	clean	instance	I’	(does	not	violate	the	constraints)	with	

cost(I,I’)	being	minimal	

Defini>on:	Constraint	Repair	Problem	(restated)	

∆(I, I 0) = (I − I 0) ∪ (I 0 − I)



2.1 Cost Metrics 

•  Deletion + Insertion 

 

•  S-repair: minimize measure above under set inclusion 

•  C-repair: minimize cardinality 

•  Update 

•  Assume single relation R with uniquely identified tuples 

•  Assume distance metric d for attribute values 

•  Schema(R) = attributes in schema of relation R 

•  t’ is updated version of tuple t 

•  Minimize:  
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∆(I, I 0) = (I − I 0) ∪ (I 0 − I)

X

t2R

X

A2Schema(R)

d(t.A, t0.A)



2.1 Cost Metrics 

•  Update 

•  Assume single relation R with uniquely identified tuples 

•  Assume distance metric d for attribute values 

•  Schema(R) = attributes in schema of relation R 

•  t’ is updated version of tuple t 

•  Minimize:  

•  We focus on this one 

•  This is NP-hard 

– Heuristic algorithm 
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X

t2R

X

A2Schema(R)

d(t.A, t0.A)



2.1 Naïve FD Repair Algorithm 

•  FD Repair Algorithm: 1. Attempt 

– For each FD X -> Y in Σ run query to find pairs of 

tuples that violate the constraint 

– For each pair of tuples t and t’ that violate the 

constraint 

•  update t.Y to t’.Y  

–  choice does not matter because cost is symmetric, right? 
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2.1 Constraint Repair 
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Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

t1 and t4: set t1.city = Chicago 

t1 and t5: set t1.city = Chicago 
t2 and t3: set t2.city = Schaumburg 

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	



2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 1. Attempt 

– For each FD X -> Y in Σ run query to find pairs of 

tuples that violate the constraint 

– For each pair of tuples t and t’ that violate the 

constraint: t.X = t’.X and t.Y != t’.Y 

•  update t.Y to t’.Y  

–  choice does not matter because cost is symmetric, right? 

– Our updates may cause new violations! 
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2.1 Constraint Repair 
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Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

t4 and t1: set t4.city = New York 

t1 and t5: set t1.city = Chicago 
t2 and t3: set t2.city = Schaumburg 

 

Now t1 and t4 and t4 and t5 in violation! 

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	



2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 2. Attempt 

–  I’ = I 

– 1) For each FD X -> Y in Σ run query to find pairs 

of tuples that violate the constraint 

– 2) For each pair of tuples t and t’ that violate the 

constraint: t.X = t’.X and t.Y != t’.Y 

•  update t.Y to t’.Y  

–  choice does not matter because cost is symmetric, right? 

– 3) If we changed I’ goto 1) 
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2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 2. Attempt 

–  I’ = I 

– 1) For each FD X -> Y in Σ run query to find pairs 

of tuples that violate the constraint 

– 2) For each pair of tuples t and t’ that violate the 

constraint: t.X = t’.X and t.Y != t’.Y 

•  update t.Y to t’.Y  

–  choice does not matter because cost is symmetric, right? 

– 3) If we changed I’ goto 1) 

•  May never terminate 
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2.1 Constraint Repair 
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Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

t4 and t1: set t4.city = New York 

t1 and t5: set t1.city = Chicago 
 

Now t1 and t4 and t4 and t5 in violation! 

 

t4 and t1: set t1.city = New York 

T5 and t4: set t4.city = Chicago 
 

repeat 

 

 

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	



2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 2. Attempt 

– Even if we succeed the repair may not be 

minimal. There may be many tuples with the 

same X values 

•  They all have to have the same Y value 

•  Choice which to update matters! 
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2.1 Constraint Repair 
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Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Cheaper: t1.city = Chicago 

Not so cheap: set t4.city and t5.city = New York 

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	



2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 3. Attempt 

– Equivalence Classes 

•  Keep track of sets of cells (tuple,attribute) that have to 

have the same values in the end (e.g., all Y attribute 

values for tuples with same X attribute value) 

•  These classes are updated when we make a choice 

•  Choose Y value for equivalence class using minimality, 

e.g., most common value 

– Observation 

•  Equivalence Classes may merge, but never split if we  

only update RHS of all tuples with same X at once 

•  -> we can find an algorithm that terminates 
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2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 3. Attempt 

– Initialize:  

•  Each cell in its own equivalence class 

•  Put all cells in collection unresolved 

– While unresolved is not empty 

•  Remove tuple t from unresolved 

•  Pick FD X->Y (e.g., random) 

•  Compute set of tuples S that have same value in X 

•  Merge all equivalence classes for all tuples in S and 

attributes in Y 

•  Pick values for Y (update all tuples in S to Y) 
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2.1 Problems with the Algorithm 

•  FD Repair Algorithm: 3. Attempt 

•  Algorithm using this idea: 

– More heuristics to improve quality and 

performance 

•  Cost-based pick of next EQ’s to merge 

– Also for FKs (Inclusion Constraints) 

 A Cost-Based Model and Effective Heuristic for Repairing Constraints by Value Modification 
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2.1 Consistent Query Answering 

•  As an alternative to fixing the database which 

requires making a choice we could also leave it 

dirty and try to resolve conflicts at query time 

– Have to reason over answers to the query without 

knowing which of the possible repairs will be 

chosen 

– Intuition: return tuples that would be in the query 

result for every possible repair 
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2.1 Constraint Repair 
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Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Cheaper: t1.city = Chicago 

Not so cheap: set t4.city and t5.city = New York 

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	



2. Overview 

•  Topics covered in this part 

– Causes of Dirty Data 

– Constraint-based Cleaning 

– Outlier-based and Statistical Methods 

– Entity Resolution 

– Data Fusion 

43 CS520 - 1) Introduction 



2.2 Statistical and Outlier 

•  Assumption 

– Errors can be identified as outliers 

•  How do we find outliers? 

– Similarity-based: 

•  Object is dissimilar to all (many) other objects 

•  E.g., clustering, objects not in cluster are 

outliers 

– Some type of statistical test: 

•  Given a distribution (e.g., fitted to the data) 

•  How probable is it that the point has this value? 

•  If low probability -> outlier 

  44 CS520 - 1) Introduction 



2. Overview 

•  Topics covered in this part 

– Causes of Dirty Data 

– Constraint-based Cleaning 

– Outlier-based and Statistical Methods 

– Entity Resolution 

– Data Fusion 
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2.3 Entity Resolution 

•  Entity Resolution (ER) 

•  Alternative names 

– Duplicate detection 

– Record linkage 

– Reference reconciliation 

– Entity matching 

– … 
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2.3 Entity Resolution 

•  Intuitively, E should be based on how 

similar t and t’ are 

– Similarity measure? 

•  E should be an equivalence relation 

–  If t is the same as t’ and t’ is the same as t’’ 

then t should be the same as t’’ 
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Given	sets	of	tuples	A	compute	equivalence	relaNon	E(t,t’)	which	denotes	that	

tuple	t	and	t’	represent	the	same	enNty.	

	

Defini>on:	En>ty	Resolu>on	Problem	



2.3 Entity Resolution 
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Example:	Two	tuples	(objects)	that	represent	the	same	en>ty	

SSN	 zip	 city	 name	

333-333-3333	 60616	 Chicago	 Peter	

SSN	 zip	 city	 name	

3333333333	 IL	60616	 Petre	



2.3 Entity Resolution 

•  Similarity based on similarity of attribute 

values 

– Which distance measure is appropriate? 

– How do we combine attribute-level distances? 

– Do we consider additional information? 

•  E.g., foreign key connections 

– How similar should duplicates be? 

•  E.g., fixed similarity threshold 

– How to guarantee transitivity of E 

•  E.g., do this afterwards 
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2.3 Entity Resolution 
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Example:	Per	aMribute	similarity	

SSN	 zip	 city	 name	

333-333-3333	 60616	 Chicago	 Peter	

SSN	 zip	 city	 name	

3333333333	 IL	60616	 Petre	

1	 0.8	 0?	 0.6	



2.3 Entity Resolution – Distance 

Measures 

•  Edit-distance 

– measures similarity of two strings 

– d(s,s’) = minimal number of insert, replace, 

delete operations (single character) that 

transform s into s’ 

–  Is symmetric (actually a metric) 

•  Why? 
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2.3 Entity Resolution 
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Given	two	strings	s,	s’	we	define	the	edit	distance	d(s,s’)	as	the	minimum	

number	of	single	character	insert,	replacements,	deleNons	that	transforms	s	

into	s’	

	

Defini>on:	Edit	Distance	

NEED -> STREET 

 

Trivial solution: delete all chars in NEED, then 

insert all chars in STREET 

 

- gives upper bound on distance len(NEED) + 

 len(STREET) = 10 

Example:	



2.3 Entity Resolution 
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NEED -> STREET 

 

Minimal solution: 

 - insert S 

 - insert T 

 - replace N with R 

 - replace D with T 

 

d(NEED,STREET) = 4 

Example:	



2.3 Entity Resolution 

•  Principal of optimality 

– Best solution of a subproblem is part of the best 

solution for the whole problem 

•  Dynamic programming algorithm 

– D(i,j) is the edit distance between prefix of len i of 

s and prefix of len j of s’ 

– D(len(s),len(s’)) is the solution 

– Represented as matrix 

– Populate based on rules shown on the next slide 
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2.3 Entity Resolution 

•  Recursive definition 

– D(i,0) = i 

•  Cheapest way of transforming prefix s[i] into empty 

string is by deleting all i characters in s[i] 

– D(0,j) = j 

•  Same holds for s’[j] 

– D(i,j) = min { 

•  D(i-1,j) + 1 

•  D(i,j-1) + 1 

•  D(i-1,j-1) + d(i,j) with d(i,j) = 1 if s[i] != s[j] and 0 else 

} 
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2.3 Entity Resolution 
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NEED -> STREET 

 

 

 

 

 

 

 

 

 

 

Example:	

S T R E E T 

0 1 2 3 4 5 6 

N 1 

E 2 

E 3 

D 4 



2.3 Entity Resolution 
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NEED -> STREET 

 

 

 

 

 

 

 

 

 

 

Example:	

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 

E 2 

E 3 

D 4 



2.3 Entity Resolution 
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NEED -> STREET 

 

 

 

 

 

 

 

 

 

 

Example:	

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 

E 2 2 

E 3 

D 4 



2.3 Entity Resolution 
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NEED -> STREET 

 

 

 

 

 

 

 

 

 

 

Example:	

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 3 

E 2 2 2 

E 3 3 

D 4 



2.3 Entity Resolution 
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NEED -> STREET 

 

 

 

 

 

 

 

 

 

 

Example:	

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 3 4 

E 2 2 2 3 

E 3 3 3 

D 4 4 



2.3 Entity Resolution 
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NEED -> STREET 

 

 

 

 

 

 

 

 

 

 

Example:	

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 3 4 5 

E 2 2 2 3 3 

E 3 3 3 3 

D 4 4 4 



2.3 Entity Resolution 
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NEED -> STREET 

 

 

 

 

 

 

 

 

 

 

Example:	

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 3 4 5 6 

E 2 2 2 3 3 4 

E 3 3 3 3 3 

D 4 4 4 4 



2.3 Entity Resolution 

63 CS520 - 1) Introduction 

NEED -> STREET 

 

 

 

 

 

 

 

 

 

 

Example:	

S T R E E T 

0 1 2 3 4 5 6 

N 1 1 2 3 4 5 6 

E 2 2 2 3 3 4 5 

E 3 3 3 3 3 3 4 

D 4 4 4 4 4 4 4 



2.3 Entity Resolution – Distance 

Measures 

•  Other sequence-based measures for string 

similarity 

– Needleman-Wunsch 

•  Missing character sequences can be penalized 

differently from character changes 

– Affine Gap Measure 

•  Limit influence of longer gaps 

•  E.g., Peter Friedrich Mueller vs. Peter Mueller 

– Smith-Waterman Measure 

•  More resistant to reordering of elements in the string 

•  E.g., Prof. Franz Mueller vs. F. Mueller, Prof. 
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2.3 Entity Resolution – Distance 

Measures 

•  Other sequence-based measures for string 

similarity 

– Jaro-Winkler 

•  Consider shared prefixes 

•  Consider distance of same characters in strings 

•  E.g., johann vs. ojhann vs. ohannj 

– See textbook for details! 
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2.3 Entity Resolution – Distance 

Measures 

•  Token-set based measures 

– Split string into tokens 

•  E.g., single characters 

•  E.g., words if string represents a longer text 

– Potentially normalize tokens 

•  E.g., word tokens replace word with its stem 

– Generating, generated, generates are all replaced with 

generate 

– Represent string as set (multi-set) of tokens  

  66 CS520 - 1) Introduction 



2.3 Entity Resolution 
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Input string: 

S = “the tokenization of strings is commonly used in 

information retrieval” 

 

Set of tokens: 

Tok(S) = {commonly, in, information, is, of, 

    retrieval, strings, the, tokenization, used} 

 

Bag of tokens: 

Tok(S) = {commonly:1, in:1, information:1, is:1,  

         of:1, retrieval:1,strings:1, the:1, 

    tokenization:1, used:1} 

Example:	Tokeniza>on	



2.3 Entity Resolution – Distance 

Measures 

•  Jaccard-Measure 

– Bs = Tok(s) = token set of string s 

– Jaccard measures relative overlap of tokens in 

two strings 

•  Number of common tokens divided by total number 

of tokens 
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djacc(s, s
0) =

kBs \Bs0k

kBs [Bs0k



2.3 Entity Resolution 
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Input string: 

S = “nanotubes are used in these experiments to…” 

S’= “we consider nanotubes in our experiments…” 

S’’= “we prove that P=NP, thus solving …” 

 

Tok(S)  = {are,experiments,in,nanotubes,these,to,used} 

Tok(S’) = {consider,experiments,in,nanotubes,our,we} 

Tok(S’’)= {P=NP,prove,solving,that,thus,we} 

 

djacc(S,S’)= 

djacc(S,S’’)= 

djacc(S’,S’’)= 

 

Example:	Tokeniza>on	



2.3 Entity Resolution 
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Input string: 

S = “nanotubes are used in these experiments to…” 

S’= “we consider nanotubes in our experiments…” 

S’’= “we prove that P=NP, thus solving …” 

 

Tok(S)  = {are,experiments,in,nanotubes,these,to,used} 

Tok(S’) = {consider,experiments,in,nanotubes,our,we} 

Tok(S’’)= {P=NP,prove,solving,that,thus,we} 

 

djacc(S,S’)  = 3 / 10 = 0.3     

djacc(S,S’’) = 0 / 13 = 0 

djacc(S’,S’’)= 1 / 11 = 0.0909 

 

Example:	Tokeniza>on	



2.3 Entity Resolution 

•  Other set-based measures 

– TF/IDF: term frequency, inverse document 

frequency 

•  Take into account that certain tokens are more common 

than others 

•  If two strings (called documents for TF/IDF) overlap on 

uncommon terms they are more likely to be similar than 

if they overlap on common terms 

–  E.g., the vs. carbon nanotube structure 
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2.3 Entity Resolution 

•  TF/IDF: term frequency, inverse document 

frequency 

– Represent documents as feature vectors 

•  One dimension for each term 

•  Value computed as frequency times IDF 

–  Inverse of frequency of term in the set of all documents 

– Compute cosine similarity between two feature 

vectors 

•  Measure how similar they are in term distribution 

(weighted by how uncommon terms are) 

•  Size of the documents does not matter 

– See textbook for details 
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2.3 Entity Resolution 

•  Entity resolution 

– Concatenate attribute values of tuples and use 

string similarity measure 

•  Loose information encoded by tuple structure 

•  E.g., [Gender:male,Salary:9000]  

-> “Gender:male,Salary:9000” 

or -> “male,9000” 

– Combine distance measures for single attributes 

•  Weighted sum or more complex combinations 

–  E.g.,  

– Use quadratic distance measure 

•  E.g., earth-movers distance 
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d(t, t0) = w1 × dA(t.A, t
0.A) + w2 × dB(t.B, t0.B)



2.3 Entity Resolution 

•  Entity resolution 

– Rule-based approach 

•  Set of if this than that rules 

– Learning-based approaches 

– Clustering-based approaches 

– ProbabilisNc	approaches	to	matching	

– Collective matching 
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2.3 Entity Resolution 

•  Weighted linear combination 

– Say tuples have n attributes 

– wi: predetermined weight of an attribute 

– di(t,t’): similarity measure for the ith attribute 

•  Tuples match if d(t,t’) > β for a threshold β  
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d(t, t0) =

nX

i=0

wi × di(t, t
0)



2.3 Entity Resolution 
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Assumption: SSNs and names are most important, city and 

zip are not very predictive 

 

 

 

 

 

 

 

Example:	Weighted	sum	of	aMribute	similari>es	

SSN	 zip	 city	 name	

333-333-3333	 60616	 Chicago	 Peter	

SSN	 zip	 city	 name	

3333333333	 IL	60616	 Petre	

1	 0.8	 0?	 0.6	

wSSN = 0.4, wzip = 0.05, wcity = 0.15, wname = 0.4

d(t, t0) = 0.4× 1 + 0.05× 0.8 + 0.15× 0 + 0.4× 0.6

= 0.4 + 0.04 + 0 + 0.24

= 0.68



2.3 Entity Resolution 

•  Weighted linear combination 

– How to determine weights? 

•  E.g., have labeled training data and use ML to learn 

weights  

– Use non-linear function? 
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2.3 Entity Resolution 

•  Entity resolution 

– Rule-based approach 

– Learning-based approaches 

– Clustering-based approaches 

– ProbabilisNc	approaches	to	matching	

– Collective matching 
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2.3 Entity Resolution 

•  Rule-based approach 

– Collection (list) of rules 

–  if dname(t,t’) < 0.6 then unmatched 

–  if dzip(t,t’) = 1 and t.country = USA then matched 

–  if t.country != t’.country then unmatched 

•  Advantages 

– Easy to start, can be incrementally improved 

•  Disadvantages 

– Lot of manual work, large rule-bases hard to 

understand 
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2.3 Entity Resolution 

•  Entity resolution 

– Rule-based approach 

– Learning-based approaches 

– Clustering-based approaches 

– Probabilistic approaches to matching 

– Collective matching 
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2.3 Entity Resolution 

•  Learning-based approach 

– Build all pairs (t,t’) for training dataset 

– Represent each pair as feature vector from, e.g., 

similarities 

– Train classifier to return {match,no match} 

•  Advantages 

– automated 

•  Disadvantages 

– Requires training data 
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2.3 Entity Resolution 

•  Entity resolution 

– Rule-based approach 

– Learning-based approaches 

– Clustering-based approaches 

– Probabilistic approaches to matching 

– Collective matching 
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2.3 Entity Resolution 

•  Clustering-based approach 

– Apply clustering method to group inputs 

– Typically hierarchical clustering method 

– Clusters now represent entities 

•  Decide how to merge based on similarity between 

clusters 

•  Advantages 

– Automated, no training data required 

•  Disadvantages 

– Choice of cluster similarity critical 
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2.3 Entity Resolution 

•  Entity resolution 

– Rule-based approach 

– Learning-based approaches 

– Clustering-based approaches 

– Probabilistic approaches to matching 

– Collective matching 

•  See text book 
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2. Overview 

•  Topics covered in this part 

– Causes of Dirty Data 

– Constraint-based Cleaning 

– Outlier-based and Statistical Methods 

– Entity Resolution 

– Data Fusion 
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2.4 Data Fusion 

•  Data Fusion = how to combine (possibly 

conflicting) information from multiple objects 

representing the same entity 

– Choose among conflicting values 

•  If one value is missing (NULL) choose the other one 

•  Numerical data: e.g., median, average 

•  Consider sources: have more trust in certain data 

sources 

•  Consider value frequency: take most frequent value 

•  Timeliness: latest value 
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Outline 

0) Course Info 

1)  Introduction 

2)  Data Preparation and Cleaning 

3)   Schema matching and mapping 

4)  Virtual Data Integration 

5)  Data Exchange 

6)  Data Warehousing  

7)  Big Data Analytics 

8)  Data Provenance 

 

 87 CS520 - 1) Introduction 



CS520

Data Integration, Warehousing, and 

Provenance

3. Schema Matching and Mapping

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

http://www.cs.iit.edu/~glavic/
http://www.cs.iit.edu/~cs520/
http://www.cs.iit.edu/~dbgroup/


Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing 

7) Big Data Analytics

8) Data Provenance
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3. Why matching and mapping?

• Problem: Schema Heterogeneity

– Sources with different schemas store overlapping 

information

–Want to be able to translate data from one schema 

into a different schema

• Datawarehousing

• Data exchange

–Want to be able to translate queries against one 

schema into queries against another schema

• Virtual dataintegration

2
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3. Why matching and mapping?

• Problem: Schema Heterogeneity

–We need to know how elements of different 

schemas are related!

– Schema matching

• Simple relationships such as attribute name of 

relation person in the one schema corresponds to 

attribute lastname of relation employee in the other 

schema

– Schema mapping

• Also model correlations and missing information such 

as links caused by foreign key constraints

3
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3. Why matching and mapping?

• Why both mapping and matching

– Split complex problem into simpler subproblems

• Determine matches and then correlate with constraint 

information into mappings

– Some tasks only require matches

• E.g., matches can be used to determine attributes storing 

the same information in data fusion

–Mappings are naturally an generalization of 

matchings

4
CS520 - 3) Matching and Mapping



3. Overview

• Topics covered in this part

– Schema Matching

– Schema Mappings and Mapping Languages

5
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3.1 Schema Matching

• Problem: Schema Matching

– Given two (or more schemas)

• For now called source and target

– Determine how elements are related

• Attributes are representing the same information

– name = lastname

• Attribute can be translated into an attribute

– MonthlySalary * 12 = Yearly Salary

• 1-1 matches vs. M-N matches

– name to lastname

– name to concat(firstname, lastname)

6
CS520 - 3) Matching and Mapping



3.1 Schema Matching

• Why is this hard?
– Insufficient information: schema does not capture full 

semantics of a domain

– Schemas can be misleading:
• E,g., attributes are not necessarily descriptive

• E.g., finding the right way to translate attributes not obvious

7
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3.1 Schema Matching

• What information to consider?

– Attribute names 

• or more generally element names

– Structure

• e.g., belonging to the same relation

– Data

• Not always available

• Need to consider multiple types to get 

reasonable matching quality

– Single types of information not predictable enough

8
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3.1 Schema Matching

9
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Example: Types of Matching

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name Address Office-phone Office-address Home-phone

Peter Chicago (312) 123 4343 Chicago, IL 60655 (333) 323 3344

Alice Chicago (312) 555 7777 Chicago, IL 60633 (123) 323 3344

Bob New York (465) 123 1234 New York, NY 55443 (888) 323 3344

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3



3.1 Schema Matching

10
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Example: Types of Matching

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name Address Office-phone Office-address Home-phone

Peter Chicago (312) 123 4343 Chicago, IL 60655 (333) 323 3344

Alice Chicago (312) 555 7777 Chicago, IL 60633 (123) 323 3344

Bob New York (465) 123 1234 New York, NY 55443 (888) 323 3344

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

Based on element names we could match 

Office-contact to both Office-phone and Office-address

Based on data we could match

Office-contact to both Office-phone and Home-phone



3.1 Schema Matching

• Typical Matching System Architecture

11
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Matcher Matcher

Combiner

Constraint

Enforcer

Match

Selector

Determine actual matches

Use constraints to modify 
similarity matrix

Combine individual similarity 
matrices

Each matcher uses one type of 
information to compute 
similarity matrix



3.1 Schema Matching

• Matcher

– Input: Schemas

• Maybe also data, documentation

– Output: Similarity matrix

• Storing value [0,1] for each pair of elements from the 

source and the target schema

12
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Matcher Matcher

Combiner

Constraint

Enforcer

Match

Selector

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone



3.1 Schema Matching

• Name-Based Matchers

– String similarities measures

• E.g., Jaccard and other measure we have discussed

– Preprocessing

• Tokenization?

• Normalization

– Expand abbreviations and replace synonyms

• Remove stop words

– In, and, the

13
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3.1 Schema Matching

14
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Example: Types of Matching

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name Address Office-

phone

Office-

address

Home-

phone

Name 1 0 0 0 0

Address 0 1 0 0.4 0

Id 0 0 0 0 0

City 0 0 0 0 0

Office-contact 0 0 0.5 0.5 0



3.1 Schema Matching

• Data-Based Matchers

– Determine how similar the values of two attributes 

are

– Some techniques

• Recognizers

– Dictionaries, regular expressions, rules

• Overlap matcher

– Compute overlap of values in the two attributes

• Classifiers

15
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3.1 Schema Matching

• Recognizers

– Dictionaries

• Countries, states, person names

– Regular expression matchers

• Phone numbers: (\+\d{2})? \(\d{3}\) \d{3} \d{4}

16
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3.1 Schema Matching

• Overlap of attribute domains

– Each attribute value is a token

– Use set-based similarity measure such as Jaccard

• Classifier

– Train classifier to identify values of one attribute A
from the source

• Training set are values from A as positive examples and 
values of other attributes as negative examples

– Apply classifier to all values of attributes from 
target schema

• Aggregate into similarity score

17
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3.1 Schema Matching

• Combiner

– Input: Similarity matrices

• Output of the individual matchers

– Output: Single Similarity matrix

18
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Matcher Matcher

Combiner

Constraint

Enforcer

Match

Selector



3.1 Schema Matching

• Combiner

–Merge similarity matrices produced by the 

matchers into single matrix

– Typical strategies

• Average, Minimum, Max

• Weighted combinations

• Some script 

19
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3.1 Schema Matching

• Constraint Enforcer

– Input: Similarity matrix

• Output of Combiner

– Output: Similarity matrix

20
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Matcher Matcher

Combiner

Constraint

Enforcer

Match

Selector



3.1 Schema Matching

• Constraint Enforcer

– Determine most probably match by assigning each 
attribute from source to one target attribute

• Multiple similarity scores to get likelihood of match 
combination to be true

– Encode domain knowledge into constraints

• Hard constraints: Only consider match combinations 
that fulfill constraints

• Soft constraints: violating constraints results in penalty 
of scores

– Assign cost for each constraint

– Return combination that has the maximal score

21
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3.1 Schema Matching
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Constraint 1: An attribute matched to source.cust-phone

has to get a score of 1 from the phone regexpr matcher 

Constraint 2: Any attribute matched to source.fax has to 

have fax in its name

Constraint 3: If an attribute is matched to 

source.firstname with score > 0.9 then there has to be 

another attribute from the same target table that is 

matched to source.lastname with score > 0.9

Example: Constraints



3.1 Schema Matching

• How to search match combinations

– Full search

• Exponentially many combinations potentially

– Informed search approaches

• A* search 

– Local propagation

• Only local optimizations

23
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3.1 Schema Matching

• A* search

– Given a search problem

• Set of states: start state, goal states

• Transitions about states

• Costs associated with transitions

• Find cheapest path from start to goal states

– Need admissible heuristics h

• For a path p, h computes lower bound for any path from 
start to goal with prefix p

– Backtracking best-first search

• Choose next state with lowest estimated cost

• Expand it in all possible ways

24
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3.1 Schema Matching

• A* search
– Estimated cost of a state f(n) = g(n) + h(n)

• g(n) = cost of path from start state to n

• h(n) = lower bound for path from n to goal state

– No path reaching the goal state from n can have a total cost 
lower than f(n)

25
CS520 - 3) Matching and Mapping



3.1 Schema Matching

• Algorithm

– Data structures

• Keep a priority queue q of states sorted on f(n)

– Initialize with start state

• Keep set v of already visited nodes

– Initially empty

–While q is not empty

• pop state s from head of q

• If s is goal state return

• Foreach s’ that is direct neighbor of s

– If s’ not in v

– Compute f(s’) and insert s’ into q

26
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3.1 Schema Matching

• Application to constraint enforcing

– Source attributes: A1 to An

– Target attributes: B1 to Bm

– States

• Vector of length n with values Bi or * indicating that no 

choice has not been taken

• [B1, *, *, B3]

– Initial state

• [*, *, *, *]

– Goal states

• All states without *

27
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3.1 Schema Matching

• Match Selector
– Input: Similarity matrix

• Output of the individual matchers

– Output: Matches

28
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Matcher Matcher

Combiner

Constraint

Enforcer

Match

Selector



3.1 Schema Matching

• Match Selection

–Merge similarity matrices produced by the 

matchers into single matrix

– Typical strategies

• Average, Minimum, Max

• Weighted combinations

• Some script 

29
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3.1 Schema Matching

• Many-to-many matchers

– Combine multiple columns using a set of functions

• E.g., concat, +, currency exchange, unit exchange

– Large or even unlimited search space

– -> need method that explores interesting part of the 

search space

– Specific searchers

• Only concatenation of columns (limit number of 

combinations, e.g., 2)

30
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3. Overview

• Topics covered in this part

– Schema Matching

– Schema Mappings and Mapping Languages

31
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3.2 Schema Mapping

32
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Assume: We have data in the source as shown above

What data should we create in the target? Copy values based on matches?

Example: Matching Result

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3



3.2 Schema Mapping

• Matches do not determine completely how to 

create the target instance data! (Data 

Exchange)

– How do we choose values for attributes that do not 

have a match?

– How do we combine data from different source 

tables?

• Matches do not determine completely what the 

answers to queries over a mediated schema 

should be! (Virtual Data Integration)

33
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3.2 Schema Mapping
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Example: Types of Matching

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name Address Office-phone Office-address Home-phone

Peter Chicago (312) 123 4343

Alice Chicago (312) 555 7777

Bob New York (465) 123 1234

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

What values should we use for 

Office-address and Home-

phone

How do we know that we 

should join tables Person and 

Address to get the matching 

address for a name?



3.2 Schema Mapping

• Schema mappings

– Generalize matches

– Describe relationship between instances of 
schemas

–Mapping languages

• LAV, GAV, GLAV

• Mapping as Dependencies: tuple-generating 
dependencies

• Mapping generation

– Input: Matches, Schema constraints

– Output:  Schema mappings
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3.2 Schema Mapping

• Instance-based definition of mappings

– Global schema G

– Local schemas S1 to Sn

–Mapping M can be expressed as for each set of 

instances of the local schemas what are allowed 

instances of the global schema

• Subset of (IG x I1 x … x In)

– Useful as a different way to think about mappings, 

but not a practical way to define mappings
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3.2 Schema Mapping

• Certain answers

– Given mapping M and Q

– Instances I1 to In for S1 to Sn

– Tuple t is a certain answer for Q over I1 to In

• If for every instance IG so that (IG x I1 x … x In) in M

then t in Q(IG)

37
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3.2 Schema Mapping

• Languages for Specifying Mappings

• Describing mappings as inclusion 

relationships between views:

– Global as View (GAV)

– Local as View (LAV)

– Global and Local as View (GLAV)

• Describing mappings as dependencies

– Source-to-target tuple-generating dependencies 

(st-tgds)

38
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3.2 Schema Mapping

• Describing mappings as inclusion 
relationships between views:

– Global as View (GAV)

– Local as View (LAV)

– Global and Local as View (GLAV)

• Terminology stems from virtual integration

– Given a global (or mediated, or virtual) schema

– A set of data sources (local schemas)

– Compute answers to queries written against the 
global schema using the local data sources

39
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3.2 Schema Mapping

• Excursion Virtual Data Integration

–More in next section of the course

40
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Global 

Schema

Local

Schema 

1

Local

Schema 

2

Local

Schema 

n

Query

Mappings



3.2 Schema Mapping

• Global-as-view (GAV)

– Express the global schema as views over the local 
schemata

–What query language do we support?

• CQ, UCQ, SQL, …?

– Closed vs. open world assumption

• Closed world: R = Q(S1,…,Sn)

– Content of global relation R is defined as the result of query Q 
over the sources

• Open world: R ⊇Q(S1,…,Sn)

– Relation R has to contain the result of query Q, but may 
contain additional tuples
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3.2 Schema Mapping

42
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Q(X,Z,A) :- Person(X,Z,A) 

= Q(X,Z,A) :- Person(X,Y), Address(Y,Z,A) 

Since heads of LHS and RHS have to be the same we can use 

simpler notation without the head of the view expression:

Person(X,Z,A) = Person(X,Y), Address(Y,Z,A) 

Example: GAV

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone



3.2 Schema Mapping
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Q(X’,Y’,Z’,A’) :- Person(X’,Y’,Z’,A’) 

= Q(X,Z,A, ????) :- Person(X,Y), Address(Y,Z,A) 

Cannot be expressed as GAV mapping! No way to compute the 

Home-phone attribute values since there is no 

correspondence with a source attribute!

Example: GAV not possible

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Home-phone



3.2 Schema Mapping

• Global-as-view (GAV)

• Solutions (mapping M)

– Unique data exchange solution (later)

– Intuitively, execute queries over local instance that 

produced global instance
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3.2 Schema Mapping

• Global-as-view (GAV)

• Answering Queries

– Simply replace references to global tables with the view 

definition

• Mapping R(X,Y) = S(X,Y), T(Y,Z)

• Q(X) :- R(X,Y)

• Rewrite into

• Q(X) :- S(X,Y), T(Y,Z)

45
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3.2 Schema Mapping
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GAV mapping:

P2(X,Z,A) = P1(X,Y), Address(Y,Z,A)

Query – Select Name from Persons

Q(A) :- P2(A,B,C)

View unfolding: Replace P2 with its definition

Q(A) :- P1(A,Y), Address(Y,B,C)

Example: GAV – query answering 

Local Schema

P1

Name

Address

Address

Id

City

Office-contact

Global Schema

P2

Name

Address

Office-phone



3.2 Schema Mapping

• Global-as-view (GAV) Discussion
– Hard to add new source

• -> have to rewrite the view definitions

– Does not deal with missing values

– Easy query processing
• -> view unfolding
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3.2 Schema Mapping

• Local-as-view (LAV)

– Express the local schema as views over the global 
schemata

–What query language do we support?

• CQ, UCQ, SQL, …?

– Closed vs. open world assumption

• Closed world: Sij = Q(G)

– Content of local relation Sij is defined as the result of query Q 
over the sources

• Open world: Sij ⊇Q(G)

– Local relation Sij has to contain the result of query Q, but 

may contain additional tuples
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3.2 Schema Mapping
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Person(X,Y,Z) = P2(X,Y,Z,A,B)

Example: LAV

Local Schema

Person

Name

City

Office-contact

Global Schema

P2

Name

Address

Office-phone

Office-address

Home-phone



3.2 Schema Mapping
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Cannot deal with attributes from the local schema that do not have a 

correspondence with attributes in the global schema

Person(X,???) = Person(X,Y,Z,A,B)

Address(???,Y,Z) = Person(X,Y,Z,A,B)

Example: LAV not possible

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Office-address

Home-phone



3.2 Schema Mapping

• Local-as-view (LAV)

• Solutions (mapping M)

– Incompleteness possible

=> There may exist many solutions

51
CS520 - 3) Matching and Mapping



3.2 Schema Mapping

• Local-as-view (GAV)

• Answering Queries

– Need to find equivalent query using only the views 
(this is a hard problem, more in next course 
section)

• Mapping S(X,Z) = R(X,Y), T(Y,Z)

• Q(X) :- R(X,Y)

• Rewrite into ???

– Need to come up with missing values

– Give up query equivalence?

52
CS520 - 3) Matching and Mapping



3.2 Schema Mapping

• Local-as-view (LAV) Discussion

– Easy to add new sources

• -> have to write a new view definition

• May take some time to get used to expressing sources 

like that

– Still does not deal gracefully with all cases of 

missing values

• Loosing correlation

– Hard query processing

• Equivalent rewriting using views only

• Later: give up equivalence
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3.2 Schema Mapping

• Global-Local-as-view (GLAV)

– Express both sides of the constraint as queries

–What query language do we support?

• CQ, UCQ, SQL, …?

– Closed vs. open world assumption

• Closed world: Q’(G) = Q(S)

• Open world: Q’(G) ⊇Q(S)
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3.2 Schema Mapping
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Source: Q(X,Y,Z) :- Person(X’,Y’), Address(Y’,Z’,A’)

=

Target: Q(X’,Y’,Z’) :- Person(X’,Y’,Z’,A’,B’)

Example: GLAV

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Office-address

Home-phone



3.2 Schema Mapping

• Local-as-view (GLAV) Discussion

– Kind of best of both worlds (almost)

– Complexity of query answering is the same as for LAV

– Can address the lost correlation and missing values 
problems we observed using GAV and LAV
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3.2 Schema Mapping

• Source-to-target tuple-generating 

dependencies (st-tgds)

– Logical way of expressing GLAV mappings

• LHS formula is a conjunction of source (local) relation 

atoms (and comparisons

• RHS formula is a conjunction of target (global) relation 

atoms and comparisons

– Equivalence to a containment constraint:

Q’(G) ⊇Q(S)
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∀~x : �(~x) → ∃~y :  (~x, ~y)



3.2 Schema Mapping
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Source: Q(X,Y,Z) :- Person(X’,Y’), Address(Y’,Z’,A’)

=

Target: Q(X’,Y’,Z’) :- Person(X’,Y’,Z’,A’,B’)

Example: Types of Matching

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Office-address

Home-phone

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)



3.2 Schema Mapping

• Generating Schema Mappings

– Input: Schemas (Constraints), matches

– Output: Schema mappings

• Ideas:

– Schema matches tell us which source attributes 

should be copied to which target attributes

– Foreign key constraints tell us how to join in the 

source and target to not loose information
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3.2 Schema Mapping

• Clio

– Clio is a data exchange system prototype 

developed by IBM and University of Toronto 

researchers

– The concepts developed for Clio have been 

implemented in IBM InfoSphere Data Architect

– Clio does matching, mapping generation, and data 

exchange

• For now let us focus on the mapping generation
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3.2 Schema Mapping

• Clio Mapping Generation Algorithm
– Inputs: Source and Target schemas, matches

– Output: Mapping from source to target schema

– Note, Clio works for nested schemas such as XML too not 
just for relational data. 
• Here we will look at the relational model part only
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3.2 Schema Mapping

• Clio Algorithm Steps

– 1) Use foreign keys to determine all reasonable 

ways of joining data within the source and the 

target schema

• Each alternative of joining tables in the source/target is 

called a logical association

– 2) For each pair of source-target logical 

associations: Correlate this information with the 

matches to determine candidate mappings
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3.2 Schema Mapping

• Clio Algorithm: 1) Find logical associations

– This part relies on the chase procedure that first 

introduced to test implication of functional 

dependencies (‘77)

– The idea is that we start use a representation of 

foreign keys are inclusion dependencies (tgds)

• There are also chase procedures that consider edgs (e.g., 

PKs)

– Starting point are all single relational atoms

• E.g., R(X,Y)
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3.2 Schema Mapping

• Chase step

–Works on tabelau: set of relational atoms

– A chase step takes one tgd t where the LHS is 
fulfilled and the RHS is not fulfilled

• We fulfill the tgd t by adding new atoms to the tableau 
and mapping variables from t to the actually occuring
variables from the current tablau

• Chase

– Applying the chase until no more changes

– Note: if there are cyclic constraints this may not 
terminate
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3.2 Schema Mapping

• Clio Algorithm: 1) Find logical associations

– Compute chase R(X) for each atom R in source and target

– Each chase result is a logical association

– Intuitively, each such logical association is a possible way 
to join relations in a schema based on the FK constraints
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3.2 Schema Mapping

• Clio Algorithm: 2) Generate Candidate 
Mappings

– For each pair of logical association AS in the 
source and AT in the target produced in step 1

– Find the matches that are covered by AS and AT 

• Matches that lead from an element of AS to an element 
from AT

– If there is at least one such match then create 
mapping by equating variables as indicated by the 
matches and create st-tgd with AS in LHS and AT 

in RHS
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Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing 

7) Big Data Analytics

8) Data Provenance
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Outline 

0) Course Info 

1)  Introduction 

2)  Data Preparation and Cleaning 

3)  Schema matching and mapping 

4)   Virtual Data Integration 

5)  Data Exchange 

6)  Data Warehousing  

7)  Big Data Analytics 

8)  Data Provenance 
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4. Virtual Data Integration 

•  Virtual Data Integration 

2 CS520 - 3) Matching and Mapping 

Global	

Schema	

Local	

Schema	

1	

Local	

Schema	

2	

Local	

Schema	

n	

Query	

Mappings	



4. Virtual Data Integration 

Problems: 

•  How to create mappings? 

– Discussed in previous part of the course 

•  How to compute query Q 

– This is the main focus of this part 
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4. Query Answering with Views 

•  How to compute query Q over global 
schema based on source schemas only? 

– What language is used to express mappings? 

– What language due we allow for Q? 

– What language(s) can we use to query local 
sources? 

– What language can we use to compute Q from 
query results returned by local sources? 

– How to deal with incompleteness? 

4 CS520 - 5) Data Exchange 



4.1 Query Answering with Views 
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Query:										Q(Name) :- Person(Name, A, OP, OA, HP). 

Example:	Solu-ons	

Person 

Name 

Address 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (465)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	



4.1 Query Answering with Views 

6 CS520 - 5) Data Exchange 

	

	

	

	

	

	

	

	

	

	

	

Query:										Q(Name) :- Person(Name, A, OP, OA, HP). 

 

RewriKen	query	over	the	source:											

        Q(Name) :- Person(Name, AI),  

                   Address(AI,A,OP). 

 

Example:	Solu-ons	

Person 

Name 

Address 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (465)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	

Name	

Peter	

Alice	

Bob	



4.1 Query Answering with Views 

7 CS520 - 5) Data Exchange 

	

	

	

	

	

	

Query:										Q(Home-ph) :- Person(N, A, OP, OA, Home-ph). 

Example:	Solu-ons	

Person 

Name 

Address 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (465)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	

Values	of	home-phone		are	not	

available	in	the	source	



4. Query Answering with Views 

•  Problems 

– How to determine whether query can be answered 
at all? 

– Given a rewriting of the query using views, how 
do we know it is correct? 

– What to do if views can only return some of the 
query results? 

8 CS520 - 5) Data Exchange 



Motivating Example (Part 1) 

Movie(ID,Ttle,year,genre)	

Director(ID,director)	

Actor(ID,	actor)	

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V
1
(T,Y,D) :−Movie(I,T,Y,G),Y ≥1940,G ="comedy"

Director(I,D),Actor(I,D)

Q'(T,Y,D) :−V1(T,Y,D),Y ≥1950V
1
⊇ Q ⇒

Containment	is	enough	to	show	that	V1	can	be	used	

to	answer	Q.	



Motivating Example (Part 2) 

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V2(I,T,Y ) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Q' '(T,Y,D) :−V
2
(I,T,Y ),V

3
(I,D)

V
3
(I,D) :−Director(I,D),Actor(ID,D)

Containment	does	not	hold,	but	intuiTvely,	V2	and	V3	are	

useful	for	answering	Q.		

How	do	we	express	that	intuiTon?	

	

Answering	queries	using	views!	



Problem Definition 

Input:	Query	Q	

										View	definiTons:	V1	,…	,Vn	

A	rewriTng:	a	query	Q’	that	refers	only	
to	the	views	and	interpreted	predicates	

(comparisons)	

An	equivalent	rewriTng	of	Q	using	V1	,…	,Vn:	

	a	rewriTng	Q’,	such	that	Q’ ⇔	Q	



Naïve approach 

•  Given Q and views  

– Randomly combine views into a query Q’ 

– Check equivalence of Q’ and Q 

–  If Q’ is equivalent we are done 

– Else repeat 

•  Why is this not good? 

– There are infinitely many ways of combining 
views 

•  E.g., V, V x V, V x V x V, … 

– We are not using any information in the query 



Motivating Example (Part 3) 

Movie(ID,Ttle,year,genre)	

Director(ID,director)	

Actor(ID,	actor)	

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V
3
(I,D) :−Director(I,D),Actor(ID,D)

V4 (I,T,Y ) :−Movie(I,T,Y,G),Y ≥1960,G ="comedy"

Q' ' '(T,Y,D) :−V
4
(I,T,Y ),V

3
(I,D)

maximally-contained	rewri-ng	



Maximally-Contained Rewritings 

Input: Query Q 

          Rewriting query language L  

          View definitions: V1,…,Vn 

Q’ is a maximally-contained rewriting of 

Q given V1,…,Vn and L if: 

1. Q’ ∈ L,  

2. Q’ ⊆ Q, and 

3. there is no Q’’ in L such 

that 

    Q’’ ⊆ Q and Q’⊂ Q’’ 



Why again? 

Global	

Schema	

Local	

Schema	

1	

Local	

Schema	

2	

Local	

Schema	

n	

Query	

Mappings	

LAV/GLAV!	



Other use-cases 

•  Query	opTmizaTon	with	materialized	views	

– Need	equivalent	rewriTngs	

–  Implemented	in	many	commercial	DBMS	

– Here	interest	is	cost:	how	to	speed-up	query	

processing	by	using	materialized	views	



Exercise: which of these views 

can be used to answer Q? 

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V2(I,T,Y ) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

V
3
(I,D) :−Director(I,D),Actor(I,D)

V6(T,Y ) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

V7(I,T,Y ) :−Movie(I,T,Y,G),Y ≥1950,

G ="comedy",Award(I,W )

V
8
(I,T) :−Movie(I,T,Y,G),Y ≥1940,G ="comedy"



Algorithms for answering queries 

using views 

•  Step	1:	we’ll	bound	the	space	of	possible	
query	rewriTngs	we	need	to	consider	(no	

comparisons)	

•  Step	2:	we’ll	find	efficient	methods	for	

searching	the	space	of	rewriTngs	

– Bucket	Algorithm,	MiniCon	Algorithm	

•  Step	2b:	we	consider	“logical	approaches”	to	
the	problem:	

– The	Inverse-Rules	Algorithm	



Bounding the Rewriting Length 

Q(X) :−p
1
(X

1
),..., pn (Xn )Query: 

Q'(X) :−V
1
(X

1
),...,V

m
(X

m
)Rewriting: 

  

Q' '(X) :−g
1

1
,...gk

1

   
,...,g

1

m
,...,g j

m

     
Expansion: 

Proof: Only n subgoals in Q can contribute to 

the image of the containment mapping ϕ 

ϕ 

Theorem:	if	there	is	an	equivalent	rewriTng,	

there	is	one	with	at	most	n	subgoals.	



Complexity Result 

[LMSS, 1995] 

•  Applies	to	queries	with	no	interpreted	

predicates.	

•  Finding	an	equivalent	rewriTng	of	a	query	

using	views	is	NP-complete	

– Need	only	consider	rewriTngs	of	query	length	or	

less.	

•  Maximally-contained	rewriTng:	

– Union	of	all	conjuncTve	rewriTngs	of	length	n	or	

less.	



The Bucket Algorithm 

Key	idea:		

– Create	a	bucket	for	each	subgoal	g	in	the	query.	

– The	bucket	contains	views	that	contribute	to	g.	

– Create	rewriTngs	from	the	Cartesian	product	of	

the	buckets	(select	one	view	for	each	goal)	

•  Step	1:	assign	views	with	renamed	vars	to	

buckets	

•  Step	2:	create	rewriTngs,	refine	them,	unTl	

equivalent/all	contained	rewriTng(s)	are	

found	



The Bucket Algorithm 

Step	1:		

– We	want	to	construct	buckets	with	views	that	

have	parTally	mapped	variables	

– For	each	goal	g	=	R	in	query	

– For	each	view	V		

– For	each	goal	v	=	R	in	V	

•  If	the	goal	has	head	variables	in	the	same	places	as	g	

then		

–  rename	the	view	head	variables	to	match	the	query	goal	vars	

–  choose	a	new	unique	name	for	each	other	var	

–  add	the	resulTng	view	atom	to	the	bucket	



The Bucket Algorithm 

Step	1	Intui-on		

– A	view	can	only	be	used	to	provide	informaTon	

about	a	goal	R(X)	if	it	has	a	goal	R(Y)	

•  Q(X) :- R(X,Y) 

•  V(X) :- S(X,Y) 

–  If	the	query	goal	contains	variables	that	are	in	the	

head	of	the	query,	then	the	view	is	only	useful	if	it	

gives	access	to	these	values	(they	are	in	the	head)	

•  Q(X) :- R(X,Y) 

•  V(X) :- S(X,Y), R(Y,Z) 



Bucket Algorithm in Action 

Q(ID,Dir) :−Movie(ID, title, year,genre),Revenues(ID,amount),

Director(ID,dir),amount ≥ $100M

View atoms that can contribute to Movie: 

 V1(ID,year’), V2(ID,A’), V4(ID,D’,year’’) 

V1(I,Y ) :−Movie(I,T,Y,G),Revenues(I,A), I ≥ 5000,A ≥ $200M

V2 (I,A) :−Movie(I,T,Y,G),Revenues(I,A)

V3(I,A) :−Revenues(I,A),A ≤ $50M

V4(I,D,Y ) :−Movie(I,T,Y,G),Director(I,D), I ≤ 3000



Buckets and Cartesian product 

Movie(ID,-tle,					

year,genre) 
Revenues(ID,	

amount) 
Director(ID,dir) 

V1(ID,year) V1(ID,Y’) V4(ID,Dir,Y’) 

V2(ID,A’) V2(ID,amount) 

V4(ID,D’,year) 

q
1
'(ID,dir) :−V

1
(ID,year),V

1
(ID,y '),V

4
(ID,dir,y')

Consider	first	candidate	rewriTng:	first	V1	subgoal	

is	redundant,	and	V1	and	V4	are	mutually	

exclusive.	



Next Candidate Rewriting 

Movie(ID,-tle,year,genre) Revenues(ID,amount) Director(ID,dir) 

V1(ID,year) V1(ID,Y’) V4(ID,Dir,Y’) 

V2(ID,A’) V2(ID,amount) 

V4(ID,D’,year) 

q
2
'(ID,dir) :−V

2
(ID,A'),V

2
(ID,amount),V

4
(ID,dir,y')

q2 '(ID,dir) :−V2(ID,amount),V4 (ID,dir,y '),

amount ≥ $100M



The Bucket Algorithm 

Step	2:		

– For	each	combinaTon	of	one	element	of	each	

bucket:	

– Create	query	Q’	with	query	Q’s		head	and	list	all	

these	view	atoms	in	the	body	

–  If	Q’	equivalent	to	Q	(or	contained	in	Q)	

•  Done	(equivalent)	

•  Add	to	union	of	CQs	for	contained	case	

–  If	not	try	to	add	comparisons	



 

The Bucket Algorithm: Summary

  
•  Cuts	down	the	number	of	rewriTng	that	need	

to	be	considered,	especially	if	views	apply	

many	interpreted	predicates.		

•  The	search	space	can	sTll	be	large	because	the	

algorithm	does	not	consider	the	interacTons	

between	different	subgoals.	

– See	next	example.	



The MiniCon Algorithm 

Q(title,year,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,dir)

V5(D,A) :−Director(I,D),Actor(I,A)

Intuition: The variable I is not in the head of V5,  

hence V5 cannot be used in a rewriting. 

MiniCon discards this option early on, while the 

Bucket algorithm does not notice the interaction. 



MinCon Algorithm Steps 

•  1)	Create	MiniCon	descrip-ons	(MCDs):	

– Homomorphism	on	view	heads	

– Each	MCD	covers	a	set	of	subgoals	in	the	query	

with	a	set	of	subgoals	in	a	view	

•  2)	Combina-on	step:	

– Any	set	of	MCDs	that	covers	the	query	subgoals	

(without	overlap)	is	a	rewriTng	

– No	need	for	an	addiTonal	containment	check!	



MiniCon Descriptions (MCDs) 
An atomic fragment of the ultimate containment mapping 

Q(title,act,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,act)

V (I,D,A) :−Director(I,D),Actor(I,A)

MCD: 

  mapping:  

 

  covered subgoals of Q: {2,3} 

ID→ I

dir→ D

act→ A



MCDs: Detail 1 

Q(title,year,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,dir)

V (I,D,A) :−Director(I,D),Actor(I,A)

MCD: 

  mapping:  

 

  covered subgoals of Q: {2,3} 

ID→ I

dir→ D

V '(I,D,D) :−Director(I,D),Actor(I,D)

Need to specialize the view first: 



MCDs: Detail 2 

Q(title,year,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,dir)

V (I,D,D) :−Director(I,D),Actor(I,D),

Movie(I,T,Y,G)

MCD: 

  mapping:  

 

  covered subgoals of Q still: {2,3} 

ID→ I

dir→ D

Note:	the	third	subgoal	of	the	view	is	not	included	

in	the	MCD.	



Inverse-Rules Algorithm 

•  A	“logical”	approach	to	AQUV	

•  Produces	maximally-contained	rewriTng	in	

polynomial	Tme	

– To	check	whether	the	rewriTng	is	equivalent	to	

the	query,	you	sTll	need	a	containment	check.	

•  Conceptually	simple	and	elegant	

– Depending	on	your	comfort	with	Skolem	

funcTons…	



Inverse Rules by Example 

V
7
(I,T,Y,G) :−Movie(I,T,Y,G),Director(I,D),Actor(I,D)

And	the	following	tuple	in	V7:		

										V7(79,ManhaKan,1979,Comedy)	

	

Then	we	can	infer	the	tuple:	

											Movie(79,ManhaKan,1979,Comedy)	

Hence,	the	following	‘rule’	is	sound:	
IN1:	Movie(I,T,Y,G)	:-	V7(I,T,Y,G)	

Given	the	following	view:		



Skolem Functions 

V
7
(I,T,Y,G) :−Movie(I,T,Y,G),Director(I,D),Actor(I,D)

Now suppose we have the tuple 

         V7(79,Manhattan,1979,Comedy) 

 

Then we can infer that there exists some 

director. Hence, the following rules hold (note 

that they both use the same Skolem function): 

 

IN2: Director(I,f1(I,T,Y,G)):- V7(I,T,Y,G) 

IN3: Actor(I,f1(I,T,Y,G)):- V7(I,T,Y,G) 

 



Inverse Rules in General 

Rewriting = Inverse Rules + Query 

Given	Q2,	the	rewriTng	would	include:	

	IN1,	IN2,	IN3,	Q2.		

Q
2
(title,year,genre) :−Movie(ID,title,year,genre)

Given	input:	V7(79,ManhaKan,1979,Comedy)	

Inverse	rules	produce:	

			Movie(79,ManhaKan,1979,Comedy)	

				Director(79,f1(79,Manha>an,1979,Comedy))	

				Actor(79,f1(79,Manha>an,1979,Comedy))	

				Movie(Manha>an,1979,Comedy)	

(the	last	tuple	is	produced	by	applying	Q2).	



Comparing Algorithms 

•  Bucket	algorithm:	

– Good	if	there	are	many	interpreted	predicates	

– Requires	containment	check.	Cartesian	product	

can	be	big	

•  MiniCon:		

– Good	at	detecTng	interacTons	between	subgoals	



Algorithm Comparison 

(Continued) 

•  Inverse-rules	algorithm:	

– Conceptually	clean	

– Can	be	used	in	other	contexts	(see	later)	

– But	may	produce	inefficient	rewriTngs	because	it	

“undoes”	the	joins	in	the	views	(see	next	slide)	

•  Experiments	show	MiniCon	is	most	efficient.	

•  Even	faster:	
Konstantinidis, G. and Ambite, J.L, Scalable query rewriting: a 

graph-based approach. SIGMOD ‘11	



Inverse Rules Inefficiency 

Example 

Query and view :

Q(X,Y ) :−e
1
(X,Z ),e

2
(Z,Y )

V (A,B) :−e
1
(A,C),e

2
(C,B)

Inverse rules :

e
1
(A, f

1
(A,B)) :−V (A,B)

e
2
( f
1
(A,B),B) :−V (A,B)

Now we need to re-compute the join… 



View-Based Query Answering 

•  Maximally-contained	rewriTngs	are	

parameterized	by	query	language.	

•  More	general	quesTon:	

– Given	a	set	of	view	definiTons,	view	instances	and	

a	query,	what	are	all	the	answers	we	can	find?	

•  We	introduce	certain	answers	as	a	

mechanism	for	providing	a	formal	answer.	



View Instances = Possible DB’s 

V
8
(dir) :−Movie(ID,dir,actor)

V
9
(actor) :−Movie(ID,dir,actor)

V8: {Allen,  Copolla} 

V9: {Keaton, Pacino} 

Consider	the	two	views:	

And	suppose	the	extensions	of	the	views	

are:		



Possible Databases 

There	are	mulTple	databases	that	saTsfy	the	

above	view	definiTons:	(we	ignore	the	first	

argument	of	Movie	below)	

	

DB1.	{(Allen,	Keaton),	(Coppola,	Pacino)}	

DB2.	{(Allen,	Pacino),	(Coppola,	Keaton)}	

	

If	we	ask	whether	Allen	directed	a	movie	in	

which	Keaton	acted,	we	can’t	be	sure.	

Certain	answers	are	those	true	in	all	databases	that	are	

consistent	with	the	views	and	their	extensions.	



Certain Answers: Formal Definition  
[Open-world Assumption] 

•  Given:	
– Views:	V1,…,Vn	

– View	extensions	v1,…vn	

– A	query	Q	

•  A	tuple	t	is	a	certain	answer	to	Q	under	the	
open-world	assumpTon	if	t	∈	Q(D)	for	all	
databases	D	such	that:	

– Vi(D)	⊆	vi		for	all	i.	



Certain Answers 
[Closed-world Assumption] 

•  Given:	
– Views:	V1,…,Vn	

– View	extensions	v1,…vn	

– A	query	Q	

•  A	tuple	t	is	a	certain	answer	to	Q	under	the	
open-world	assumpTon	if	t	∈	Q(D)	for	all	
databases	D	such	that:	

– Vi(D)	=	vi		for	all	i.	



Certain Answers: Example 

V
8
(dir) :−Director(ID,dir)

V
9
(actor) :−Actor(ID,actor)

Q(dir,actor) :−Director(ID,dir),Actor(ID,actor)

V8: {Allen} 

V9: {Keaton} 

Under	closed-world	assumpTon:	

	single	DB	possible	⇒	(Allen,	Keaton)		

	

Under	open-world	assumpTon:	

	no	certain	answers.	



The Good News 

•  The	MiniCon	and	Inverse-rules	algorithms	

produce	all	certain	answers	

– Assuming	no	interpreted	predicates	in	the	query	

(ok	to	have	them	in	the	views)	

– Under	open-world	assumpTon	

– Corollary:	they	produce	a	maximally-contained	

rewriTng	



In Other News… 

•  Under closed-world assumption finding all 

certain answers is co-NP hard! 

v
1
(X) :−color(X,Y )

v
2
(Y ) :−color(X,Y )

v
3
(X,Y ) :−edge(X,Y )

Proof: encode a graph - G = (V,E) 

I(V
1
) =V

I(V
2
) = {red,green,blue}

I(V
3
) = E

q() :−edge(X,Y ),color(X,Z),color(Y,Z)

q has a certain tuple iff G is not 3-colorable 



Interpreted Predicates 

•  In	the	views:	no	problem	(all	results	hold)	

•  In	the	query	Q:	

–  If	the	query	contains	interpreted	predicates,	

finding	all	certain	answers	is	co-NP-hard	even	

under	open-world	assumpTon	

– Proof:	reducTon	to	CNF.		
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5. Data Exchange 

•  Virtual Data Integration 

– Never materialize instances for the global schema 

– Data of global schema only “visible” through 
queries 

•  Data Exchange 

– Materialize instance of global instance 

•  We call it the “target schema” 

– Based on information from an instance of the local 
schema 

•  We call this the “source schema” 

 

2 CS520 - 5) Data Exchange 



5. Data Exchange 

•  Data Exchange Problem Statement 

•  Input: 

– Given a source and a target schema 

– + instance of the source schema 

– + set of schema mappings (here st-tgds) 

•  Output: 

–  Instance of the target schema that fulfills 
constraints 

3 CS520 - 5) Data Exchange 

Source	
  Schema	
  S	
   Target	
  Schema	
  T	
  

Source	
  Data	
   Target	
  Data	
  

M	
  	
  



5. Data Exchange 

4 CS520 - 5) Data Exchange 

Example:	
  Types	
  of	
  Matching	
  

Person 

Name 

Address 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Id	
   City	
   Office-­‐contact	
  

1	
   Chicago	
   (312)	
  123	
  4343	
  

2	
   Chicago	
   (312)	
  555	
  7777	
  

3	
   New	
  York	
   (465)	
  123	
  1234	
  

Name	
   Address	
  

Peter	
   1	
  

Alice	
   3	
  

Bob	
   3	
  

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)



5. Data Exchange 

5 CS520 - 5) Data Exchange 

Example:	
  Types	
  of	
  Matching	
  

Person 

Name 

Address 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Name	
   Address	
   Office-­‐phone	
   Office-­‐address	
   Home-­‐phone	
  

Peter	
   Chicago	
   (312)	
  123	
  4343	
  

Alice	
   Chicago	
   (312)	
  555	
  7777	
  

Bob	
   New	
  York	
   (465)	
  123	
  1234	
  

Id	
   City	
   Office-­‐contact	
  

1	
   Chicago	
   (312)	
  123	
  4343	
  

2	
   Chicago	
   (312)	
  555	
  7777	
  

3	
   New	
  York	
   (465)	
  123	
  1234	
  

Name	
   Address	
  

Peter	
   1	
  

Alice	
   2	
  

Bob	
   3	
  



5.1 Data Exchange Setting 

6 CS520 - 5) Data Exchange 

Source	
  Schema	
  S	
   Target	
  Schema	
  T	
  

Source	
  Data	
  

M	
  	
  

Data	
  Exchange	
  seCng	
  is	
  a	
  tuple	
  (S,T,I,Σ)	
  

•  Schema	
  S	
  

•  Schema	
  T	
  

•  Instance	
  I	
  of	
  S	
  

•  Mappings	
  Σ	
  from	
  S	
  to	
  T	
  

	
  

DefiniEon:	
  Data	
  Exchange	
  SeFng	
  



5.1 Data Exchange Solutions 

7 CS520 - 5) Data Exchange 

Source	
  Schema	
  S	
   Target	
  Schema	
  T	
  

Source	
  Data	
   Target	
  Data	
  

M	
  	
  

Given	
  data	
  exchange	
  seCng	
  is	
  a	
  tuple	
  (S,T,I,Σ)	
  	
  

•  Find	
  instance	
  J	
  of	
  T	
  so	
  that	
  (I,J)	
  fulfills	
  mappings	
  Σ	
  

•  J	
  uses	
  values	
  from	
  a	
  universe	
  U	
  and	
  set	
  of	
  labeled	
  nulls	
  N	
  

DefiniEon:	
  Data	
  Exchange	
  SoluEon	
  



5.1 Data Exchange Solutions 

8 CS520 - 5) Data Exchange 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Can	
  we	
  come	
  up	
  with	
  a	
  soluQon?	
  

Example:	
  SoluEons	
  

Person 

Name 

Address 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Id	
   City	
   Office-­‐contact	
  

1	
   Chicago	
   (312)	
  123	
  4343	
  

2	
   Chicago	
   (312)	
  555	
  7777	
  

3	
   New	
  York	
   (465)	
  123	
  1234	
  

Name	
   Address	
  

Peter	
   1	
  

Alice	
   2	
  

Bob	
   3	
  

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)



5.1 Data Exchange Solutions 

9 CS520 - 5) Data Exchange 

Example:	
  SoluEons	
  

Person 

Name 

Address 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Name	
   Address	
   Office-­‐phone	
   Office-­‐address	
   Home-­‐phone	
  

Peter	
   Chicago	
   (312)	
  123	
  4343	
   NULL	
   NULL	
  

Alice	
   Chicago	
   (312)	
  555	
  7777	
   NULL	
   NULL	
  

Bob	
   New	
  York	
   (465)	
  123	
  1234	
   NULL	
   NULL	
  

Id	
   City	
   Office-­‐contact	
  

1	
   Chicago	
   (312)	
  123	
  4343	
  

2	
   Chicago	
   (312)	
  555	
  7777	
  

3	
   New	
  York	
   (465)	
  123	
  1234	
  

Name	
   Address	
  

Peter	
   1	
  

Alice	
   2	
  

Bob	
   3	
  

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)



5.1 Number of Solutions 

•  How many solutions exists? 

– Depends on how whether we use existentially 
quantified variables in the mappings? 

•  i.e., do we have attributes for which we have to invent 
values? 

– What attribute values do we allow? 

•  Surely values from the source instance (active domain) 

•  NULL? 
– Need multiple NULL values as placeholders for missing values 

that have to be the same 

– Note that this is the open-world assumption 

•  there are infinitely many solutions (if domains infinite) 

10 CS520 - 5) Data Exchange 



5.1 Number of Solutions 

•  Target instance domain 

– Consider a universe U 

•  Source instance can only use values from U 

– Consider an infinite set N of labeled nulls 

•  Target instance can use these as placeholders for 
missing values 

11 CS520 - 5) Data Exchange 



5.1 Data Exchange Solutions 

12 CS520 - 5) Data Exchange 

Example:	
  MulEple	
  SoluEons	
  

Person 

Name 

Address 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Name	
   Address	
   Office-­‐phone	
   Office-­‐address	
   Home-­‐phone	
  

Peter	
   Chicago	
   (312)	
  123	
  4343	
   X	
   Y	
  

Alice	
   Chicago	
   (312)	
  555	
  7777	
   A	
   A	
  

Bob	
   New	
  York	
   (465)	
  123	
  1234	
   C	
   D	
  

Name	
   Address	
   Office-­‐phone	
   Office-­‐address	
   Home-­‐phone	
  

Peter	
   Chicago	
   (312)	
  123	
  4343	
   X	
   Y	
  

Alice	
   Chicago	
   (312)	
  555	
  7777	
   A	
   A	
  

Bob	
   New	
  York	
   (465)	
  123	
  1234	
   C	
   D	
  

Heinzbert	
   Pferdegert	
   111-­‐222-­‐3798	
   E	
  

Name	
   Address	
   Office-­‐phone	
   Office-­‐address	
   Home-­‐phone	
  

Peter	
   Chicago	
   (312)	
  123	
  4343	
   Hometown	
   111-­‐322-­‐3454	
  

Alice	
   Chicago	
   (312)	
  555	
  7777	
   A	
   A	
  

Bob	
   New	
  York	
   (465)	
  123	
  1234	
   Other	
  town	
   D	
  



5.1 Certain answers (… again) 

•  Have multiple solutions 

– Define certain answers for queries as before 

– Every tuple t so that t is in the result of query Q 
over any valid solution J 

•  What’s new? 

– Want to materialize an instance so that computing 
certain answers over this instance is easy 

•  Not immediately clear that this actually possible 

13 CS520 - 5) Data Exchange 



5.1 Data Exchange Solutions 

14 CS520 - 5) Data Exchange 

How	
  general	
  	
  is	
  soluQon	
  (in	
  terms	
  of	
  certain	
  answers)?	
  

	
  

Consider	
  query	
  	
  

Q(n) :- P(n,a,op,oa,hp), oa = Hometown 

Example:	
  SoluEon	
  generality	
  

Name	
   Address	
   Office-­‐phone	
   Office-­‐address	
   Home-­‐phone	
  

Peter	
   Chicago	
   (312)	
  123	
  4343	
   X	
   Y	
  

Alice	
   Chicago	
   (312)	
  555	
  7777	
   A	
   A	
  

Bob	
   New	
  York	
   (465)	
  123	
  1234	
   C	
   D	
  

Name	
   Address	
   Office-­‐phone	
   Office-­‐address	
   Home-­‐phone	
  

Peter	
   Chicago	
   (312)	
  123	
  4343	
   Hometown	
   111-­‐322-­‐3454	
  

Alice	
   Chicago	
   (312)	
  555	
  7777	
   A	
   A	
  

Bob	
   New	
  York	
   (465)	
  123	
  1234	
   Other	
  town	
   D	
  



5.1 Universal solutions 

•  Universal solution 

– Want a solution that is as general as possible 

– We call such most general solutions universal 
solutions 

– How do we know whether it is most general 

•  We can map the tuples in this solution to any other less 
general solution by replacing unspecified values 
(labelled nulls) with actual data values 

•  Query answering with universal solutions 

– For UCQs: run query over universal instance 

– Remove tuples with labelled nulls 

– Result are the certain answers! 
15 CS520 - 5) Data Exchange 



5.1 Universal Solutions 

16 CS520 - 5) Data Exchange 

A	
  homomorphism	
  h	
  from	
  instance	
  J	
  to	
  instance	
  J’	
  maps	
  the	
  constants	
  and	
  nulls	
  

of	
  J	
  to	
  the	
  constants	
  and	
  nulls	
  of	
  J’	
  and	
  fulfills	
  the	
  following	
  condiQons:	
  

	
  

•  Constants	
  are	
  mapped	
  onto	
  themselves:	
  h(c)	
  =	
  c	
  

•  Every	
  tuple	
  R(a1,…,an)	
  in	
  J	
  is	
  mapped	
  to	
  a	
  tuple	
  in	
  J’:	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  R(a1,…,an)	
  in	
  J	
  -­‐>	
  R(h(a1),	
  …,h(an))	
  in	
  J’	
  

	
  

DefiniEon:	
  Homomorphism	
  

	
  

Given	
  data	
  exchange	
  seCng	
  (S,T,I,Σ).	
  An	
  instance	
  J	
  of	
  T	
  is	
  called	
  an	
  universal	
  

soluQon	
  for	
  a	
  source	
  instance	
  I	
  if	
  it	
  is	
  a	
  soluQon	
  and	
  for	
  every	
  other	
  soluQon	
  J’	
  

hold	
  that	
  

	
  

•  There	
  exists	
  a	
  homomorphism	
  from	
  J	
  to	
  J’	
  

DefiniEon:	
  Universal	
  soluEon	
  



5.1 Data Exchange Solutions 
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How	
  general	
  	
  is	
  soluQon	
  (in	
  terms	
  of	
  certain	
  answers)?	
  

	
  

Consider	
  query	
  	
  

Q(n) :- P(n,a,op,oa,hp), oa = Hometown 

Example:	
  SoluEon	
  generality	
  

Name	
   Address	
   Office-­‐phone	
   Office-­‐address	
   Home-­‐phone	
  

Peter	
   Chicago	
   (312)	
  123	
  4343	
   X	
   Y	
  

Alice	
   Chicago	
   (312)	
  555	
  7777	
   A	
   A	
  

Bob	
   New	
  York	
   (465)	
  123	
  1234	
   C	
   D	
  



5.1 Data Exchange Solutions 
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Above	
  is	
  universal	
  soluQon	
  

	
  

How	
  to	
  map	
  to	
  below	
  non-­‐universal	
  soluQon?	
  	
  

Replace	
  generic	
  labelled	
  Nulls	
  with	
  values:	
  

X	
  -­‐>	
  Hometown,	
  Y-­‐>	
  111-­‐322-­‐3454,	
  C	
  -­‐>	
  other	
  town,	
  

Example:	
  SoluEon	
  generality	
  

Name	
   Address	
   Office-­‐phone	
   Office-­‐address	
   Home-­‐phone	
  

Peter	
   Chicago	
   (312)	
  123	
  4343	
   X	
   Y	
  

Alice	
   Chicago	
   (312)	
  555	
  7777	
   A	
   A	
  

Bob	
   New	
  York	
   (465)	
  123	
  1234	
   C	
   D	
  

Name	
   Address	
   Office-­‐phone	
   Office-­‐address	
   Home-­‐phone	
  

Peter	
   Chicago	
   (312)	
  123	
  4343	
   Hometown	
   111-­‐322-­‐3454	
  

Alice	
   Chicago	
   (312)	
  555	
  7777	
   A	
   A	
  

Bob	
   New	
  York	
   (465)	
  123	
  1234	
   Other	
  town	
   D	
  



5.2 Computing Solutions 

•  Note 

– Schema mappings (st-tgds) are tuple-generating 
dependencies 

– What other tgd’s do we know 

•  Foreign keys 

– How did we solve violations to FKs? 

•  The chase! 

– Chase produces universal solution! 
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Source	
  Schema	
  S	
   Target	
  Schema	
  T	
  

Source	
  Data	
   Target	
  Data	
  

M	
  	
  



5.2 Computing Solutions 

•  Can we use a database system to compute 
solutions? 

– Yes, systems such as Clio generate queries that 
compute universal solutions! 

•  SQL 

•  Java 

•  XSLT (for XML docs) 
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5.2 Computing Solutions 

•  Generating Executable Transformations 

– How to preserve semantics of labeled nulls 

•  n = n’ is true if we have the same labeled null only 

•  n = n’ if one is a constant and the other one is a labeled 
null 
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5.2 Skolem Functions 

•  Skolem functions for labeled nulls 

– For each existential variable in a tgd we create a 
new skolem function 

– What should be the arguments of the function? 

•  Naïve: all universally quantified variables 

•  Better: only relevant ones 

22 CS520 - 5) Data Exchange 



5.2 Skolem Functions 
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Example:	
  Skolem	
  FuncEons	
  

Person 

Name 

Address 

Age 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 



5.2 Skolem Functions 
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Introduce	
  skolem	
  funcQon	
  sk1	
  and	
  sk2	
  for	
  f	
  and	
  g.	
  

	
  

What	
  arguments	
  to	
  choose	
  for	
  sk1	
  and	
  sk2?	
  

	
  

E.g.,,	
  f	
  should	
  be	
  fixed	
  for	
  a	
  certain	
  address	
  and	
  should	
  not	
  depend	
  on	
  the	
  person.	
  

Example:	
  Skolem	
  FuncEons	
  

Person 

Name 

Address 

Age 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)



5.2 Skolem Functions 

•  Clio Schema Graph Algorithm 

•  Nodes 

– Create a graph with one node for every target 
attribute and one node for every target relation 

– Also add nodes for source attribute if they are 
copied to the target according to the mapping 

•  Edges 

– Edges between a relation and its attributes 

– Edges between target attributes that use the same 
variable 

– Edges between source attributes and target 
attributes if they use the same variable 
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5.2 Skolem Functions 

•  Clio Schema Graph Algorithm 

•  Annotations 

– Annotate each target attribute connected to a 
source attribute with that source attribute 

– Propagate annotations according to the following 
rules 

•  Propagate annotations from attributes to relations 

•  Propagate annotations from relations to attributes 

– Only if attribute uses existentially quantified variable 

•  Propagate annotations between target attributes 
connected by equality edges 
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5.2 Skolem Functions 
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Example:	
  Skolem	
  FuncEons	
  

Person 

Name 

Address 

Age 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Person	
  

Name	
   Address	
   Age	
  

Address	
  

Id	
   City	
   Office-­‐c.	
  

Name	
   Address	
  

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

Office-­‐p.	
  



5.2 Skolem Functions 
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Example:	
  Skolem	
  FuncEons	
  

Person 

Name 

Address 

Age 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Person	
  

Name	
   Address	
   Age	
  

Address	
  

Id	
   City	
   Office-­‐c.	
  

Name	
   Address	
  

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

Office-­‐p.	
  

Name	
   Address	
   Office-­‐p.	
  

1)	
  IniQalize	
  with	
  

source	
  afribute	
  

names	
  



5.2 Skolem Functions 
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Example:	
  Skolem	
  FuncEons	
  

Person 

Name 

Address 

Age 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Person	
  

Name	
   Address	
   Age	
  

Address	
  

Id	
   City	
   Office-­‐c.	
  

Name	
   Address	
  

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

Office-­‐p.	
  

Name	
   Address	
   Office-­‐p.	
  

{Address,	
  

Office-­‐p.}	
  

Name	
  

2)	
  Propagate	
  to	
  

parent	
  and	
  back	
  to	
  

children	
  



5.2 Skolem Functions 
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Example:	
  Skolem	
  FuncEons	
  

Person 

Name 

Address 

Age 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Person	
  

Name	
   Address	
   Age	
  

Address	
  

Id	
   City	
   Office-­‐c.	
  

Name	
   Address	
  

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

Office-­‐p.	
  

Name	
   Address	
   Office-­‐p.	
  

{Address,	
  

Office-­‐p.}	
  

Name	
  

2)	
  Propagate	
  to	
  

parent	
  and	
  back	
  to	
  

children	
  

Name	
   Name	
  

{Address,	
  

Office-­‐p.}	
  



5.1 Data Exchange Solutions 
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Example:	
  Skolem	
  FuncEons	
  

Person 

Name 

Address 

Age 

 

Address 

Id 

City 

Office-contact 

Person 

Name 

Address 

Office-phone 

Office-address 

Home-phone 

Person	
  

Name	
   Address	
   Age	
  

Address	
  

Id	
   City	
   Office-­‐c.	
  

Name	
   Address	
  

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

Office-­‐p.	
  

Name	
   Address	
   Office-­‐p.	
  

3)	
  Propagate	
  along	
  

equality	
  edges	
  

(here	
  address=id)	
  

…	
  

Compute	
  fixpoint	
  

{Address,	
  

Office-­‐p.,	
  

Name}	
  

{Address,	
  

Office-­‐p.,	
  

Name}	
  

{Address,	
  

Office-­‐p.,	
  

Name}	
  

{Address,	
  

Office-­‐p.,	
  

Name}	
  

{Address,	
  

Office-­‐p.,	
  

Name}	
  



5.2 Skolem Functions 

•  Clio Schema Graph Algorithm 

•  Skolem functions 

– Derive skolem function arguments from the 
schema graph annotations of an element 
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For	
  variable	
  f	
  (id,	
  address)	
  we	
  assign	
  sk1(a,b,c)	
  

For	
  variable	
  g(age)	
  we	
  assign	
  sk2(a,b,c)	
  

Example:	
  Skolem	
  FuncEons	
  

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)



5.2 Executable Transformations 

•  SQL Code Generation Example 

– For each tgd mentioning a target relation R we 
generate a query fragment 

– All query fragments for R are “unioned” together 

– A query fragment is 

•  A FROM and WHERE clause that is a direct translation 
of the LHS of a tgd into SQL 

•  A SELECT clause corresponding the R atom in the RHS 
using attributes from the FROM clause can the skolem 
functions we have determined in the previous step 
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5.2 Executable Transformations 
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For	
  Person	
  atom	
  in	
  RHS:	
  

SELECT	
  name,	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ‘SK1’	
  ||	
  name	
  ||	
  address	
  ||	
  office-­‐phone	
  AS	
  address,	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ‘SK2’	
  ||	
  name	
  ||	
  address	
  ||	
  office-­‐phone	
  AS	
  age	
  

FROM	
  Person	
  

	
  

	
  

For	
  Address	
  atom	
  in	
  RHS:	
  

SELECT	
  	
  ‘SK1’	
  ||	
  name	
  ||	
  address	
  ||	
  office-­‐phone	
  AS	
  address,	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  address	
  AS	
  city,	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  office-­‐phone	
  AS	
  office-­‐contact	
  

FROM	
  Person	
  

	
  

Example:	
  Skolem	
  FuncEons	
  

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)



5.3 Recap Data Exchange Steps 

•  Schema Matching 

•  Generate Schema Mappings 

– Use constraints 

•  Generate Executable Transformations 

– SQL, XSLT, XQuery 

– Skolems for missing value 

•  Run Transformations over source instance to 
generate target instance 

– Universal solution 
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5.3 Comparison with virtual 

integration 

•  Pay cost upfront instead of at query time 

•  Making decisions early vs. at query time 

– When generating a solution 

– Caution: bad decisions stick! 

•  Universal solutions allow efficient 
computation of certain types of queries using, 
e.g., SQL 

36 CS520 - 5) Data Exchange 



Outline 

0) Course Info 

1)  Introduction 

2)  Data Preparation and Cleaning 

3)  Schema matching and mapping 

4)  Virtual Data Integration 

5)  Data Exchange 

6)   Data Warehousing  

7)  Big Data Analytics 

8)  Data Provenance 
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Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing 

7) Big Data Analytics

8) Data Provenance

1
CS520 - 6) Data Warehousing



6. What is Datawarehousing?

• Problem: Data Analysis, Prediction, Mining

– Example: Walmart

– Transactional databases

• Run many “cheap” updates concurrently

• E.g., each store has a database storing its stock and sales

– Complex Analysis over Transactional Databases?

• Want to analyze across several transactional databases
– E.g., compute total Walmart sales per month

– Distribution and heterogeneity

• Want to run complex analysis over large datasets

– Resource consumption of queries affects normal operations on 
transactional databases

2
CS520 - 6) Data Warehousing



6. What is Datawarehousing?

• Solution:

• Performance

– Store data in a different system (the 
datawarehouse) for analysis

– Bulk-load data to avoid wasting performance on 
concurrency control during analysis

• Heterogeneity and Distribution

– Preprocess data coming from transactional 
databases to clean it and translate it into a unified 
format before bulk-loading

3
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6. Datawarehousing Process

• 1) Design a schema for the warehouse

• 2) Create a process for preprocessing the data

• 3) Repeat

– A) Preprocess data from the transactional databases

– B) Bulk-load it into the warehouse

– C) Run analytics

4
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Data Warehouse

ETL ETL ETL ETL

RDBMS1 RDBMS2

HTML1 XML1

ETL pipeline
outputs

ETL



6. Overview

• The multidimensional datamodel (cube)

– Multidimensional data model

– Relational implementations

• Preprocessing and loading (ETL)

• Query language extensions

– ROLL UP, CUBE, …

• Query processing in datawarehouses

– Bitmap indexes

– Query answering with views

– Self-tuning

5
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6. Multidimensional Datamodel

• Analysis queries are typically aggregating 

lower level facts about a business

– The revenue of Walmart in each state (country, 

city)

– The amount of toy products in a warehouse of a 

company per week

– The call volume per zip code for the Sprint network

– …

6
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6. Multidimensional Datamodel

• Commonality among these queries:

– At the core are facts: a sale in a Walmart store, a 

toy stored in a warehouse, a call made by a certain 

phone

– Data is aggregated across one or more dimensions

• These dimensions are typically organized hierarchically: 

year – month – day – hour, country – state - zip

• Example 

– The revenue (sum of sale amounts) of Walmart in 

each state

7
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6. Example 2D

8
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2014 2015

1. Quarter 2.	Quarter 3.	Quarter 4.	Quarter 1. Quarter 2.	Qu…

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

Toy

car 3 7 6 37 7 92 37 7 92 37 7 92 37 7 92 2 ...

puppet 9 4 5 31 1 1 1 1 1 1 1 1 1 2 2 2 …

Fishing	 rod 11 12 22 22 22 22 22 22 7 6 6 6 6 65 4 33 …

Books

Moby	Dick 3 40 39 37 7 92 81 6 51 7 48 51 5 7 3 3 …

Mobile	

devel.

3 2 5 43 7 0 81 6 51 7 48 51 5 7 3 3 …

King	Lear 3 9 6 37 7 92 5 6 51 7 48 51 5 7 3 3 …



6. Generalization to multiple 

dimensions

9
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• Given a fixed number of dimensions

– E.g., product type, location, time

• Given some measure

– E.g., number of sales, items in stock, …

• In the multidimensional datamodel we store 

facts: the values of measures for a combination 

of values for the dimensions



6. Data cubes

10
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• Given n dimensions

– E.g., product type, location, time

• Given m measures

– E.g., number of sales, items in stock, …

• A datacube (datahypercube) is an n-

dimensional datastructure that maps values in 

the dimensions to values for the m measures 

– Schema: D1, …, Dn, M1, …, Mm

– Instance: a function

dom(D1) x … x dom(Dn) ->  dom(M1) x ... x dom(Mm)



6. Dimensions

11
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• Purpose

– Selection of descriptive data

– Grouping with desired level of granularity

• A dimension is define through a containment-
hierarchy

• Hierarchies typically have several levels

• The root level represents the whole dimensions 

• We may associate additional descriptive 
information with a elements in the hierarchy 
(e.g., number of residents in a city)



6. Dimension Example

12
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• Location 

– Levels: location, state, city

Locations

Illinois Wisconsin

Chicago Schaumburg Madison Whitewater

location

state

city

Schema Instance



6. Dimension Schema

13
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• Schema of a Dimension

– A set D of category attributes D1, …, Dn, TopD

• These correspond to the levels

– A partial order → over D which represents parent-

child relationships in the hierarchy

• These correspond to upward edges in the hierarchy

• TopD is larger than anything else

– For every Di: Di → TopD

• There exists Dmin which is smaller than anything else

– For every Di: Dmin → Di



6. Dimension Schema Example

14
CS520 - 6) Data Warehousing

• Schema of Location Dimension

– Set of categories D = {location, state, city}

– Partial order

{ city → state, city → location, state → location }

– TopD = location

– Dmin = city

Locations

Illinois Wisconsin

Chicago Schaumburg Madison Whitewater

location

state

city

Schema Instance



6. Remarks

15
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• In principle there does not have to exist an 

order among the elements at one level of the 

hierarchy

– E.g., cities

• Hierarchies do not have to be linear

Schema

year

quarter

month

day

week



6. Cells, Facts, and Measures

16
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• Each cell in the cube corresponds to a combination of 

elements from each dimension

– Facts are non-empty cells

– Cells store measures

• Cube for a combination of levels of the dimension

Fact:

Items	in	stock	in	Jan at	

Chicago that	belong	 to	

category	Tool

Time

5 1

4 9

3 4

Product

Location

Book

Tool

Electronic

Audio

Gardening

Jan
Feb
Mar

Apr
May



Facts

• Targets of analytics

– E.g., revenue, #sales, #stock

• A fact is uniquely defined by the combination 

of values from the dimensions

– E.g., for dimensions time and and location

Revenue in Illinois during Jan 2015

• Granularity: Levels in the dimension 

hierarchy corresponding to the fact

– E.g., state, month

17
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year

quarter

month

day

week

location

state

city



Facts (Event vs. Snapshot)

• Event Facts

– Model real-world events

– E.g., Sale of an item 

• Snapshot Facts

– Temporal state

– A single object (e.g., a book) may contribute to 

several facts

– E.g., number of items in stock

18
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Measures

• A measure describes a fact

– May be derived from other measures

• Two components

– Numerical value

– Formula (optional): how to derive it

• E.g., avg(revenue) = sum(revenue) / count(revenue)

• We may associate multiple measures to each 

cell

– E.g., number of sales and total revenue

19
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Measures - Granularity

• Similar to facts, measures also have a granularity

• How to change granularity of a measure?

• Need algorithm to combine measures

– Additive measures

• Can be aggregated along any dimension

– Semi-additive/non-additive

• Cannot be aggregated along some/all dimensions

• E.g., snapshot facts along time dimension

– Number of items in stock at Jan + Feb + … != items in stock 

during year

– Median of a measure

20
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Design Process (after Kimball)

• Comparison to classical relational modeling

– Analysis driven

• No need to model all existing data and relationships relevant 

to a domain

• Limit modeling to information that is relevant for predicted 

analytics

– Redundancy

• Tolerate redundancy for performance if reasonable

– E.g., in dimension tables to reduce number of joins

21
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Design Process – Steps 

• 1) Select relevant business processes

– E.g., order shipping, sales, support, stock 
management

• 2) Select granuarity

– E.g., track stock at level of branches or regions

• 3) Design dimensions

– E.g., time, location, product, …

• 4) Select measures

– E.g., revenue, cost, #sales, items in stock, #support 
requests

22
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Design Process Example

• Coffee shop chain

– Processes

• Sell coffee to customers

• Buy ingredients from suppliers

• Ship supplies to branches

• Pay employees

• HR (hire, advertise positions, …)

– Which process is relevant to be analysed to increase 

profits?

23
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Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Single sale?

– Sale per branch/day?

– Sale per city/year?

24
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Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

– Sufficient for analysis

• Save storage

• 3) Determine relevant dimensions

– Location

– Time

– Product, …

25
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Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions

– Location (country, state, city, zip, shop)

– Time (year, month, day)

– Product (type, brand, product)

26
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Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions

– Location (country, state, city, zip, shop)

– Time (year, month, day)

– Product (type, brand, product)

• 4) Select measures

27
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Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions

– Location (country, state, city, zip, shop)

– Time (year, month, day)

– Product (type, brand, product)

• 4) Select measures 

– cost, revenue, profit?

28
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Relational representation

• How to model a datacube using the relational 

datamodel

• We start from 

– Dimension schemas

– Set of measures

29
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Star Schema

• A data cube is represented as a set of dimension 

tables and a fact table

• Dimension tables
– For each dimension schema D = (D1,…,Dk,TopD) we create a 

relation

– D (PK, D1,…,Dk)

– Here PK is a primary key, e.g., Dmin

• Fact table

– F(FK1, …, FKn, M1, ..., Mm)

– Each FKi is a foreign key to Di

– Primary key is the combination of all Fki

30
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Star Schema - Remarks

• Dimension tables have redundancy

– Values for higher levels are repeated

• Fact table is in 3NF

• TopD does not have to be stored explicitly

• Primary keys for dimension tables are 

typically generated (surrogate keys)

– Better query performance by using integers

31
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Snowflake Schema

• A data cube is represented as a set of dimension 
tables and a fact table

• Dimension tables
– For each dimension schema D = (D1,…,Dk,TopD) we create a 

relation multiple relations connected through FKs

– Di (PK, A1, …, Al, FKj)

– Al is a descriptive attribute 

– FKj is foreign key to the immediate parent(s) of Di

• Fact table

– F(FK1, …, FKn, M1, ..., Mm)

– Each FKi is a foreign key to Di

– Primary key is the combination of all Fki

32
CS520 - 6) Data Warehousing



Snowflake Schema - Remarks

• Avoids redundancy

• Results in much more joins during query 

processing

• Possible to find a compromise between 

snowflake and star schema

– E.g., use snowflake for very fine-granular 

dimensions with many levels
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Snowflake Schema - Example

– Coffee chain example
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6. Extract-Transform-Load (ETL)

• The preprocessing and loading phase is called 

extract-transform-load (ETL) in 

datawarehousing

• Many commercial and open-source tools available

• ETL process is modeled as a workflow of 

operators

– Tools typically have a broad set of build-in operators: 

e.g., key generation, replacing missing values, 

relational operators, 

– Also support user-defined operators
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6. Extract-Transform-Load (ETL)

• Some ETL tools

– Pentaho Data Integration

– Oracle Warehouse Builder (OWB)

– IBM Infosphere Information Server

– Talend Studio for Data Integration

– CloverETL

– Cognos Data Manager

– Pervasive Data Integrator

– …
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6. Extract-Transform-Load (ETL)

• Operators supported by ETL

– Many of the preprocessing and cleaning operators 
we already know

• Surrogate key generation (like creating existentials
with skolems)

• Fixing missing values

– With default value, using trained model (machine learning)

• Relational queries

– E.g., union of two tables or joining two tables

• Extraction of structured data from semi-structured 
data and/or unstructured data

• Entity resolution, data fusion 
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6. ETL Process

• Operators can be composed to form complex 

workflows
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6. Typical ETL operators

• Elementizing

– Split values into more fine-granular elements

• Standardization

• Verification

• Matching with master data

• Key generation

• Schema matching, Entity 

resolution/Deduplication, Fusion
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6. Typical ETL operators

• Control flow operators

– AND/OR

– Fork

– Loops

– Termination

• Successful

• With warning/errors
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6. Typical ETL operators

• Elementizing

– Split non 1NF data into individual elements

• Examples

– name: “Peter Gertsen” -> firstname: “Peter”, lastname: 

“Gertsen”

– date: “12.12.2015” -> year: 2002, month: 12, day :12

– Address: “10 W 31st, Chicago, IL 60616” -> street = “10 

W 31st”, city = “Chicago”, state = “IL”, zip = “60616”
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6. Typical ETL operators

• Standardization

– Expand abbreviation

– Resolve synonyms

– Unified representation of, e.g., dates

• Examples

– “IL” -> “Illinois”

– “m/w”, “M/F” -> “male/female”

– “Jan”, “01”, “January”, “january” -> “January”

– “St” -> “Street”, “Dr” -> “Drive”, …
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6. Typical ETL operators

• Verification

– Same purpose as constraint based data cleaning but 

typically does not rely on constraints, but, e.g., 

regular expression matching

• Examples

– Phone matches “[0-9]{3}-[0-9]{3}-[0-9]{4}”

– For all t in Tokens(product description), t exists in 

English language dictionary
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6. Typical ETL operators

• Matching master data (lookup)

– Check and potentially repair data based on 

available master data

• Examples

– E.g., using a clean lookup table with (city,zip) replace 

the city in each tuple if the pair (city,zip) does not occur 

in the lookup table
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6. Metadata management

• As part of analysis in DW data is subjected to a 
complex pipeline of operations

– Sources

– ETL

– Analysis queries

• -> important, but hard, to keep track of what 
operations have been applied to data and from 
which sources it has been derived

– Need metadata management

• Including provenance (later in this course)
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6. Querying DW

• Targeted model (cube vs. relational)

– Design specific language for datacubes

– Add suitable extensions to SQL

• Support typical analytical query patterns

– Multiple parallel grouping criteria 

• Show total sales, subtotal per state, and subtotal per city

• -> three subqueries with different group-by in SQL

– Windowed aggregates and ranking

• Show 10 most successful stores

• Show cummulative sales for months of 2016

– E.g., the result for Feb would be the sum of the sales for Jan + Feb
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6. Querying DW

• Targeted model (cube vs. relational)

– Design specific language for datacubes

• MDX

– Add suitable extensions to SQL

• GROUPING SETS, CUBE, …

• Windowed aggregation using OVER(), PARTITION BY, 

ORDER BY, window specification

• Window functions

– RANK, DENSE_RANK()
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6. Cube operations

• Roll-up

– Move from fine-granular to more coarse-granular 

in one or more dimensions of a datacube

• E.g., sales per (city,month,product category) to Sales 

per (state,year, product category

• Drill-down

– Move from coarse-granular to more fine-granular 

in one of more dimensions

• E.g., phonecalls per (city,month) to phonecalls per 

(zip,month)

48
CS520 - 6) Data Warehousing



6. Cube operations

• Drill-out

– Add additional dimensions

• special case of drill-down starting from TopD in 
dimension(s)

• E.g., sales per (city, product category) to Sales per 
(city,year, product category)

• Drill-in

– Remove dimension

• special case for roll-up move to TopD for dimension(s)

• E.g., phonecalls per (city,month) to phonecalls per 
(month)
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6. Cube operations

• Slice

– Select data based on restriction of the values of one 

dimension

• E.g., sales per (city,month) -> sales per (city) in Jan

• Dice

– Select data based on restrictions of the values of 

multiple dimensions

• E.g., sales per (city,month) -> sales in Jan for Chicago 

and Washington DC
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6. SQL Extensions

• Recall that grouping on multiple sets of 

attributes is hard to express in SQL

– E.g., give me the total sales, the sales per year, and 

the sales per month

• Practice
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6. SQL Extensions

• Syntactic Sugar for multiple grouping

– GROUPING SETS

– CUBE

– ROLLUP

• These constructs are allowed as expressions in 

the GROUP BY clause
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6. GROUPING SETS

• GROUP BY GROUPING SETS ((set1), …, 
(setn))

• Explicitly list sets of group by attributes

• Semantics:

– Equivalent to UNION over duplicates of the query 

each with a group by clause GROUP BY seti

– Schema contains all attributes listed in any set

– For a particular set, the attribute not in this set are 

filled with NULL values
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6. GROUPING SETS

SELECT quarter,

city,

product_typ,

SUM(profit) AS profit

FROM facttable F, time T, location L, product P

WHERE

F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID

GROUP BY GROUPING SETS 

( (quarter, city), (quarter, product_typ))
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quarter city product_typ profit

2010 Q1 Books 8347

2012 Q2 Books 7836

2012	Q2 Gardening 12300

2012	Q2 Chicago 12344

2012 Q2 Seattle 124345



6. GROUPING SETS

SELECT quarter, city, NULL AS product_typ, 

SUM(profit) AS profit

FROM facttable F, time T, location L, product P

WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID

GROUP BY quarter, city

UNION

SELECT quarter, NULL AS city, product_typ, 

SUM(profit) AS profit

FROM facttable F, time T, location L, product P

WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID

GROUP BY quarter, product_type

55
CS520 - 6) Data Warehousing



6. GROUPING SETS

• Problem:

– How to distinguish between NULLs based on 

grouping sets and NULL values in a group by 

column?
GROUP BY GROUPING SETS 

( (quarter, city), (quarter, product_typ), (quarter, product_typ, city)
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quarter city product_typ profit

2010 Q1 Books 8347

2012 Q2 Books 7836

2012	Q2 Gardening 12300

2012	Q2 Chicago 12344

2012 Q2 Seattle 124345

2012	Q2 Seattle Gardening 12343

Did	not	group	on	

product_typ or	this	is	

the	group	 for	all	NULL	

values	in	product_typ?



6. GROUPING SETS

• Solution:

– GROUPING predicate 

– GOUPING(A) = 1 if grouped on attribute A, 0 else
SELECT … GROUPING(product_typ) AS grp_prd

…

GROUP BY GROUPING SETS 

( (quarter, city), (quarter, product_typ), (quarter, product_typ, city)

57
CS520 - 6) Data Warehousing

quarter city product_typ profit grp_prd

2010 Q1 Books 8347 1

2012 Q2 Books 7836 1

2012	Q2 Gardening 12300 1

2012	Q2 Chicago 12344 0

2012 Q2 Seattle 124345 1

2012	Q2 Seattle Gardening 12343 1

Now	it’s	clear!



6. GROUPING SETS

• Combining GROUPING SETS 

GROUP BY A, B 

= GROUP BY GROUPING SETS ((A,B))

GROUP BY GROUPING SETS ((A,B), (A,C), (A))

= GROUP BY A, GROUPING SETS ((B), (C), ())

GROUP BY GROUPING SETS ((A,B), (B,C),

GROUPING SETS ((D,E), (D))

= GROUP BY GROUPING SETS (

(A,B,D,E), (A,B,D), (B,C,D,E), (B,C,D) 

)
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6. CUBE

• GROUP BY CUBE (set)

• Group by all 2n subsets of set
GROUP BY CUBE (A,B,C)

= GROUP BY GROUPING SETS (

(),

(A), (B), (C),

(A,B), (A,C), (B,C),

(A,B,C)

)
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6. CUBE

• GROUP BY ROLLUP(A1, …, An)

• Group by all prefixes

• Typically different granularity levels from single 
dimension hierarchy, e.g., year-month-day

– Database can often find better evaluation strategy
GROUP BY ROLLUP (A,B,C)

= GROUP BY GROUPING SETS (

(A,B,C),

(A,B),

(A),

()

)
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6. OVER clause

• Agg OVER (partition-clause, order-
by,window-specification)

• New type of aggregation and grouping where
– Each input tuple is paired with the aggregation result for the group it 

belongs too

– More flexible grouping based on order and windowing

– New aggregation functions for ranking queries

• E.g., RANK(), DENSE_RANK()

61
CS520 - 6) Data Warehousing



6. OVER clause

• Agg OVER (partition-clause, order-
by,window-specification)

• New type of aggregation and grouping where
SELECT shop, sum(profit) OVER()

- aggregation over full table

SELECT shop, sum(profit) OVER(PARTITION BY state)

- like group-by

SELECT shop, sum(profit) OVER(ORDER BY month)

- rolling sum including everything with smaller month

SELECT shop, sum(profit) OVER(ORDER BY month 6 
PRECEDING 3 FOLLOWING)
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6. OVER clause

• Agg OVER (partition-clause order-
by,window-specification)

• New type of aggregation and grouping where
<window frame preceding> ::= { 

UNBOUNDED PRECEDING 

| n PRECEDING 

| CURRENT ROW } 

<window frame following> ::= { 

UNBOUNDED FOLLOWING 

| n FOLLOWING 

| CURRENT ROW 

}
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6. OVER clause

SELECT year, month, city, profit

SUM(profit) OVER () AS ttl

FROM sales

• For each tuple build a set of tuples belonging to the same window

– Compute aggregation function over window

– Return each input tuple paired with the aggregation result for its window

• OVER() = one window containing all tuples
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 92

2010 2 Chicago 5 92

2010 3 Chicago 20 92

2011 1 Chicago 45 92

2010 1 New York 12 92



6. OVER clause

SELECT year, month, city

SUM(profit) OVER (PARTITION BY year) AS ttl

FROM sales

• PARITION BY

– only tuples with same partition-by attributes belong to the same window

• Like GROUP BY
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 47

2010 2 Chicago 5 47

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 47



6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY 

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same 

window

• E.g., can be used to compute an accumulate total
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 47

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 47



6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY 

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same 

window

• E.g., can be used to compute an accumulate total
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22



6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY 

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same 

window

• E.g., can be used to compute an accumulate total
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22



6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY 

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same 

window

• E.g., can be used to compute an accumulate total
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 92

2010 1 New York 12 22



6. OVER clause

SELECT year, month, city

SUM(profit) OVER (PARTIION BY year ORDER BY month) 
AS ttl

FROM sales

• Combining PARTITION BY and ORDER BY 

– First partition, then order tuples within each partition
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22



6. OVER clause

SELECT year, month, city

SUM(profit) OVER (PARTITION BY year ORDER BY month

RANGE BETWEEN 1 PRECEDING 

AND 1 FOLLOWING) AS ttl

FROM sales

• Explicit window specification

– Requires ORDER BY

– Determines which tuples “surrounding” the tuple according to the sort order to 

include in the window
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 27

2010 2 Chicago 5 47

2010 3 Chicago 20 25

2011 1 Chicago 45 45

2010 1 New York 12 27



6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month

ROWS BETWEEN 1 PRECEDING 

AND 1 FOLLOWING) AS ttl

FROM sales

• Explicit window specification

– Requires ORDER BY

– Determines which tuples “surrounding” the tuple according to the sort order to 

include in the window
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year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 37

2010 3 Chicago 20 70

2011 1 Chicago 45 65

2010 1 New York 12 27



6. MDX

• Multidimensional expressions (MDX)

– Introduced by Microsoft

– Query language for the cube data model

– SQL-like syntax

• Keywords have different meaning

– MDX queries return a multi-dimensional report

• 2D = spreadsheet

• 3D or higher, e.g., multiple spreadsheets
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6. MDX Query

• Basic Query Structure

SELECT <axis-spec1>, …

FROM <cube-spec1>, …

WHERE ( <select-spec> ) 

• Note!

– Semantics of SELECT, FROM, WHERE not what 

you would expect knowing SQL
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6. MXD

SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE ( Measures.numCalls, Carrier.Spring )

• Meaning of 
– [] interpret number as name

– {} set notation

– () tuple in where clause
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2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425



6. MXD

SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE ( Measures.numCalls, Carrier.Spring )
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2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

Determine	result	layout

rows	and	columns	of	

spreadsheet

Specify	sets	of	

dimensional	 concepts	

Datacube(s)	to	use

Select	measures	to	aggregate	

over

Slice	(egg.,	here	only	

aggregation	over	Spring	

calls)



6. MXD - SELECT

SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE ( Measures.numCalls, Carrier.Spring )

• Select specifies dimensions in result and how to visualize

– ON COLUMNS, ON ROWS, ON PAGES, ON SECTIONS, ON 
CHAPTERS

• Every dimension in result corresponds to one dimension in the cube

– Set of concepts from this dimensions which may be from different levels of 

granularity

– E.g., {2010, 2011 Jan, 2012 Jan, 2012 Feb, 2010 Jan 1st}
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2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425



6. MXD - SELECT

• Specify concepts from dimensions

– List all values as set, e.g., { [2010], [2011] }

– Not necessarily from same level of hierarchy (e.g., mix years and months)

• Language constructs for accessing parents and children or members 

of a level in the hierarchy

– CHILDREN: all direct children

• E.g., [2010].CHILDREN = {[2010 Jan], …, [2010 Dec]}

– PARENT: the direct parent

• E.g., [2010 Jan].PARENT = [2010]

– MEMBERS: all direct children

• E.g., Time.Years.MEMBERS = {[1990], [1991], …, [2016]}

– LASTCHILD: last child (according to order of children)

• E.g., [2010].LASTCHILD = [2010 Dec]

– NEXTMEMBER: right sibling on same level

• E.g., [2010].NEXTMEMBER = [2011]

– [a]:[b]: all members in interval between a and b

• E.g., [1990]:[1993] = {[1990], [1991], [1992], [1993]}
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6. MXD - SELECT

• Specify concepts from dimensions

– List all values as set, e.g., { [2010], [2011] }

– Not necessarily from same level of hierarchy (e.g., mix years and months)

• Language constructs for accessing parents and children or members 

of a level in the hierarchy

– CHILDREN: all direct children

• E.g., [2010].CHILDREN = {[2010 Jan], …, [2010 Dec]}

– PARENT: the direct parent

• E.g., [2010 Jan].PARENT = [2010]

– MEMBERS: all direct children

• E.g., Time.Years.MEMBERS = {[1990], [1991], …, [2016]}

– LASTCHILD: last child (according to order of children)

• E.g., [2010].LASTCHILD = [2010 Dec]

– NEXTMEMBER: right sibling on same level

• E.g., [2010].NEXTMEMBER = [2011]

– [a]:[b]: all members in interval between a and b

• E.g., [1990]:[1993] = {[1990], [1991], [1992], [1993]}
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6. MXD - SELECT

• Nesting of sets: CROSSJOIN
– Project two dimensions into one

– Forming all possible combinations

SELECT CROSSJOIN (

{ Chicago, Schaumburg },

{ [2010], [2011] }

) ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE ( Measures.numCalls )
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Chicago
2010 123411

2011 3231

Schaumburg
2010 32321132

2011 12355



6. MXD - SELECT

• Conditional selection of members: FILTER
– One use members that fulfill condition

– E.g., condition over aggregation result

• Show results for all month of 2010 where there are more Sprint 

calls than ATT calls

SELECT FILTER([2010].CHILDREN, 

(Sprint, numCalls) > (ATT, numCalls)

) ON ROWS

{ Chicago } ON COLUMNS

FROM PhoneCallsCube

WHERE ( Measures.numCalls )
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6. Query Processing in DW

• Large topic, here we focus on two aspects

– Partitioning

– Query answering with materialized views
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6. Partitioning

• Partitioning splits a table into multiple 

fragments that are stored independently

– E.g., split across X disks, across Y servers

• Vertical partitioning

– Split columns across fragments

• E.g., R = {A,B,C,D}, fragment F1 = {A,B}, F2 = {C,D}

• Either add a row id to each fragment or the primary key 

to be able to reconstruct

• Horizontal partitioning

– Split rows

– Hash vs. range partitioning
83
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6. Partitioning

• Why partitioning?

– Parallel/distributed query processing

• read/write fragments in parallel

• Distribute storage load across disks/servers

– Avoid reading data that is not needed to answer a 

query

• Vertical

– Only read columns that are accessed by query

• Horizontal

– only read tuples that may match queries selection conditions
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6. Partitioning

• Vertical Partitioning

– Fragments F1 to Fn of relation R such that 

• Sch(F1) u Sch(F2) u … u Sch(Fn) = Sch(R)

• Store row id or PK of R with every fragment 

• Restore relation R through natural joins
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Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Rowid Name Salary

1 Peter 12,000

2 Alice 24,000

3 Bob 20,000

4 Gertrud 50,000

5 Pferdegert 14,000

Rowid Age Gender

1 45 M

2 34 F

3 22 M

4 55 F

5 23 M



6. Partitioning

• Horizontal Partitioning

– Range partitioning on attribute A

• Split domain of A into intervals representing fragments

• E.g., tuples with A = 15 belong to fragment [0,20]

– Fragments F1 to Fn of relation R such that 

• Sch(F1) = Sch(F2) = … = Sch(Fn) = Sch(R)

• R = F1 u … u Fn
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Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Name Salary Age Gender

Peter 12,000 45 M

Pferdegert 14,000 23 M

Name Salary Age Gender

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Salary

[0,15000]

Salary

[15001,10000]



6. Partitioning

• Horizontal Partitioning

– Hash partitioning on attribute A

• Split domain of A into x buckets using hash function

• E.g., tuples with h(A) = 3 belong to fragment F3

• Sch(F1) = Sch(F2) = … = Sch(Fn) = Sch(R)

• R = F1 u … u Fn
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Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Salary

h(24,000)	 =	0

H(14,000)	 =	0

Salary

h(12,000)	 =	1

H(20,000)	 =	1

H(50,000)	 =	1

Name Salary Age Gender

Alice 24,000 34 F

Pferdegert 14,000 23 M

Name Salary Age Gender

Peter 12,000 45 M

Bob 20,000 22 M

Gertrud 50,000 55 F
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3. Big Data Analytics 

•  Big Topic, big Buzzwords ;-) 

•  Here 

– Overview of two types of systems 

•  Key-value/document stores 

•  Mainly: Bulk processing (MR, graph, …) 

– What is new compared to single node systems? 

– How do these systems change our approach to 

integration/analytics 

•  Schema first vs. Schema later 

•  Pay-as-you-go 
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3. Big Data Overview 

•  1) How does data processing at scale (read 

using many machines) differ from what we 

had before? 

– Load-balancing 

– Fault tolerance 

– Communication 

– New abstractions 

•  Distributed file systems/storage 
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3. Big Data Overview 

•  2) Overview of systems and how they 

achieve scalability 

– Bulk processing 

•  MapReduce, Shark, Flink, Hyracks, … 

•  Graph: e.g., Giraph, Pregel, …  

– Key-value/document stores = NoSQL 

•  Cassandra, MongoDB, Memcached, Dynamo, … 
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3. Big Data Overview 

•  2) Overview of systems and how they 

achieve scalability 

– Bulk processing 

•  MapReduce, Shark, Flink,  

– Fault tolerance 

•  Replication 

•  Handling stragglers 

– Load balancing 

•  Partitioning 

•  Shuffle 
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3. Big Data Overview 

•  3) New approach towards integration 

– Large clusters enable directly running queries 

over semi-structured data (within feasible time) 

•  Take a click-stream log and run a query 

– One of the reasons why pay-as-you-go is now 

feasible 

•  Previously: designing a database schema upfront and 

designing a process (e.g., ETL) for cleaning and 

transforming data to match this schema, then query 

•  Now: start analysis directly, clean and transform data if 

needed for the analysis 
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3. Big Data Overview 

•  3) New approach towards integration 

– Advantage of pay-as-you-go 

•  More timely data (direct access) 

•  More applicable if characteristics of data change 

dramatically (e.g., yesterdays ETL process no longer 

applicable) 

– Disadvantages of pay-as-you-go 

•  Potentially repeated efforts (everybody cleans the click-

log before running the analysis) 

•  Lack of meta-data may make it hard to  

– Determine what data to use for analysis 

– Hard to understand semantics of data 
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3. Big Data Overview 

•  Scalable systems 

– Performance of the system scales in the number of 

nodes 

•  Ideally the per node performance is constant 

independent of how many nodes there are in the system 

•  This means: having twice the number of nodes would 

give us twice the performance 

– Why scaling is important? 

•  If a system scales well we can “throw” more resources 

at it to improve performance and this is cost effective 
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3. Big Data Overview 

•  What impacts scaling? 

– Basically how parallelizable is my algorithm 

•  Positive example: problem can be divided into  

subproblems that can be solved independently without 

requiring communication 

–  E.g., array of 1-billion integers [i1, …, i1,000,000,000] add 3 to 

each integer. Compute on n nodes, split input into n equally 

sized chunks and let each node process one chunk 

•  Negative example: problem where subproblems are 

strongly intercorrelated 

–  E.g., Context Free Grammar Membership: given a string and a 

context free grammar, does the string belong to the language 

defined by the grammar. 

9 CS520 - 7) Big Data Analytics 



3. Big Data – Processing at Scale 

•  New problems at scale 

– DBMS  

•  running on 1 or 10’s of machines 

•  running on 1000’s of machines 

•  Each machine has low probability of failure 

–  If you have many machines, failures are the norm 

– Need mechanisms for the system to cope with 

failures 

•  Do not loose data 

•  Do not use progress of computation when node fails 

– This is called fault-tolerance 
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3. Big Data – Processing at Scale 

•  New problems at scale 

– DBMS  

•  running on 1 or 10’s of machines 

•  running on 1000’s of machines 

•  Each machine has limited storage and 

computational capabilities 

– Need to evenly distribute data and computation 

across nodes 

•  Often most overloaded node determine processing speed 

– This is called load-balancing 
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3. Big Data – Processing at Scale 

•  Building distributed systems is hard 

– Many pitfalls 

•  Maintaining distributed state 

•  Fault tolerance 

•  Load balancing 

– Requires a lot of background in 

•  OS 

•  Networking 

•  Algorithm design 

•  Parallel programming 
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3. Big Data – Processing at Scale 

•  Building distributed systems is hard 

– Hard to debug 

•  Even debugging a parallel program on a single machine 

is already hard 

– Non-determinism because of scheduling: Race conditions 

–  In general hard to reason over behavior of parallel threads of 

execution  

•  Even harder when across machines 

– Just think about how hard it was for you to first 

program with threads/processes 
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3. Big Data – Why large scale? 

•  Datasets are too large 

– Storing a 1 Petabyte dataset requires 1 PB 

storage 

•  Not possible on single machine even with RAID 

storage 

•  Processing power/bandwidth of single 

machine is not sufficient 

– Run a query over the facebook social network 

graph 

•  Only possible within feasible time if distributed 

across many nodes 
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3. Big Data – User’s Point of 

View 

•  How to improve the efficiency of distributed 

systems experts 

– Building a distributed system from scratch for 

every store and analysis task is obviously not 

feasible! 

•  How to support analysis over large datasets 

for non distributed systems experts 

– How to enable somebody with some programming 

but limited/no distributed systems background to 

run distributed computations 
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3. Big Data – Abstractions 

•  Solution 

– Provide higher level abstractions 

•  Examples 

– MPI (message passing interface) 

•  Widely applied in HPC 

•  Still quite low-level 

– Distributed file systems 

•  Make distribution of storage transparent 

– Key-value storage 

•  Distributed store/retrieval of data by identifier (key) 
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3. Big Data – Abstractions 

•  More Examples 

– Distributed table storage 

•  Store relations, but no SQL interface 

– Distributed programming frameworks 

•  Provide a, typically, limited programming model with 

automated distribution 

– Distributed databases, scripting languages 

•  Provide a high-level language, e.g., SQL-like with an 

execution engine that is distributed 
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3. Distributed File Systems 

•  Transparent distribution of storage 

– Fault tolerance 

– Load balancing? 

•  Examples 

– HPC distributed filesystems 

•  Typically assume a limited number of dedicated storage 

servers 

•  GPFS, Lustre, PVFS 

– “Big Data” filesystems 

•  Google file system, HDFS 
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3. HDFS 

•  Hadoop Distributed Filesystem (HDFS) 

•  Architecture 

– One nodes storing metadata (name node) 

– Many nodes storing file content (data nodes) 

•  Filestructure 

– Files consist of blocks (e.g., 64MB size) 

•  Limitations 

– Files are append only 
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3. HDFS 

•  Name node 

•  Stores the directory structure 

•  Stores which blocks belong to which files 

•  Stores which nodes store copies of which 

block 

•  Detects when data nodes are down 

•  Clients communicate with the name node to 

gather FS metadata  

20 CS520 - 7) Big Data Analytics 



3. HDFS 

•  Data nodes 

•  Store blocks 

•  Send/receive file data from clients 

•  Send heart-beat messages to name node to 

indicate that they are still alive 

•  Clients communicate data nodes for reading/

writing files 
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3. HDFS 

•  Fault tolerance 

– n-way replication 

– Name node detects failed nodes based on heart-

beats 

–  If a node if down, then the name node schedules 

additional copies of the blocks stored by this node 

to be copied from nodes storing the remaining 

copies 
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3. Distributed FS Discussion 

•  What do we get? 

– Can store files that do not fit onto single nodes 

– Get fault tolerance 

–  Improved read speed (caused on replication) 

– Decreased write speed (caused by replication) 

•  What is missing? 

– Computations 
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3. Frameworks for Distributed 

Computations 

•  Problems 

– Not all algorithms do parallelize well 

– How to simplify distributed programming? 

•  Solution 

– Fix a reasonable powerful, but simple enough 

model of computation for which scalable 

algorithms are known 

–  Implement distributed execution engine for this 

model and make it fault tolerant and load-balanced 
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3. MapReduce 

•  Data Model 

– Sets of key-value pairs {(k1,v1), …, (kn,vn)} 

– Key is an identifier for a piece data 

– Value is the data associaed with a key 

•  Programming Model 

– We have two higher-level functions map and 

reduce 

•  Take as input a user-defined function that is applied to 

elements in the input key-value pair set 

– Complex computations can be achieved by 

chaining map-reduce computations 
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3. MapReduce Datamodel 

•  Data Model 

– Sets of key-value pairs {(k1,v1), …, (kn,vn)} 

– Key is an identifier for a piece data 

– Value is the data associaed with a key 

•  Examples 

– Document d with an id 

•  (id, d) 

– Person with name, salary, and SSN 

•  (SSN, “name, salary”) 
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3. MapReduce Computional 

Model 

•  Map 

– Takes as input a set of key-value pairs and a user-

defined function f:(k,v) -> {(k,v)}

– Map applies f to every input key-value pair and 

returns the union of the outputs produced by f 

{(k1,v1),…,(kn,vn)} 

->

f((k1,v1)) ∪ … ∪ f((kn,vn)) 
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3. MapReduce Computional 

Model 

•  Example 

– Input: Set of (city,population) pairs 

– Task: multiply population by 1.05 

•  Map function 

–  f: (city,population) -> 

{(city,population*1.05)}

•  Application of f through map 

–  Input: {(chicago, 3), (nashville, 1)}

– Output: {(chicago, 3.15)} ∪ {(nashville, 1.05)}
        = {(chicago, 3.15), (nashville, 1.05)}
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3. MapReduce Computional 

Model 

•  Reduce 

– Takes as input a key with a list of associated values 

a user-defined function  

g: (k,list(v)) -> {(k,v)}

– Reduce groups all values with the same key in the 

input key-value set and passes each key and its list 

of values to g. and returns the union of the outputs 

produced by g 
{(k1,v11),…,(k1,v1n1), … (km,vm1),…,(km,vmnm)} 

->

g((k1,(v11,…,v1n1)) ∪ … ∪ g((km,(vm1,…,vmnm)) 
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3. MapReduce Computional 

Model 

•  Example 

– Input: Set of (state, population) pairs one for each 

city in the state 

– Task: compute the total population per state 

•  Reduce function 

–  f: (state,[p1, …, pn]) -> 

{(state,SUM([p1,…,pn)}

•  Application of f through map 

–  Input: {(illinois, 3), (illinois, 1), (oregon, 15)}

– Output: {(illinois, 4), (oregon, 15)}
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3. MapReduce Workflows 

•  Workflows 

– Computations in MapReduce consists of map 

phases followed by reduce phases 

•  The input to the reduce phase is the output of the map 

phase 

– Complex computations may require multiple map-

reduce phases to be chained together 
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3. MapReduce Implementations 

•  MapReduce 

– Developed by google 

– Written in C 

– Runs on top of GFS (Google’s distributed 

filesystem) 

•  Hadoop 

– Open source Apache project 

– Written in Java 

– Runs on-top of HDFS 
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3. Hadoop 

•  Anatomy of a Hadoop cluster 

– Job tracker 

•  Clients submit MR jobs to the job tracker 

•  Job tracker monitors progress 

– Task tracker aka workers 

•  Execute map and reduce jobs 

•  Job 

– Input: files from HDFS 

– Output: written to HDFS 

– Map/Reduce UDFs 
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3. Hadoop 

•  Fault tolerance 

– Handling stragglers 

•  Job tracker will reschedule jobs to a different worker if 

the worker falls behind too much with processing 

– Materialization 

•  Inputs are read from HDFS 

•  Workers write results of map jobs assigned to them to 

local disk 

•  Workers write results of reduce jobs to HDFS for 

persistence 
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3. Hadoop – MR Job 
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3. Hadoop – MR Job 
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3. Hadoop – MR Job 
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3. Hadoop – MR Job 
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3. Hadoop – MR Job 
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3. Combiners 

•  Certain reduce functions lend themselves to 

pre-aggregation 

– E.g., SUM(revenue) group by state 

•  Can compute partial sums over incomplete groups and 

then sum up the pre-aggregated results 

– This can be done at the mappers to reduce amount 

of data send to the reducers 

•  Supported in Hadoop through a user provided 

combiner function 

– The combiner function is applied before writing 

the mapper results to local disk 
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3. Combiners 

•  Certain reduce functions lend themselves to 

pre-aggregation 

– E.g., SUM(revenue) group by state 

•  Can compute partial sums over incomplete groups and 

then sum up the pre-aggregated results 

– This can be done at the mappers to reduce amount 

of data send to the reducers 

•  Supported in Hadoop through a user provided 

combiner function 

– The combiner function is applied before writing 

the mapper results to local disk 
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3. Example code – Word count 

•  https://hadoop.apache.org/docs/r1.2.1/

mapred_tutorial.html 
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3. Example code – Word count 

•  https://hadoop.apache.org/docs/r1.2.1/

mapred_tutorial.html 
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3. Example code – Word count 
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3. Systems/Languages on top of 

MapReduce 

•  Pig 

– Scripting language, compiled into MR 

– Akin to nested relational algebra 

•  Hive 

– SQL interface for warehousing 

– Compiled into MR 

•  … 
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3. Hive 

•  Hive 

– HiveQL: SQL dialect with support for directly 

applying given Map+Reduce functions as part of a 

query 

– HiveQL is compiled into MR jobs 

– Executed of Hadoop cluster 
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FROM	(	

	MAP	doctext	USING	'python	wc_mapper.py'	AS	(word,	cnt)	 		

																	FROM	docs	

	CLUSTER	BY	word		

)	a	

REDUCE	word,	cnt	USING	'python	wc_reduce.py';		



3. Hive Architecture 
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3. Hive Datamodel  

•  Tables
–  Attribute-DataType pairs

–  User can instruct Hive to partition the table in a certain way

•  Datatypes
–  Primitive: integer, float, string

–  Complex types

•  Map: Key->Value

•  List

•  Struct

–  Complex types can be nested

•  Example:
CREATE TABLE t1(st string, fl float, li list<map<string, struct<p1:int, 
p2:int>>);  

•  Implementation:
–  Tables are stored in HDFS

–  Serializer/Deserializer - transform for querying
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3. Hive - Query Processing 

•  Compile HiveQL query into DAG of map and 
reduce functions. 
–  A single map/reduce may implement several 

traditional query operators
•   E.g., filtering out tuples that do not match a condition 

(selection) and filtering out certain columns (projection)

–  Hive tries to use the partition information to avoid 
reading partitions that are not needed to answer the 
query
•  For example

–  table instructor(name,department) is partitioned on 
department

–  SELECT name FROM instructor WHERE department = ‘CS’

–  This query would only access the partition of the table for 
department ‘CS’ 

49 CS520 - 7) Big Data Analytics 



3. Operator implementations 

•  Join implementations 

– Broadcast join 

• Send the smaller table to all nodes 

• Process the other table partitioned 

– Each node finds all the join partners for a partition 
of the larger table and the whole smaller table 

– Reduce join (partition join) 

• Use a map job to create key-value pairs where 
the key is the join attributes 

• Reducer output joined rows 
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3. Example plan 
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Spark 

•  MR uses heavy materialization to achieve fault 

tolerance 

– A lot of I/O 

•  Spark 

– Works in main memory  (where possible) 

–  Inputs and final outputs stored in HDFS 

– Recomputes partial results instead of materializing 

them - resilient distributed datasets (RDD) 

•  Lineage: Need to know from which chunk a chunk was 

derived from and by which computation 
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Summary 

•  Big data storage systems 

•  Big data computation platforms 

•  Big data “databases” 

•  How to achieve scalability 

– Fault tolerance 

– Load balancing 

•  Big data integration 

– Pay-as-you-go 

– Schema later 
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