
CS520

Data Integration, Warehousing, and

Provenance

Course Info

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Data Translation: Schema mappings, Virtual

Data Integration, and Data Exchange

4) Data Warehousing

5) Big Data Analytics

6) Data Provenance

1
CS520 - Course Info

About me

2
CS520 - Course Info

Hi, I am Boris Glavic,
 Assistant Professor in

CS

I am a database guy!

I will teach you:
database stuff

What is information integration?

• Combination of data and content from multiple
sources into a common format
– Completeness

– Correctness

– Efficiency

3
CS520 - Course Info

Integration	System

DB
Word

doc

XML/

JSON
Web

service

Web

form
Sensor

User

Why Information Integration?

• Data is already available, right?

• …, but

• Heterogeneity

– Structural

• Data model (relational, XML, unstructured)

• Schema (if exists)

– Semantic

• Naming and identity conflicts

• Data conflicts

– Syntactic

• Interfaces (web form, query language, binary file)

4
CS520 - Course Info

Why Information Integration?

• Autonomy

– Sources may not give you unlimited access

• Web form only support a fixed format of queries

• Does not allow access to unlimited amounts of data

– Source may not be available all the time

– Data, schema, and interfaces of sources may

change

• Potentially without notice

5
CS520 - Course Info

“Real World” Examples?

• Portal websites

– Flight websites (e.g., Expedia) gather data from
multiple airlines, hotels

• Google News

– Integrates information from a large number of
news sources

• Science

– Biomedical data sources

• Business

–Warehouses: integrate transactional data

6
CS520 - Course Info

Example Integration Problem [1]

• Integrate stock ticker data

from two web services A and

B

– Service A: Web form

(Company name, year)

– Service B: Web form

(year)

7
CS520 - Course Info

Steps

1) Interfaces

2) Schema	integration

3) Translate	queries

4) Optimization

5) Send	queries	to	

sources

6) Gather	query	results

7) Entity	resolution

8) Fusion

9) Return	final	results

Example Integration Problem [2]

• Service A:
<Stock>

<Company>IBM</Company>

<DollarValue>155.8</DollarValue>

<Month>12</Month>

</Stock>

• Service B:
<Stock>

<Company>International Business Machines</Company>

<Date>2014-08-01</Date>

<Value>106.8</Value>

<Currency>Euro</Currency>

</Stock>

8
CS520 - Course Info

Steps

1) Interfaces

2) Schema	integration

3) Translate	queries

4) Optimization

5) Send	queries	to	

sources

6) Gather	query	results

7) Entity	resolution

8) Fusion

9) Return	final	results

Example Integration Problem [2]

• Service A:
<Stock>

<Company>

<DollarValue>

<Month>

</Stock>

• Service B:
<Stock>

<Company>

<Date>

<Value>

<Currency>

</Stock>

9
CS520 - Course Info

Steps

1) Interfaces

2) Schema	integration

3) Translate	queries

4) Optimization

5) Send	queries	to	

sources

6) Gather	query	results

7) Entity	resolution

8) Fusion

9) Return	final	results

Example Integration Problem [2]

• Service A:
<Stock>

<Company>

<DollarValue>

<Month>

</Stock>

• Service B:
<Stock>

<Company>

<Date>

<Value>

<Currency>

</Stock>

10
CS520 - Course Info

Steps

1) Interfaces

2) Schema	integration

3) Translate	queries

4) Optimization

5) Send	queries	to	

sources

6) Gather	query	results

7) Entity	resolution

8) Fusion

9) Return	final	results

Global Schema
<Stock>

<Company>

<Value>

<Month>

<Year>

</Stock>

Example Integration Problem [3]

• SQL interface for integrated

service

SELECT month, value

FROM ticker

WHERE year = 2014

AND cmp = ‘IBM’

• Service A: (IBM, 2014)

• Service B: (2014)

11
CS520 - Course Info

Steps

1) Interfaces

2) Schema	integration

3) Translate	queries

4) Optimization

5) Send	queries	to	

sources

6) Gather	query	results

7) Entity	resolution

8) Fusion

9) Return	final	results

Example Integration Problem [4]

• For web service A we can
either

– Get stocks for IBM in all years

– Get stocks for all companies in
2014

– Get stocks for IBM in 2014

• Trade-off between amount of
processing that we have to do
locally, amount of data that is
shipped, …

12
CS520 - Course Info

Steps

1) Interfaces

2) Schema	integration

3) Translate	queries

4) Optimization

5) Send	queries	to	

sources

6) Gather	query	results

7) Entity	resolution

8) Fusion

9) Return	final	results

Example Integration Problem [5]

• Service A: (IBM, 2014)

• Service B: (2014)

13
CS520 - Course Info

Steps

1) Interfaces

2) Schema	integration

3) Translate	queries

4) Optimization

5) Send	queries	to	

sources

6) Gather	query	results

7) Entity	resolution

8) Fusion

9) Return	final	results

Example Integration Problem [6]

• Service A:
<Stock>

<Company>IBM</Company>

<DollarValue>155.8</DollarValue>

<Month>12</Month>

…

• Service B:
<Stock>

<Company>International Business

Machines</Company>

<Date>2014-12-01</Date>

<Value>106.8</Value>

<Currency>Euro</Currency>

…

14
CS520 - Course Info

Steps

1) Interfaces

2) Schema	integration

3) Translate	queries

4) Optimization

5) Send	queries	to	

sources

6) Gather	query	results

7) Entity	resolution

8) Fusion

9) Return	final	results

Example Integration Problem [7]

• IBM vs. Integrated Business

Machines

15
CS520 - Course Info

Steps

1) Interfaces

2) Schema	integration

3) Translate	queries

4) Optimization

5) Send	queries	to	

sources

6) Gather	query	results

7) Entity	resolution

8) Fusion

9) Return	final	results

Example Integration Problem [8]

• Granularity of time attribute

–Month vs. day

• What if both services return

different values (after

adapting granularity)

– Average?

–Median?

– Trust-based?

16
CS520 - Course Info

Steps

1) Interfaces

2) Schema	integration

3) Translate	queries

4) Optimization

5) Send	queries	to	

sources

6) Gather	query	results

7) Entity	resolution

8) Fusion

9) Return	final	results

Example Integration Problem [9]

• Return final results:
<Stock>

<Month>01</Month>

<Value>105</Value>

</Stock>

…

<Stock>

<Month>12</Month>

<Value>107</Value>

</Stock>

17
CS520 - Course Info

Steps

1) Interfaces

2) Schema	integration

3) Translate	queries

4) Optimization

5) Send	queries	to	

sources

6) Gather	query	results

7) Entity	resolution

8) Fusion

9) Return	final	results

Why hard?

• System challenges

– Different platforms (OS/Software)

– Efficient query processing over multiple

heterogeneous systems

• Social challenges

– Find relevant data

– Convince people to share their data

• Heterogeneity of data and schemas

– A problem that even exists if we use same system

18
CS520 - Course Info

Why hard? Cont.

• Often called AI-complete

–Meaning: “It requires human intelligence to solve

the problem”

– Unlikely that general completely automated

solutions will exist

• So why do you still sit here

– There exist automated solutions for relevant less

general problems

– Semi-automated solutions can reduce user effort

(and may be less error prone)

19
CS520 - Course Info

AI completeness

• Yes, but still why is this problem really so

hard?

– Lack of information: e.g., the attributes of a

database schema have only names and data types,

but no machine interpretable information on what

type of information is stored in the attribute

– Undecidable computational problems: e.g., to

decide whether a user query can be answered from

a set of sources that provide different views on the

data requires query containment checks which

are undecidable for certain query types

20
CS520 - Course Info

Relevant less general problems

• Data Extraction

– Extract data from unstructured sources / text

• Data cleaning:

– Clean dirty data before integration

– Conformance with a set of constraints

– Deal with missing and outlier values

• Entity resolution

– Determine which objects from multiple dataset
represent the same real world entity

• Data fusion

– Merge (potentially conflicting) data for the same entity

21
CS520 - Course Info

Relevant less general problems

• Schema matching

– Given two schemas determine which elements

store the same type of information

• Schema mapping

– Describe the relationships between schemas

• Allows us to rewrite queries written against one schema

into queries of another schema

• Allows us to translate data from one schema into

22
CS520 - Course Info

Relevant less general problems

• Virtual data integration

– Answer queries written against a global mediated

schema by running queries over local sources

• Data exchange

–Map data from one schema into another

• Warehousing: Extract, Transform, Load

– Clean, transform, fuse data and load it into a data

warehouse to make it available for analysis

23
CS520 - Course Info

Relevant less general problems

• Integration in Big Data Analytics

– Often “pay-as-you-go”:

• No or limited schema

• Engines support wide variety of data formats

• Provenance

– Information about the origin and creation process

of data

– Very important for integrated data

• E.g., “from which data source is this part of my query

result”

24
CS520 - Course Info

Webpage and Faculty

• Course Info
– Course Webpage: http://cs.iit.edu/~cs520

– Google Group: https://groups.google.com/d/forum/cs520-2016-
spring-group

• Used for announcements

• Use it to discuss with me, TA, and fellow students

– Syllabus: http://cs.iit.edu/~cs520/files/syllabus.pdf

• Faculty
– Boris Glavic (http://cs.iit.edu/~glavic)

– Email: bglavic@iit.edu

– Phone: 312.567.5205

– Office: SB 206B

– Office Hours: Wednesdays, 12:30pm-1:30pm

(and by appointment)

TAs

• TAs (TBA)

– Email:

– Phone:

– Office:

– Office Hours: (and by appointment)

Workload and Grading

27
CS520 - Course Info

• Exams (60%)

– Final (30%), Midterm (30%)

• Homework Assignments (preparation for exams!)

– Theory part: Practice theory for final exam

– Lab part: Practice the tools we discuss in class

• Literature Review (20%)

– In groups of 3 students

– Topics will be announced soon

– You have to read a research paper

– Papers will be assigned in the first few weeks of the course

– You will give a short presentation (15min) on the topic in class

– You will write a report summarizing and criticizing the paper (up to 4

pages)

Workload and Grading

28
CS520 - Course Info

• Data Curation Project(20%)

– In groups of 3 students (same groups as for literature review)

– You will have to acquire and curate (clean, integrate, …) a real world

dataset

– This is open-ended, you can choose whatever tools you need, whatever

domain you think is interesting, …

• Only limitation is that you need to document your cleaning workflow using a

Jupyter notebook (so at lease some python is required)

– Steps:

• Acquire or extract one or more real world datasets for a domain of choice

• Gain an understanding of the data and identify data quality issues

• Research tools that are suited for the data cleaning, integration, extraction

tasks that you need to apply to create a correct and clean output dataset

• Apply the tools and produce an output

– Work will be submitted through git repositories on bitbucket.org that

we will create for each

Workload and Grading

29
CS520 - Course Info

• Timeline:
– See course webpage for detailed dates

• You are required to meet with the TA/Prof. several times for

discussing the progress for the literature review and data curation

project

– Literature reviews and project presentations will be blocked

towards the end of the semester (1-2 days)

Course Objectives

• Understand the problems that arise with

querying heterogeneous and autonomous data

sources

• Understand the differences and similarities

between the data integration/exchange, data

warehouse, and Big Data analytics approaches

• Be able to build parts of a small data

integration pipeline by “glueing” existing

systems with new code

30
CS520 - Course Info

Course Objectives cont.

• Have learned formal languages for expressing

schema mappings

• Understand the difference between virtual and

materialized integration (data integration vs.

data exchange)

• Understand notions of data provenance and

know how to compute provenance

31
CS520 - Course Info

Fraud Policies

• All work has to be original!

– Cheating = 0 points for review/exam

– Possibly E in course and further administrative
sanctions

– Every dishonesty will be reported to office of
academic honesty

• Late policy:

– -20% per day

– You have to give your presentation to pass the
course!

– No exceptions!

32
CS520 - Course Info

Fraud Policies cont.

• Literature Review:

– Every student has to contribute in the presentation,

report, and data curation project!

– Don’t let others freeload on you hard work!

• Inform me or TA immediately

33
CS520 - Course Info

Reading and Prerequisites

• Textbook: Doan, Halevy, and Ives.

– Principles of Data Integration, 1st Edition

–Morgan Kaufmann

– Publication date: 2012

– ISBN-13: 978-0124160446

– Prerequisites:

• CS 425

34
CS520 - Course Info

Additional Reading

• Papers assigned for literature review

• Optional: Standard database textbook

35
CS520 - Course Info

Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema mappings and Virtual Data
Integration

4) Data Exchange

5) Data Warehousing

6) Big Data Analytics

7) Data Provenance

36
CS520 - Course Info

CS520

Data Integration, Warehousing, and

Provenance

1. Introduction

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing

7) Big Data Analytics

8) Data Provenance

1
CS520 - 1) Introduction

Overview

• Topics covered in this part

– Heterogeneity and Autonomy

– Data Integration Tasks

– Data Integration Architectures (Methods)

– Some Formal Background (sorry!)

2
CS520 - 1) Introduction

1.1 Heterogeneity +Autonomy

• Taxonomy of Heterogeneity

3
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema Naming Identity
Value

conflicts

1.1 System Heterogeneity

• Hardware/Software

– Different hardware capabilities of sources

– Different protocols, binary file formats, …

– Different access control mechanism

• Interface Heterogeneity

– Different interfaces for accessing data from a

source

• HTML forms

• XML-Webservices

• Declarative language

4
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 System Heterogeneity

• Hardware/Software

– Different hardware capabilities of sources

• Mobile phone vs. server: Cannot evaluate cross-

product of two 1GB relations on a mobile phone

– Different protocols, binary file formats, …

• Order information stored in text files: line ending

differs between Mac/Window/Linux, character

encoding

– Different access control mechanism

• FTP-access to files: public, ssh authentication, ..

5
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 System Heterogeneity

• Interface Heterogeneity

– Different interfaces for accessing data from a

source

• HTML forms

• Services (SOA)

• Declarative language

• Files

• Proprietary network protocol

• …

6
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 System Heterogeneity

• Interface Heterogeneity – Expressiveness

– Keyword-search vs. query language

– Predicates: equality (=), inequality (<, !=)

– Logical connectives: conjunctive (AND),

disjunctive (OR), negation

– Complex operations: aggregation, quantification

– Limitations: restriction to particular tables,

predicates, fixed queries with parameters, …

7
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 System Heterogeneity

• Interface Heterogeneity – Examples

– Google search (+/-, site:, intitle:, filetype:

8
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 System Heterogeneity

• Interface Heterogeneity – Examples

– SQL

9
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 System Heterogeneity

• Interface Heterogeneity – Examples

– SQL

10
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 System Heterogeneity

• Interface Heterogeneity – Examples

– Web-form (with DB backend?)

11
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Keyword

search

“Bound

parameter”

Fixed

choices

1.1 System Heterogeneity

• Interface Heterogeneity – Examples

– Email-client

12
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Name

Query
Disjunctive or

conjunctive

Comparison

operator

1.1 System Heterogeneity

• Problems with interface heterogeneity

– Global query language is more powerful

• User queries may not be executable

• Integration system has to evaluate part of the query

– Bound parameters are incompatible with query

• User query may not be executable

13
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 System Heterogeneity

• Example: more expressive global language

– SQL with one table

• books (title, author, year, isbn, genre)

– Web form for books about history shown below

– What problems do may arise translating user

queries?

14
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Steven King

1.1 System Heterogeneity

• Integration system has to process part of the

query
SELECT title

FROM books

WHERE author = ‘Steven King’

AND year = 2012;

15
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Steven King

Stephen King, 2012, Misery

Stephen King, 2014, …

Stephen Kine, 1990, …

Stephen King, 2012, Misery

1.1 System Heterogeneity

• Query requires multiple requests
SELECT title

FROM books

WHERE author LIKE ‘%King%;

16
CS520 - 1) Introduction

Heterogeneity

System Structural Structural

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Steven King

Stephen King, 2012, Misery

Stephen King, 2014, …

Stephen Kine, 1990, …

Larry Kin, …

Stephen King, 2012, Misery

Stephen King, 2012, Misery

…

Larry King
King Author

Larry King, …

How do we

know what

authors exist?

1.1 System Heterogeneity

• Query cannot be answered
SELECT title

FROM books

WHERE genre = ‘SciFi’;

17
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Web form is

for history

book only!

1.1 Heterogeneity +Autonomy

• Taxonomy of Heterogeneity

18
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema Naming Identity
Value

conflicts

1.1 Structural Heterogeneity

• Data model

– Different semantic/expressiveness

– Different structure

• Schema

– Integrity constraints, keys

– Schema elements:

• use attribute or separate relations)

– Structure:

• e.g., normalized vs. denormalized relational schema

19
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Structural Heterogeneity

• Data model

– Relational model

– XML model

– Object-oriented model

– Ontological model

– JSON

– …

20
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Structural Heterogeneity

• Example: data model

– Relational model

– XML model

– JSON

– OO

• Person and their addresses

21
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Structural Heterogeneity

• Schema

– Modeling choices

• Relation vs. attribute

• Attribute vs. value

• Relation vs. value

– Naming

– Normalized vs. denormalized (relational concept)

– Nesting vs. reference

22
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Structural Heterogeneity

23
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example: Modeling choices

Male(Id, firstname, lastname)

Female(id, firstname, lastname)

Person(Id, firstname, lastname, gender)

Person(Id, firstname, lastname, male, female)Relation vs. Value

Relation vs. Attribute

Value vs. Attribute

1.1 Structural Heterogeneity

• Relation-relation conflicts

– Naming conflicts

• Relations with different name representing the same

data (synonym)

• Relations with same name representing different

information (homonym)

– Structural conflicts

• Missing attributes

• Many-to-one

• Missing, but derivable attributes

– Integrity constraint conflicts

24
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Structural Heterogeneity

25
CS520 - 1) Introduction

Heterogeneity

System Structural Structural

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example: Conflicts between relations

Person(Id, name, gender, birthday)

Person(Id, firstname, lastname, male, female)

Manager(Id, name, gender, age)

1.1 Structural Heterogeneity

26
CS520 - 1) Introduction

Heterogeneity

System Structural Structural

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example: Conflicts between relations

Person(Id, name, gender, birthday)

Person(Id, firstname, lastname, male, female)

Manager(Id, name, gender, age)

Mutliple attribtue

vs one attribute

Derivable

attribute:

Compute age

from birthday

Missing derivable

attribute:

Role

1.1 Structural Heterogeneity

• Attribute-attribute conflicts

– Naming conflicts

• Attributes with different name representing the same

data (synonym)

• Attributes with same name representing different

information (homonym)

– Default value conflict

– Integrity constraint conflicts

• Datatype

• Constraints restricting values

27
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Structural Heterogeneity

28
CS520 - 1) Introduction

Heterogeneity

System Structural Structural

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example: Conflicts between attributes and attributes

SSN FirstName

VARCHAR(40)

LastName Age

CHECK(Age > 18)

333-333-3333 Peter Schmeter 30

333-333-9999 Hans Glanz NULL

SSN FirstName

VARCHAR(25)

SurName Age

3333333333 Peter Schmeter 30

3333339999 Hans Glanz -1

1.1 Structural Heterogeneity

29
CS520 - 1) Introduction

Heterogeneity

System Structural Structural

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example: Conflicts between attributes and attributes

SSN FirstName

VARCHAR(40)

LastName Age

CHECK(Age > 18)

333-333-3333 Peter Schmeter 30

333-333-9999 Hans Glanz NULL

SSN FirstName

VARCHAR(25)

SurName Age

3333333333 Peter Schmeter 30

3333339999 Hans Glanz -1

Conflicting format Conflicting

datatype

synonym

Conflicting

constraint

Conflicting default

value

1.1 Structural Heterogeneity

• Normalized vs. denormalized

– E.g., relational model: Association between

entities can be represented using multiple

relations and foreign keys or one relation

30
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example

Person

Name

Address

Address

Id

City

Zip

Person

Name

City

Zip

1.1 Structural Heterogeneity

• Nested vs. flat

– Association between entities can be represented

using nesting or references (previous slides)

31
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example

Person

Name

{Address

Id

City

Zip

}

Person

Name

City

Zip

1.1 Structural Heterogeneity

• Problems caused by schema heterogeneity

– Unified access to multiple schemas or integrate

schemas into new schema

• Schema level: schema mapping, model management

operators, schema languages

• Data Level: virtual data integration, data exchange,

warehousing (ETL)

32
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Heterogeneity +Autonomy

• Taxonomy of Heterogeneity

33
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema Naming Identity
Value

conflicts

1.1 Semantic Heterogeneity

• Semantic Heterogeneity

– Naming Conflicts

– Identity Conflicts (Entity resolution)

– Value Conflicts (Data Fusion)

34
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Semantic Heterogeneity

• Naming Conflicts

– Ontological (concepts)

• Birds vs. Animals

– Synonyms

• Surname vs. last name

– Homonyms

– Units

• Gallon vs. liter

– Values

• Manager vs. Boss

35
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Semantic Heterogeneity

• Ontological concepts

– Relationships between concepts

• A = B - Equivalence

• A ⊆B - Inclusion

• A ∩ B - Overlap

• A ≠ B - Disjunction

36
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Semantic Heterogeneity

• Ontological concepts

– Relationships between concepts

• A = B - Equivalence

• A ⊆B - Inclusion

• A ∩ B - Overlap

• A ≠ B - Disjunction

37
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example

Equivalence: Human vs Homo sapiens

Inclusion: Bird vs Animal

Overlap: Animal vs aquatic lifeform

Disjunction: Fish vs Mamal

1.1 Semantic Heterogeneity

• Naming concepts (synonyms)

• Different words with same meaning

38
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example

Person(Name,Age)

Human(LastName,Age)

1.1 Semantic Heterogeneity

• Naming concepts (homonyms)

• Same words with different meaning

39
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example

Person(Title,Name)

Movie(Title,Year)

1.1 Semantic Heterogeneity

• Naming concepts (units)

40
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example

Person(Title,Name,Salary)

Person(Title,Name,Salary)

$

CAD

1.1 Semantic Heterogeneity

• Identity Conflicts

– What is an object?

• E.g., multiple tuples in relational model

– Central question:

• Does object A represent the same entity as B

– This problem has been called

• Entity resolution

• Record linkage

• Deduplication

• …

41
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Semantic Heterogeneity

• Identity Conflicts

42
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example

(IBM,300000000,USA)

(International Business Machines Corporation,50000)

1.1 Semantic Heterogeneity

• Value Conflicts

– Objects representing the same entities have

conflicting values for semantically equivalent

attributes

• We have to identified that these objects are represent

the same entitity first!

– Resolving such conflicts requires Data Fusion

• Pick value from conflicting values

• Numerical methods: e.g., average

• Preferred value

• …

43
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

1.1 Autonomy

• How autonomous are data sources

– One company

• Can enforce, e.g., schema and software

– …

– The web

• Website decides

– Interface

– Determines access restrictions and limits

– Availability

– Format

– Query restrictions

– …

44
CS520 - 1) Introduction

1.2 Data integration tasks

• Cleaning and prepreparation

• Entity resolution

• Data Fusion

• Schema matching

• Schema mapping

• Query rewrite

• Data translation

45
CS520 - 1) Introduction

1.3 Data integration architectures

• Virtual data integration

• Data Exchange

• Peer-to-peer data integration

• Datawarehousing

• Big Data analytics

46
CS520 - 1) Introduction

1.4 Formal Background

• Query Equivalence

– Complexity for different query classes

• Query Containment

– Complexity for different query classes

• Datalog

– Recursion + Negation

• Integrity Constraints

– Logical encoding of integrity constraints

• Similarity Measures/Metrics

47
CS520 - 1) Introduction

1.4 Integrity constraints

• You know some types of integrity constraints

already

– Functional dependencies

• Keys are a special case

– Foreign keys

• We have not really formalized that

48
CS520 - 1) Introduction

1.4 Integrity constraints

• Other types are

– Conditional functional dependencies

• E.g., used in cleaning

– Equality-generating dependencies

– Multi-valued dependencies

– Tuple-generating dependencies

– Join dependencies

– Denial constraints

– …

49
CS520 - 1) Introduction

1.4 Integrity constraints

• How to manage all these different types of

constraints?

– Has been shown that these constraints can be

expressed in a logical formalism.

– Formulas which consist of relational and

comparison atoms. Variables represent values

• R(x,y,z)

• x = y

50
CS520 - 1) Introduction

1.4 Integrity Constraints

51
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example

Primary Key R(A,B):

Functional Dependency R(A,B) with A->B:

Foreign Key R(A,B), S(C,D) where D is FK to R:

∀x, y, z, a : R(x, y) ∧R(z, a) ∧ x = z → y = a

∀x, y, z : R(x, y) ∧R(x, z) → y = z

∀x, y : S(x, y) → ∃z : R(y, z)

1.4 Integrity constraints

• Types of constraints we will use a lot

– Tuple-generating dependencies (tgds)

• Implication with conjunction of relational atoms

• Foreign keys and schema mappings (later)

– Equality-generating dependencies (egds)

• Generalizes keys, FDs

52
CS520 - 1) Introduction

∀~x : �(~x) → ∃~y : (~x, ~y)

∀~x : �(~x) → ∧
n
k=1

xik = xjk

1.4 Datalog

• What is datalog?

– Prolog for databases (syntax very similar)

– A logic-based query language

• Queries (Program) expressed as set of rules

• One Q is specified as the answer relation (the

relation returned by the query)

53
CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

1.4 Datalog - Intuition

• A Datalog rule

• For all bindings of variables in the right-hand

side (RHS) that makes the RHS true

(conjunction) return bindings of

54
CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

Q(Name):- Person(Name,Age).

Return names of persons

Example

1.4 Datalog - Syntax

• A Datalog program is a set of datalog rules

– Optionally a distinguished answer predicate

• A Datalog rule is

• X’s are lists of variables and constants

• Ri’s are relation names

• Q is a relation name

55
CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

1.4 Datalog - Terminology

• Left-hand side of a rule is called it’s head

• Right-hand side of a rule is called it’s body

• Relation are called predicates

• is called an atom

• An instance I of a database is the data

• The active domain adom(I) of an instance I is

the set of all constants that occur in I

56
CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

1.4 Datalog - Terminology

57
CS520 - 1) Introduction

Q(N):- Person(N,A).

N, A are variables

Q(N), Person(N,A) are atoms

Person and Q are predicates

Activate domain

adom(I) = {peter,bob,34,45}

Example

Name Age

peter 34

bob 45

1.4 Datalog - Terminology

• Intensional vs. extensional

– Extensional database (edb)

• What we usually call database

– Intensional database (idb)

• Relations that occur in the head of rules (are populated

by the query)

– Usually we assume that these do not overlap

58
CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

1.4 Datalog - Safety

• A datalog program is safe if all its rules are

safe

• A rule is safe if all variables in occur in at

least one

59
CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

Q(Name):- Person(Name,Age). (safe)

Q(Name,Sal):-Peron(Name,Age).(unsafe)

Example

1.4 Datalog - Semantics

• The instance of an idb predicate Q in a datalog

program for an edb instance I contains all facts

that can be derived by applying rules with Q in

the head

• A rule derives a fact Q(c) if we can find a

binding of variables of the rule to constants

from adom(I) such that x is bound to c and the

body is true

60
CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

1.4 Datalog - Semantics

61
CS520 - 1) Introduction

Q(N):- Person(N,A).

N=peter,A=peter: Q(peter):- Person(peter,peter).

N=peter,A=bob: Q(peter):- Person(peter,bob).

N=peter,A=34: Q(peter):- Person(peter,34).

N=bob,A=peter: Q(bob):- Person(peter,peter).

N=bob,A=bob: Q(bob):- Person(peter,bob).

N=bob,A=34: Q(bob):- Person(bob,34).

N=34,A=peter: Q(34):- Person(34,peter).

N=34,A=bob: Q(34):- Person(34,bob).

N=34,A=34: Q(34):- Person(34,34).

Active domain

adom(I) = {peter,bob,34}

Example

Name Age

peter 34

bob 34

N

peter

bob

1.4 Datalog

• Different flavors of datalog

– Conjunctive query

• Only one rule

• Expressible as Select-project-join (SPJ) query in
relational algebra (only equality and AND in selection)

– Union of conjunctive queries

• Also allow union

• SPJ + set union in relational algebra

• Rules with the same head in Datalog

– Conjunctive queries with inequalities

• Also allow inequivalities, e.g., <

62
CS520 - 1) Introduction

1.4 Datalog

• Different flavors of datalog

– Recursion

• Rules may have recursion:

– E.g., head predicate in the body

• Fix point semantics based on immediate consequence
operator

– Negation (first-order queries)

• Negated relational atoms allowed

• Require that every variable used in a negated atom also
occurs in at least on positive atom (safety)

– Combined Negation + recursion

• Stronger requirements (e.g., stratification)

63
CS520 - 1) Introduction

1.4 Datalog – Semantics (Negation)

• A rule derives a fact Q(c) if we can find a

binding of variables of the rule to constants

from adom(I) such that x is bound to c and the

body is true

• A negated atom not R(X) is true if R(X) is not

part of the instance

64
CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

1.4 Datalog - Semantics

65
CS520 - 1) Introduction

Q(N):- Person(N,A), not Lives(N).

N=peter,A=peter: Q(peter):- Person(peter,peter),

not Lives(peter).

N=peter,A=bob: Q(peter):- Person(peter,bob),

not Lives(peter).

…
N=peter,A=34: Q(bob):- Person(bob,34),

not Lives(bob).

…

Active domain

adom(I) = {peter,bob,34}

Example

Name Age

peter 34

bob 34

N

bob

Name

peter

Lives

Result

Person

1.4 Datalog

66
CS520 - 1) Introduction

Example

Relation hop(A,B) storing edges

of a graph.

Q2hop(x,z): hop(x,y),hop(x,z).

Qreach(x,y): hop(x,y).

Qreach(x,z): Qreach(x,y),Qreach(y,z).

Qnode(x): hop(x,y).

Qnode(x): hop(y,x).

1.4 Datalog

67
CS520 - 1) Introduction

Example

Relation hop(A,B) storing edges

of a graph.

Qnode(x): hop(x,y).

Qnode(x): hop(y,x).

QnotReach(x,y): Qnode(x), Qnode(y),

not Qreach(x,y).

1.4 Containment and Equivalence

68
CS520 - 1) Introduction

Query Q is equivalent to Q’ iff for every database instance I both queries return

the same result

Definition: Query Equivalence

Q ≡ Q0
⇔ ∀I : Q(I) = Q0(I)

Query Q is contained in query Q’ iff for every database instance I the result of Q

is contained in the result of Q’

Definition: Query Containment

Q v Q0 , 8I : Q(I) ✓ Q0(I)

1.4 Equivalence

• The problem of checking query equivalence is

of different complexity depending on the

query language and whether we consider set

or bag semantics

69
CS520 - 1) Introduction

1.4 Containment and Equiv.

70
CS520 - 1) Introduction

Example

Q1(x,y): R(x,y), R(x,z).

Q2(x,y): R(x,y).

Q3(x,x): R(x,x).

Q4(x,y): R(x,y).

Q5(x,x): R(x,y), R(x,x).

Q6(x,z): R(x,y), R(y,z).

1.4 Containment and Equiv.

71
CS520 - 1) Introduction

Example

Relation hop(A,B) storing edges

of a graph.

Q2hop(x,z): hop(x,y),hop(x,z).

Qup2Hop(x,z): hop(x,y),hop(x,z).

Qup2Hop(x,z): hop(x,z).

Qsym(x,y): hop(x,y).

Qsym(x,y): hop(y,x).

Qsym2Hop(x,y): Qsym(x,y),Qsym(y,z).

1.4 Complexity of Eq. and Cont.

72
CS520 - 1) Introduction

Set

semantics

Relational

Algebra

Conjunctive

Queries (CQ)

Union of

Conjunctive

Queries

(UCQ)

Monotone

Queries/

CQ≠

Query

Evaluation

(Combined

Complexity)

PSPACE-

complete

NP-complete NP-complete NP-complete

Query

Evaluation

(Data

Complexity)

LOGSPACE

(that means

in P)

LOGSPACE

(that means

in P)

LOGSPACE

(that means

in P)

LOGSPACE

(that means

in P)

Query

Equivalence

Undecidable NP-complete NP-complete Π2
p-complete

Query

Containment

Undecidable NP-complete NP-complete Π2
p-complete

1.4 Complexity of Eq. and Cont.

73
CS520 - 1) Introduction

Bag

semantics

Relational

Algebra

Conjunctive

Queries (CQ)

Union of

Conjunctive

Queries (UCQ)

Query

Equivalence

Undecidable Equivalent to

graph

isomorphism

Undecidable

Query

Containment

Undecidable Open Problem Undecidable

1.4 Containment Mappings

• NP-completeness for set semantics CQ and

UCQ for the containment, evaluation, and

equivalence problems is based on reducing

these problems to the same problem

– [Chandra & Merlin, 1977]

• Notational Conventions:

– head(Q) = variables in head of query Q

– body(Q) = atoms in body of Q

– vars(Q) = all variable in Q

74
CS520 - 1) Introduction

1.4 Boolean Conjunctive Queries

• A conjunctive query is boolean if the head

does not have any variables

– Q() :- hop(x,y), hop(y,z)

– We will use Q :- … as a convention for Q() :- …

– What is the result of a boolean query

• Empty result {}, e.g., no hop(x,y), hop(y,z)

• If there are tuples matching the body, then a tuple

with zero attributes is returned {()}

– -> We interpret {} as false and {()} as true

– Boolean query is essentially an existential check

75
CS520 - 1) Introduction

1.4 Boolean Conjunctive Queries

• BCQ in SQL

76
CS520 - 1) Introduction

Example

Hop relation: Hop(A,B)

Q :- hop(x,y)

SELECT EXISTS (SELECT * FROM hop)

Note: in Oracle and DB2 we need a

from clause

1.4 Boolean Conjunctive Queries

77
CS520 - 1) Introduction

Example

SELECT

CASE WHEN EXISTS (SELECT *

FROM hop)

THEN 1 ELSE 0

END AS x

FROM dual;

Notes:

- Oracle and DB2 FROM not optional

- Oracle has no boolean datatype

1.4 Boolean Conjunctive Queries

• BCQ in SQL

78
CS520 - 1) Introduction

Example

Q :- hop(x,y), hop(y,z)

SELECT EXISTS

(SELECT *

FROM hop l, hop r

WHERE l.B = r.A)

1.4 Containment Mappings

• How to check for containment of CQs (set)

79
CS520 - 1) Introduction

A variable mapping ψ from query Q to query Q’ maps the variables of Q to

constants or variables from Q’

Definition: Variable Mapping

A containment mapping from query Q to Q’ is a variable mapping ψ such that:

Definition: Containment Mapping

Ψ(head(Q)) = head(Q0)

1.4 Containment Mappings

80
CS520 - 1) Introduction

Query Q is contained in query Q’ iff there exists a containment mapping ψ from

Q’ to Q

Theorem: Containment Mappings and Query Containment

Example

Q1(u,z): R(u,z).

Q2(x,y): R(x,y).

Can we find a containment mapping?

1.4 Containment Mappings

81
CS520 - 1) Introduction

Query Q is contained in query Q’ iff there exists a containment mapping ψ from

Q’ to Q

Theorem: Containment Mapping and Query Containment

Example

Q1(u,z): R(u,z).

Q2(x,y): R(x,y).

Q1 -> Q2 :Ψ(u)=x, Ψ(z)=y

Q2 -> Q1 :Ψ(x)=u, Ψ(y)=z

1.4 Containment Mappings

82
CS520 - 1) Introduction

Example

Q1(a,b): R(a,b), R(b,c).

Q2(x,y): R(x,y).

1.4 Containment Mappings

83
CS520 - 1) Introduction

Example

Q1(a,b): R(a,b), R(b,c).

Q2(x,y): R(x,y).

Do containment mappings exist?

Q1 -> Q2: none exists

Q2 -> Q1: Ψ(x)=a, Ψ(y)=b

1.4 Containment Mappings

84
CS520 - 1) Introduction

Example

Q1(a,b): R(a,b), R(c,b).

Q2(x,y): R(x,y).

Q1 -> Q2 :Ψ(a)=x, Ψ(b)=y, Ψ(c)=x

Q2 -> Q1 :Ψ(x)=a, Ψ(y)=b

1.4 Containment Background

• It was shown that query evaluation,

containment, equivalence as all reducible to

homomorphism checking for CQ

– Canonical conjunctive query QI for instance I

• Interpret attribute values as variables

• The query is a conjunction of all atoms for the tuples

• I = {hop(a,b), hop(b,c)} -> QI :- hop(a,b), hop(b,c)

– Canonical instance IQ for query Q

• Interpret each conjunct as a tuple

• Interpret variables as constants

• Q :- hop(a,a) -> IQ = {hop(a,a)}

85
CS520 - 1) Introduction

1.4 Containment Background

• Containment Mapping <-> Containment

• Proof idea (boolean queries)

– (if direction)

• Assume we have a containment mapping Q1 to Q2

• Consider database D

• Q2(D) is true then we can find a mapping from vars(Q2)

to D

• Compose this with the containment mapping and prove

that this is a result for Q1

86
CS520 - 1) Introduction

1.4 Containment Mappings

87
CS520 - 1) Introduction

Example

Q1(): R(a,b), R(c,b).

Q2(): R(x,y).

Q2 -> Q1 :Ψ(x)=a, Ψ(y)=b

D={R(1,1), R(1,2)}

Q1(D)={(1,1),(1,2)}

φ(a)=1, φ(b)=2, φ(c)=1

Ψ φ(x)=1, Ψ φ(y)=2

1.4 Containment Background

• Containment Mapping <-> Containment

• Proof idea (boolean queries)

– (only-if direction)

• Assume Q2 contained in Q1

• Consider canonical (frozen) database IQ2

• Evaluating Q1 over IQ2 and taking a variable mapping

that is produced as a side-effect gives us a containment

mapping

88
CS520 - 1) Introduction

1.4 Containment Mappings

89
CS520 - 1) Introduction

Example

Q1(): R(a,b), R(c,b).

Q2(): R(x,y).

Q2 -> Q1 :Ψ(x)=a, Ψ(y)=b

IQ1 = {(a,b),(c,b)}

Q2(I
Q1)={()}

φ(x)=a, φ(y)=b

φ is our containment mapping Ψ

1.4 Containment Background

• If you are not scared and want to know more:

– Look up Chandra and Merlins paper(s)

– The text book provides a more detailed overview

of the proof approach

– Look at the slides from Phokion Kolaitis excellent

lecture on database theory

• https://classes.soe.ucsc.edu/cmps277/Winter10/

90
CS520 - 1) Introduction

1.4 Containment Background

• A more intuitive explanation why containment

mappings work

– Variable naming is irrelevant for query results

– If there is a containment mapping Q to Q’

• Then every condition enforced in Q is also enforced by

Q’

• Q’ may enforce additional conditions

91
CS520 - 1) Introduction

1.4 Containment Mappings

92
CS520 - 1) Introduction

Example

Q1(): R(a,b), R(c,b).

Q2(): R(x,y).

Q2 -> Q1 :Ψ(x)=a, Ψ(y)=b

If there exists tuples

R(a,b) and R(c,b)

in R that make Q1 true, then we

take

R(a,b)

to fulfill Q2

1.4 Containment Background

• From boolean to general conjunctive queries

– Instead of returning true or false, return bindings

of variables

– Recall that containment mappings enforce that

the head is mapped to the head

– -> same tuples returned, but again Q’ s condition

is more restrictive

93
CS520 - 1) Introduction

1.4 Containment Mappings

94
CS520 - 1) Introduction

Example

Q1(a): R(a,b), R(c,b).

Q2(x): R(x,y).

Q2 -> Q1 :Ψ(x)=a, Ψ(y)=b

For every

R(a,b) and R(c,b)

Q1 returns (a) and for every

R(a,b)

Q2 returns (a)

1.4 Similarity Measures

• Problem faced by multiple integration tasks

– Given two objects, how similar are they

– E.g., given two attribute names in schema

matching, given two values in data fusion/entity

resolution, …

95
CS520 - 1) Introduction

1.4 Similarity Measures

• Object models

– Multidimensional (feature vector model)

• Object is described as a vector of values - one for each

dimension out of a given set of dimensions

• E.g., Dimensions are gender (male/female), age (0-120),

and salary (0-1,000,000). An example object is

[male,80,70,000]

– Strings

• E.g., how similar is “Poeter” to “Peter”

– Graphs and Trees

• E.g., how similar are two XML models

96
CS520 - 1) Introduction

1.4 Similarity Measures

• Interpretation: the lower the score the “more similar” the objects are

• We require d(p,p)=0, because nothing can be more similar to an object than itself

• Note: often scores are normalized to the range [0,1]

97
CS520 - 1) Introduction

Function d(p,q) where p and q are objects, that returns a real score with

• d(p,p) = 0

• d(p,q) >= 0

Definition: Similarity Measure

1.4 Similarity Measures

98
CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

Software Interface Datamodel Schema
Namin

g

Identit

y

Value

conflicts

Example

String equality: d(p,q) = 0 if p=q

strings d(p,q) = 1 else

Euclidian distance: d(p,q) =

N-dimensional space

Edit distance: d(p,q) = minimum number of

strings single character

insertions, deletions,

replacements to

transform p into q

v

u

u

t

n
X

i=1

(p[i]− q[i])2

1.4 Similarity Measures

– Metric is a stricter definition

– Which of the previous similarity measure is a metric?

99
CS520 - 1) Introduction

Function d(p,q) where p and q are objects, that returns a real score with

• Non-negative d(p,q) >= 0

• Symmetry d(p,q) = d(q,p)

• Identity of indiscernibles d(p,q) = 0 iff p=q

• Triangle inequality d(p,q) + d(q,r) >= d(p,r)

Definition: Metric

1.4 Similarity Measures

– Metric is a stricter definition

– Which of the previous similarity measure is a metric?
• All of them!

100
CS520 - 1) Introduction

Function d(p,q) where p and q are objects, that returns a real score with

• Non-negative d(p,q) >= 0

• Symmetry d(p,q) = d(q,p)

• Identity of indiscernibles d(p,q) = 0 iff p=q

• Triangle inequality d(p,q) + d(q,r) >= d(p,r)

Definition: Metric

1.4 Similarity Measures

• Why do we care whether d is a metric?

– Some data mining algorithms only work for

metrics

• E.g., some clustering algorithms such as k-means

• E.g., clustering has been used in entity resolution

– Metric spaces allow optimizations of some
methods

• E.g., Nearest Neighboorhood-search: find the most
similar object to an object p. This problem can be
efficiently solved using index structures that only
apply to metric spaces

101
CS520 - 1) Introduction

Summary

• Heterogeneity

– Types of heterogeneity

– Why do they arise?

– Hint at how to address them

• Autonomy

• Data Integration Tasks

• Data Integration Architectures

• Background

– Datalog + Query equivalence/containment +
Similarity + Integrity constraints

102
CS520 - 1) Introduction

Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing

7) Big Data Analytics

8) Data Provenance

103
CS520 - 1) Introduction

Outline

0) Course Info

1)  Introduction

2)   Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 1 CS520 - 1) Introduction

2. Overview

•  Topics covered in this part

– Causes of Dirty Data

– Constraint-based Cleaning

– Outlier-based and Statistical Methods

– Entity Resolution

– Data Fusion

2 CS520 - 1) Introduction

2. Causes of “Dirty” Data

•  Manual data entry or result of erroneous

integration

– Typos:

•  “Peter” vs. “Pteer”

– Switching fields

•  “FirstName: New York, City: Peter”

–  Incorrect information

•  “City:New York, Zip: 60616”

– Missing information

•  “City: New York, Zip: “

3 CS520 - 1) Introduction

2. Causes of “Dirty” Data

•  Manual data entry or result of erroneous

integration (cont.)

– Redundancy:

•  (ID:1, City: Chicago, Zip: 60616)

•  (ID:2, City: Chicago, Zip: 60616)

–  Inconsistent references to entities

•  Dept. of Energy, DOE, Dep. Of Energy, …

4 CS520 - 1) Introduction

2. Cleaning Methods

•  Enforce Standards

– Applied in real world

– How to develop a standard not a fit for this lecture

– Still relies on no human errors

•  Constraint-based cleaning

– Define constraints for data

– “Make” data fit the constraints

•  Statistical techniques

– Find outliers and smoothen or remove

•  E.g., use a clustering algorithm

5 CS520 - 1) Introduction

2. Overview

•  Topics covered in this part

– Causes of Dirty Data

– Constraint-based Cleaning

– Outlier-based and Statistical Methods

– Entity Resolution

– Data Fusion

6 CS520 - 1) Introduction

2.1 Cleaning Methods

•  Constraint-based cleaning

– Choice of constraint language

– Detecting violations to constraints

– Fixing violations (automatically?)

7 CS520 - 1) Introduction

2.1 Constraint Languages

•  First work focused on functional dependencies

(FDs)

•  Extensions of FDs have been proposed to

allow rules that cannot be expressed with FDs

– E.g., conditional FDs only enforce the FD is a

condition is met

•  -> finer grained control, e.g., zip -> city only if country

is US

•  Constraints that consider master data

– Master data is highly reliable data such as a

government issued zip, city lookup table
8 CS520 - 1) Introduction

2.1 Constraint Languages (cont.)

•  Denial constraints

– Generalize most other proposed constraints

– State what should not be true

– Negated conjunction of relational and comparison

atoms

•  Here we will look at FDs mainly and a bit at

denial constraints

– Sometimes use logic based notation introduced

previously

9 CS520 - 1) Introduction

∀~x : ¬(�(~x))

2.1 Example Constraints

10 CS520 - 1) Introduction

Example:	Constraints	Languages	

C1: The zip code uniquely determines the city

C2: Nobody should earn more than their direct superior

C3: Salaries are non-negative

SSN	 zip	 city	 name	 boss	 salary	

333-333-3333	 60616	 New	York	 Peter	 Gert	 50,000	

333-333-9999	 60615	 Chicago	 Gert	 NULL	 40,000	

333-333-5599	 60615	 Schaumburg	 Gertrud	 Hans	 10,000	

333-333-6666	 60616	 Chicago	 Hans	 NULL	 1,000,000	

333-355-4343	 60616	 Chicago	 Malcom	 Hans	 20,000	

2.1 Example Constraints

11 CS520 - 1) Introduction

Example:	Constraints	Languages	

C1: The zip code uniquely determines the city

 - expressible as functional dependency

C2: Nobody should earn more than their direct superior

 - e.g., denial constraint

C3: Salaries are non-negative

 - e.g., denial constraint

SSN	 zip	 city	 name	 boss	 salary	

333-333-3333	 60616	 New	York	 Peter	 Gert	 50,000	

333-333-9999	 60615	 Chicago	 Gert	 NULL	 40,000	

333-333-5599	 60615	 Schaumburg	 Gertrud	 Hans	 10,000	

333-333-6666	 60616	 Chicago	 Hans	 NULL	 1,000,000	

333-355-4343	 60616	 Chicago	 Malcom	 Hans	 20,000	

2.1 Example Constraints

12 CS520 - 1) Introduction

Example:	Constraints	Languages	

C1: The zip code uniquely determines the city

FD1: zip -> city

C2: Nobody should earn more than their direct superior

C3: Salaries are non-negative

SSN	 zip	 city	 name	 boss	 salary	

333-333-3333	 60616	 New	York	 Peter	 Gert	 50,000	

333-333-9999	 60615	 Chicago	 Gert	 NULL	 40,000	

333-333-5599	 60615	 Schaumburg	 Gertrud	 Hans	 10,000	

333-333-6666	 60616	 Chicago	 Hans	 NULL	 1,000,000	

333-355-4343	 60616	 Chicago	 Malcom	 Hans	 20,000	

8¬(E(x, y, z, u, v, w) ^ E(x0, y0, z0, u0, v0, w0) ^ x = x0 ^ y 6= y0)

∀¬(E(x, y, z, u, v, w) ∧ E(x0, y0, z0, u0, v0, w0) ∧ v = u0
∧ w > w0)

∀¬(E(x, y, z, u, v, w) ∧ w < 0)

2.1 Constraint based Cleaning

Overview

•  Define constraints

•  Given database D

– 1) Detect violations of constraints

•  We already saw example of how this can be done using

queries. Here a bit more formal

– 2) Fix violations

•  In most cases there are many different ways to fix the

violation by modifying the database (called solution)

– What operations do we allow: insert, delete, update

– How do we choose between alternative solutions

13 CS520 - 1) Introduction

2.1 Constraint Repair Problem

•  This would allow us to take any I’

– E.g., empty for FD constraints

•  We do not want to loose the information in I

(unless we have to)

•  Let us come back to that later

14 CS520 - 1) Introduction

Given	set	of	constraints	Σ	and	an	database	instance	I	which	violates	the	

constraints	find	a	clean	instance	I’	so	that	I’	fulfills	Σ	

Defini>on:	Constraint	Repair	Problem	

2.1 Constraint based Cleaning

Overview

•  Study 1) + 2) for FDs

•  Given database D

– 1) Detect violations of constraints

•  We already saw example of how this can be done using

queries. Here a bit more formal

– 2) Fix violations

•  In most cases there are many different ways to fix the

violation by modifying the database (called solution)

– What operations do we allow: insert, delete, update

– How do we choose between alternative solutions

15 CS520 - 1) Introduction

2.1 Example Constraints

16 CS520 - 1) Introduction

Example:	Constraints	

FD1: zip -> city

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

2.1 Example Constraints

17 CS520 - 1) Introduction

Example:	Constraint	Viola>ons	

FD1: zip -> city

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

2.1 Example Constraints

18 CS520 - 1) Introduction

Example:	Constraint	Viola>ons	

How to repair?

Deletion:

 - remove some conflicting tuples

 - quite destructive

Update:

 - modify values to resolve the conflict

 - equate RHS values (city here)

 - disequate LHS value (zip)

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

2.1 Constraint based Cleaning

Overview

•  How to repair?

•  Deletion:

–  remove some conflicting tuples

– quite destructive

•  Update:

– modify values to resolve the conflict

– equate RHS values (city here)

– disequate LHS value (zip)

•  Insertion?

– Not for FDs, but e.g., FKs
19 CS520 - 1) Introduction

2.1 Example Constraints

20 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Deletion:

Delete Chicago or Schaumburg?

Delete New York or the two Chicago tuples?

 - one tuple deleted vs. two tuples deleted

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

2.1 Example Constraints

21 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Update equate RHS:

Update Chicago->Schaumburg or Schaumburg->Chicago

Update New York->Chicago or Chicago->New York

 - one tuple deleted vs. two cells updated

Update disequate LHS:

Which tuple to update?

What value do we use here? How to avoid creating other conflicts?

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

2.1 Constraint based Cleaning

Overview

•  Principle of minimality

– Choose repair that minimally modifies database

– Motivation: consider the solution that deletes every

tuple

•  Most update approaches equate RHS because

there is usually no good way to choose LHS

values unless we have master data

– E.g., update zip to 56423 or 52456 or 22322 …

22 CS520 - 1) Introduction

2.1 Detecting Violations

•  Given FD A -> B on R

– Recall logical representation

– Forall X, X’: R(X) and R(X’) and A=A’ -> B=B’

– Only violated if we find two tuples where A=A’,

but B != B’

–  In datalog

•  Q(): R(X), R(X’), A=A’, B!=B’

–  In SQL

SELECT EXISTS (SELECT *

 FROM R x, R y

 WHERE A=A’ AND B<>B’)

23 CS520 - 1) Introduction

2.1 Example Constraints

24 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	SQL	Viola>on	Detec>on	

Relation: Person(name,city,zip)

FD1: zip -> city

Violation Detection Query

SELECT EXISTS (SELECT *

 FROM Person x, Person y

 WHERE x.zip = y.zip

 AND x.city <> y.city)

To know which tuples caused the conflict:

SELECT *

FROM Person x, Person y

WHERE x.zip = y.zip

 AND x.city <> y.city)

2.1 Fixing Violations

•  Principle of minimality

– Choose solution that minimally modifies the

database

– Updates:

•  Need a cost model

– Deletes:

•  Minimal number of deletes

25 CS520 - 1) Introduction

2.1 Constraint Repair Problem

•  Cost metrics that have been used

– Deletion + Insertion

•  S-repair: minimize measure above under set inclusion

•  C-repair: minimize cardinality

– Update

•  Assume distance metric d for attribute values

26 CS520 - 1) Introduction

Given	set	of	constraints	Σ	and	an	database	instance	I	which	violates	the	

constraints	find	a	clean	instance	I’	(does	not	violate	the	constraints)	with	

cost(I,I’)	being	minimal	

Defini>on:	Constraint	Repair	Problem	(restated)	

∆(I, I 0) = (I − I 0) ∪ (I 0 − I)

2.1 Cost Metrics

•  Deletion + Insertion

•  S-repair: minimize measure above under set inclusion

•  C-repair: minimize cardinality

•  Update

•  Assume single relation R with uniquely identified tuples

•  Assume distance metric d for attribute values

•  Schema(R) = attributes in schema of relation R

•  t’ is updated version of tuple t

•  Minimize:

27 CS520 - 1) Introduction

∆(I, I 0) = (I − I 0) ∪ (I 0 − I)

X

t2R

X

A2Schema(R)

d(t.A, t0.A)

2.1 Cost Metrics

•  Update

•  Assume single relation R with uniquely identified tuples

•  Assume distance metric d for attribute values

•  Schema(R) = attributes in schema of relation R

•  t’ is updated version of tuple t

•  Minimize:

•  We focus on this one

•  This is NP-hard

– Heuristic algorithm

28 CS520 - 1) Introduction

X

t2R

X

A2Schema(R)

d(t.A, t0.A)

2.1 Naïve FD Repair Algorithm

•  FD Repair Algorithm: 1. Attempt

– For each FD X -> Y in Σ run query to find pairs of

tuples that violate the constraint

– For each pair of tuples t and t’ that violate the

constraint

•  update t.Y to t’.Y

–  choice does not matter because cost is symmetric, right?

29 CS520 - 1) Introduction

2.1 Constraint Repair

30 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

t1 and t4: set t1.city = Chicago

t1 and t5: set t1.city = Chicago
t2 and t3: set t2.city = Schaumburg

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 1. Attempt

– For each FD X -> Y in Σ run query to find pairs of

tuples that violate the constraint

– For each pair of tuples t and t’ that violate the

constraint: t.X = t’.X and t.Y != t’.Y

•  update t.Y to t’.Y

–  choice does not matter because cost is symmetric, right?

– Our updates may cause new violations!

31 CS520 - 1) Introduction

2.1 Constraint Repair

32 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

t4 and t1: set t4.city = New York

t1 and t5: set t1.city = Chicago
t2 and t3: set t2.city = Schaumburg

Now t1 and t4 and t4 and t5 in violation!

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 2. Attempt

–  I’ = I

– 1) For each FD X -> Y in Σ run query to find pairs

of tuples that violate the constraint

– 2) For each pair of tuples t and t’ that violate the

constraint: t.X = t’.X and t.Y != t’.Y

•  update t.Y to t’.Y

–  choice does not matter because cost is symmetric, right?

– 3) If we changed I’ goto 1)

33 CS520 - 1) Introduction

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 2. Attempt

–  I’ = I

– 1) For each FD X -> Y in Σ run query to find pairs

of tuples that violate the constraint

– 2) For each pair of tuples t and t’ that violate the

constraint: t.X = t’.X and t.Y != t’.Y

•  update t.Y to t’.Y

–  choice does not matter because cost is symmetric, right?

– 3) If we changed I’ goto 1)

•  May never terminate

34 CS520 - 1) Introduction

2.1 Constraint Repair

35 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

t4 and t1: set t4.city = New York

t1 and t5: set t1.city = Chicago

Now t1 and t4 and t4 and t5 in violation!

t4 and t1: set t1.city = New York

T5 and t4: set t4.city = Chicago

repeat

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 2. Attempt

– Even if we succeed the repair may not be

minimal. There may be many tuples with the

same X values

•  They all have to have the same Y value

•  Choice which to update matters!

36 CS520 - 1) Introduction

2.1 Constraint Repair

37 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Cheaper: t1.city = Chicago

Not so cheap: set t4.city and t5.city = New York

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 3. Attempt

– Equivalence Classes

•  Keep track of sets of cells (tuple,attribute) that have to

have the same values in the end (e.g., all Y attribute

values for tuples with same X attribute value)

•  These classes are updated when we make a choice

•  Choose Y value for equivalence class using minimality,

e.g., most common value

– Observation

•  Equivalence Classes may merge, but never split if we

only update RHS of all tuples with same X at once

•  -> we can find an algorithm that terminates

38 CS520 - 1) Introduction

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 3. Attempt

– Initialize:

•  Each cell in its own equivalence class

•  Put all cells in collection unresolved

– While unresolved is not empty

•  Remove tuple t from unresolved

•  Pick FD X->Y (e.g., random)

•  Compute set of tuples S that have same value in X

•  Merge all equivalence classes for all tuples in S and

attributes in Y

•  Pick values for Y (update all tuples in S to Y)

39 CS520 - 1) Introduction

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 3. Attempt

•  Algorithm using this idea:

– More heuristics to improve quality and

performance

•  Cost-based pick of next EQ’s to merge

– Also for FKs (Inclusion Constraints)

 A Cost-Based Model and Effective Heuristic for Repairing Constraints by Value Modification

40 CS520 - 1) Introduction

2.1 Consistent Query Answering

•  As an alternative to fixing the database which

requires making a choice we could also leave it

dirty and try to resolve conflicts at query time

– Have to reason over answers to the query without

knowing which of the possible repairs will be

chosen

– Intuition: return tuples that would be in the query

result for every possible repair

41 CS520 - 1) Introduction

2.1 Constraint Repair

42 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Cheaper: t1.city = Chicago

Not so cheap: set t4.city and t5.city = New York

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	

2. Overview

•  Topics covered in this part

– Causes of Dirty Data

– Constraint-based Cleaning

– Outlier-based and Statistical Methods

– Entity Resolution

– Data Fusion

43 CS520 - 1) Introduction

2.2 Statistical and Outlier

•  Assumption

– Errors can be identified as outliers

•  How do we find outliers?

– Similarity-based:

•  Object is dissimilar to all (many) other objects

•  E.g., clustering, objects not in cluster are

outliers

– Some type of statistical test:

•  Given a distribution (e.g., fitted to the data)

•  How probable is it that the point has this value?

•  If low probability -> outlier

 44 CS520 - 1) Introduction

2. Overview

•  Topics covered in this part

– Causes of Dirty Data

– Constraint-based Cleaning

– Outlier-based and Statistical Methods

– Entity Resolution

– Data Fusion

45 CS520 - 1) Introduction

2.3 Entity Resolution

•  Entity Resolution (ER)

•  Alternative names

– Duplicate detection

– Record linkage

– Reference reconciliation

– Entity matching

– …

46 CS520 - 1) Introduction

2.3 Entity Resolution

•  Intuitively, E should be based on how

similar t and t’ are

– Similarity measure?

•  E should be an equivalence relation

–  If t is the same as t’ and t’ is the same as t’’

then t should be the same as t’’

47 CS520 - 1) Introduction

Given	sets	of	tuples	A	compute	equivalence	relaNon	E(t,t’)	which	denotes	that	

tuple	t	and	t’	represent	the	same	enNty.	

	

Defini>on:	En>ty	Resolu>on	Problem	

2.3 Entity Resolution

48 CS520 - 1) Introduction

Example:	Two	tuples	(objects)	that	represent	the	same	en>ty	

SSN	 zip	 city	 name	

333-333-3333	 60616	 Chicago	 Peter	

SSN	 zip	 city	 name	

3333333333	 IL	60616	 Petre	

2.3 Entity Resolution

•  Similarity based on similarity of attribute

values

– Which distance measure is appropriate?

– How do we combine attribute-level distances?

– Do we consider additional information?

•  E.g., foreign key connections

– How similar should duplicates be?

•  E.g., fixed similarity threshold

– How to guarantee transitivity of E

•  E.g., do this afterwards

49 CS520 - 1) Introduction

2.3 Entity Resolution

50 CS520 - 1) Introduction

Example:	Per	aMribute	similarity	

SSN	 zip	 city	 name	

333-333-3333	 60616	 Chicago	 Peter	

SSN	 zip	 city	 name	

3333333333	 IL	60616	 Petre	

1	 0.8	 0?	 0.6	

2.3 Entity Resolution – Distance

Measures

•  Edit-distance

– measures similarity of two strings

– d(s,s’) = minimal number of insert, replace,

delete operations (single character) that

transform s into s’

–  Is symmetric (actually a metric)

•  Why?

51 CS520 - 1) Introduction

2.3 Entity Resolution

52 CS520 - 1) Introduction

Given	two	strings	s,	s’	we	define	the	edit	distance	d(s,s’)	as	the	minimum	

number	of	single	character	insert,	replacements,	deleNons	that	transforms	s	

into	s’	

	

Defini>on:	Edit	Distance	

NEED -> STREET

Trivial solution: delete all chars in NEED, then

insert all chars in STREET

- gives upper bound on distance len(NEED) +

 len(STREET) = 10

Example:	

2.3 Entity Resolution

53 CS520 - 1) Introduction

NEED -> STREET

Minimal solution:

 - insert S

 - insert T

 - replace N with R

 - replace D with T

d(NEED,STREET) = 4

Example:	

2.3 Entity Resolution

•  Principal of optimality

– Best solution of a subproblem is part of the best

solution for the whole problem

•  Dynamic programming algorithm

– D(i,j) is the edit distance between prefix of len i of

s and prefix of len j of s’

– D(len(s),len(s’)) is the solution

– Represented as matrix

– Populate based on rules shown on the next slide

54 CS520 - 1) Introduction

2.3 Entity Resolution

•  Recursive definition

– D(i,0) = i

•  Cheapest way of transforming prefix s[i] into empty

string is by deleting all i characters in s[i]

– D(0,j) = j

•  Same holds for s’[j]

– D(i,j) = min {

•  D(i-1,j) + 1

•  D(i,j-1) + 1

•  D(i-1,j-1) + d(i,j) with d(i,j) = 1 if s[i] != s[j] and 0 else

}

55 CS520 - 1) Introduction

2.3 Entity Resolution

56 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1

E 2

E 3

D 4

2.3 Entity Resolution

57 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1

E 2

E 3

D 4

2.3 Entity Resolution

58 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2

E 2 2

E 3

D 4

2.3 Entity Resolution

59 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3

E 2 2 2

E 3 3

D 4

2.3 Entity Resolution

60 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4

E 2 2 2 3

E 3 3 3

D 4 4

2.3 Entity Resolution

61 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4 5

E 2 2 2 3 3

E 3 3 3 3

D 4 4 4

2.3 Entity Resolution

62 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4 5 6

E 2 2 2 3 3 4

E 3 3 3 3 3

D 4 4 4 4

2.3 Entity Resolution

63 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4 5 6

E 2 2 2 3 3 4 5

E 3 3 3 3 3 3 4

D 4 4 4 4 4 4 4

2.3 Entity Resolution – Distance

Measures

•  Other sequence-based measures for string

similarity

– Needleman-Wunsch

•  Missing character sequences can be penalized

differently from character changes

– Affine Gap Measure

•  Limit influence of longer gaps

•  E.g., Peter Friedrich Mueller vs. Peter Mueller

– Smith-Waterman Measure

•  More resistant to reordering of elements in the string

•  E.g., Prof. Franz Mueller vs. F. Mueller, Prof.

64 CS520 - 1) Introduction

2.3 Entity Resolution – Distance

Measures

•  Other sequence-based measures for string

similarity

– Jaro-Winkler

•  Consider shared prefixes

•  Consider distance of same characters in strings

•  E.g., johann vs. ojhann vs. ohannj

– See textbook for details!

65 CS520 - 1) Introduction

2.3 Entity Resolution – Distance

Measures

•  Token-set based measures

– Split string into tokens

•  E.g., single characters

•  E.g., words if string represents a longer text

– Potentially normalize tokens

•  E.g., word tokens replace word with its stem

– Generating, generated, generates are all replaced with

generate

– Represent string as set (multi-set) of tokens

 66 CS520 - 1) Introduction

2.3 Entity Resolution

67 CS520 - 1) Introduction

Input string:

S = “the tokenization of strings is commonly used in

information retrieval”

Set of tokens:

Tok(S) = {commonly, in, information, is, of,

 retrieval, strings, the, tokenization, used}

Bag of tokens:

Tok(S) = {commonly:1, in:1, information:1, is:1,

 of:1, retrieval:1,strings:1, the:1,

 tokenization:1, used:1}

Example:	Tokeniza>on	

2.3 Entity Resolution – Distance

Measures

•  Jaccard-Measure

– Bs = Tok(s) = token set of string s

– Jaccard measures relative overlap of tokens in

two strings

•  Number of common tokens divided by total number

of tokens

68 CS520 - 1) Introduction

djacc(s, s
0) =

kBs \Bs0k

kBs [Bs0k

2.3 Entity Resolution

69 CS520 - 1) Introduction

Input string:

S = “nanotubes are used in these experiments to…”

S’= “we consider nanotubes in our experiments…”

S’’= “we prove that P=NP, thus solving …”

Tok(S) = {are,experiments,in,nanotubes,these,to,used}

Tok(S’) = {consider,experiments,in,nanotubes,our,we}

Tok(S’’)= {P=NP,prove,solving,that,thus,we}

djacc(S,S’)=

djacc(S,S’’)=

djacc(S’,S’’)=

Example:	Tokeniza>on	

2.3 Entity Resolution

70 CS520 - 1) Introduction

Input string:

S = “nanotubes are used in these experiments to…”

S’= “we consider nanotubes in our experiments…”

S’’= “we prove that P=NP, thus solving …”

Tok(S) = {are,experiments,in,nanotubes,these,to,used}

Tok(S’) = {consider,experiments,in,nanotubes,our,we}

Tok(S’’)= {P=NP,prove,solving,that,thus,we}

djacc(S,S’) = 3 / 10 = 0.3

djacc(S,S’’) = 0 / 13 = 0

djacc(S’,S’’)= 1 / 11 = 0.0909

Example:	Tokeniza>on	

2.3 Entity Resolution

•  Other set-based measures

– TF/IDF: term frequency, inverse document

frequency

•  Take into account that certain tokens are more common

than others

•  If two strings (called documents for TF/IDF) overlap on

uncommon terms they are more likely to be similar than

if they overlap on common terms

–  E.g., the vs. carbon nanotube structure

71 CS520 - 1) Introduction

2.3 Entity Resolution

•  TF/IDF: term frequency, inverse document

frequency

– Represent documents as feature vectors

•  One dimension for each term

•  Value computed as frequency times IDF

–  Inverse of frequency of term in the set of all documents

– Compute cosine similarity between two feature

vectors

•  Measure how similar they are in term distribution

(weighted by how uncommon terms are)

•  Size of the documents does not matter

– See textbook for details
72 CS520 - 1) Introduction

2.3 Entity Resolution

•  Entity resolution

– Concatenate attribute values of tuples and use

string similarity measure

•  Loose information encoded by tuple structure

•  E.g., [Gender:male,Salary:9000]

-> “Gender:male,Salary:9000”

or -> “male,9000”

– Combine distance measures for single attributes

•  Weighted sum or more complex combinations

–  E.g.,

– Use quadratic distance measure

•  E.g., earth-movers distance
73 CS520 - 1) Introduction

d(t, t0) = w1 × dA(t.A, t
0.A) + w2 × dB(t.B, t0.B)

2.3 Entity Resolution

•  Entity resolution

– Rule-based approach

•  Set of if this than that rules

– Learning-based approaches

– Clustering-based approaches

– ProbabilisNc	approaches	to	matching	

– Collective matching

74 CS520 - 1) Introduction

2.3 Entity Resolution

•  Weighted linear combination

– Say tuples have n attributes

– wi: predetermined weight of an attribute

– di(t,t’): similarity measure for the ith attribute

•  Tuples match if d(t,t’) > β for a threshold β

75 CS520 - 1) Introduction

d(t, t0) =

nX

i=0

wi × di(t, t
0)

2.3 Entity Resolution

76 CS520 - 1) Introduction

	

	

	

	

	

	

	

	

	

Assumption: SSNs and names are most important, city and

zip are not very predictive

Example:	Weighted	sum	of	aMribute	similari>es	

SSN	 zip	 city	 name	

333-333-3333	 60616	 Chicago	 Peter	

SSN	 zip	 city	 name	

3333333333	 IL	60616	 Petre	

1	 0.8	 0?	 0.6	

wSSN = 0.4, wzip = 0.05, wcity = 0.15, wname = 0.4

d(t, t0) = 0.4× 1 + 0.05× 0.8 + 0.15× 0 + 0.4× 0.6

= 0.4 + 0.04 + 0 + 0.24

= 0.68

2.3 Entity Resolution

•  Weighted linear combination

– How to determine weights?

•  E.g., have labeled training data and use ML to learn

weights

– Use non-linear function?

77 CS520 - 1) Introduction

2.3 Entity Resolution

•  Entity resolution

– Rule-based approach

– Learning-based approaches

– Clustering-based approaches

– ProbabilisNc	approaches	to	matching	

– Collective matching

78 CS520 - 1) Introduction

2.3 Entity Resolution

•  Rule-based approach

– Collection (list) of rules

–  if dname(t,t’) < 0.6 then unmatched

–  if dzip(t,t’) = 1 and t.country = USA then matched

–  if t.country != t’.country then unmatched

•  Advantages

– Easy to start, can be incrementally improved

•  Disadvantages

– Lot of manual work, large rule-bases hard to

understand

79 CS520 - 1) Introduction

2.3 Entity Resolution

•  Entity resolution

– Rule-based approach

– Learning-based approaches

– Clustering-based approaches

– Probabilistic approaches to matching

– Collective matching

80 CS520 - 1) Introduction

2.3 Entity Resolution

•  Learning-based approach

– Build all pairs (t,t’) for training dataset

– Represent each pair as feature vector from, e.g.,

similarities

– Train classifier to return {match,no match}

•  Advantages

– automated

•  Disadvantages

– Requires training data

81 CS520 - 1) Introduction

2.3 Entity Resolution

•  Entity resolution

– Rule-based approach

– Learning-based approaches

– Clustering-based approaches

– Probabilistic approaches to matching

– Collective matching

82 CS520 - 1) Introduction

2.3 Entity Resolution

•  Clustering-based approach

– Apply clustering method to group inputs

– Typically hierarchical clustering method

– Clusters now represent entities

•  Decide how to merge based on similarity between

clusters

•  Advantages

– Automated, no training data required

•  Disadvantages

– Choice of cluster similarity critical

83 CS520 - 1) Introduction

2.3 Entity Resolution

•  Entity resolution

– Rule-based approach

– Learning-based approaches

– Clustering-based approaches

– Probabilistic approaches to matching

– Collective matching

•  See text book

84 CS520 - 1) Introduction

2. Overview

•  Topics covered in this part

– Causes of Dirty Data

– Constraint-based Cleaning

– Outlier-based and Statistical Methods

– Entity Resolution

– Data Fusion

85 CS520 - 1) Introduction

2.4 Data Fusion

•  Data Fusion = how to combine (possibly

conflicting) information from multiple objects

representing the same entity

– Choose among conflicting values

•  If one value is missing (NULL) choose the other one

•  Numerical data: e.g., median, average

•  Consider sources: have more trust in certain data

sources

•  Consider value frequency: take most frequent value

•  Timeliness: latest value

86 CS520 - 1) Introduction

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)   Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 87 CS520 - 1) Introduction

CS520

Data Integration, Warehousing, and

Provenance

3. Schema Matching and Mapping

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

http://www.cs.iit.edu/~glavic/
http://www.cs.iit.edu/~cs520/
http://www.cs.iit.edu/~dbgroup/

Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing

7) Big Data Analytics

8) Data Provenance

1
CS520 - 3) Matching and Mapping

3. Why matching and mapping?

• Problem: Schema Heterogeneity

– Sources with different schemas store overlapping

information

–Want to be able to translate data from one schema

into a different schema

• Datawarehousing

• Data exchange

–Want to be able to translate queries against one

schema into queries against another schema

• Virtual dataintegration

2
CS520 - 3) Matching and Mapping

3. Why matching and mapping?

• Problem: Schema Heterogeneity

–We need to know how elements of different

schemas are related!

– Schema matching

• Simple relationships such as attribute name of

relation person in the one schema corresponds to

attribute lastname of relation employee in the other

schema

– Schema mapping

• Also model correlations and missing information such

as links caused by foreign key constraints

3
CS520 - 3) Matching and Mapping

3. Why matching and mapping?

• Why both mapping and matching

– Split complex problem into simpler subproblems

• Determine matches and then correlate with constraint

information into mappings

– Some tasks only require matches

• E.g., matches can be used to determine attributes storing

the same information in data fusion

–Mappings are naturally an generalization of

matchings

4
CS520 - 3) Matching and Mapping

3. Overview

• Topics covered in this part

– Schema Matching

– Schema Mappings and Mapping Languages

5
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• Problem: Schema Matching

– Given two (or more schemas)

• For now called source and target

– Determine how elements are related

• Attributes are representing the same information

– name = lastname

• Attribute can be translated into an attribute

– MonthlySalary * 12 = Yearly Salary

• 1-1 matches vs. M-N matches

– name to lastname

– name to concat(firstname, lastname)

6
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• Why is this hard?
– Insufficient information: schema does not capture full

semantics of a domain

– Schemas can be misleading:
• E,g., attributes are not necessarily descriptive

• E.g., finding the right way to translate attributes not obvious

7
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• What information to consider?

– Attribute names

• or more generally element names

– Structure

• e.g., belonging to the same relation

– Data

• Not always available

• Need to consider multiple types to get

reasonable matching quality

– Single types of information not predictable enough

8
CS520 - 3) Matching and Mapping

3.1 Schema Matching

9
CS520 - 3) Matching and Mapping

Example: Types of Matching

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name Address Office-phone Office-address Home-phone

Peter Chicago (312) 123 4343 Chicago, IL 60655 (333) 323 3344

Alice Chicago (312) 555 7777 Chicago, IL 60633 (123) 323 3344

Bob New York (465) 123 1234 New York, NY 55443 (888) 323 3344

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

3.1 Schema Matching

10
CS520 - 3) Matching and Mapping

Example: Types of Matching

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name Address Office-phone Office-address Home-phone

Peter Chicago (312) 123 4343 Chicago, IL 60655 (333) 323 3344

Alice Chicago (312) 555 7777 Chicago, IL 60633 (123) 323 3344

Bob New York (465) 123 1234 New York, NY 55443 (888) 323 3344

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

Based on element names we could match

Office-contact to both Office-phone and Office-address

Based on data we could match

Office-contact to both Office-phone and Home-phone

3.1 Schema Matching

• Typical Matching System Architecture

11
CS520 - 3) Matching and Mapping

Matcher Matcher

Combiner

Constraint

Enforcer

Match

Selector

Determine actual matches

Use constraints to modify
similarity matrix

Combine individual similarity
matrices

Each matcher uses one type of
information to compute
similarity matrix

3.1 Schema Matching

• Matcher

– Input: Schemas

• Maybe also data, documentation

– Output: Similarity matrix

• Storing value [0,1] for each pair of elements from the

source and the target schema

12
CS520 - 3) Matching and Mapping

Matcher Matcher

Combiner

Constraint

Enforcer

Match

Selector

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

3.1 Schema Matching

• Name-Based Matchers

– String similarities measures

• E.g., Jaccard and other measure we have discussed

– Preprocessing

• Tokenization?

• Normalization

– Expand abbreviations and replace synonyms

• Remove stop words

– In, and, the

13
CS520 - 3) Matching and Mapping

3.1 Schema Matching

14
CS520 - 3) Matching and Mapping

Example: Types of Matching

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name Address Office-

phone

Office-

address

Home-

phone

Name 1 0 0 0 0

Address 0 1 0 0.4 0

Id 0 0 0 0 0

City 0 0 0 0 0

Office-contact 0 0 0.5 0.5 0

3.1 Schema Matching

• Data-Based Matchers

– Determine how similar the values of two attributes

are

– Some techniques

• Recognizers

– Dictionaries, regular expressions, rules

• Overlap matcher

– Compute overlap of values in the two attributes

• Classifiers

15
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• Recognizers

– Dictionaries

• Countries, states, person names

– Regular expression matchers

• Phone numbers: (\+\d{2})? \(\d{3}\) \d{3} \d{4}

16
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• Overlap of attribute domains

– Each attribute value is a token

– Use set-based similarity measure such as Jaccard

• Classifier

– Train classifier to identify values of one attribute A
from the source

• Training set are values from A as positive examples and
values of other attributes as negative examples

– Apply classifier to all values of attributes from
target schema

• Aggregate into similarity score

17
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• Combiner

– Input: Similarity matrices

• Output of the individual matchers

– Output: Single Similarity matrix

18
CS520 - 3) Matching and Mapping

Matcher Matcher

Combiner

Constraint

Enforcer

Match

Selector

3.1 Schema Matching

• Combiner

–Merge similarity matrices produced by the

matchers into single matrix

– Typical strategies

• Average, Minimum, Max

• Weighted combinations

• Some script

19
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• Constraint Enforcer

– Input: Similarity matrix

• Output of Combiner

– Output: Similarity matrix

20
CS520 - 3) Matching and Mapping

Matcher Matcher

Combiner

Constraint

Enforcer

Match

Selector

3.1 Schema Matching

• Constraint Enforcer

– Determine most probably match by assigning each
attribute from source to one target attribute

• Multiple similarity scores to get likelihood of match
combination to be true

– Encode domain knowledge into constraints

• Hard constraints: Only consider match combinations
that fulfill constraints

• Soft constraints: violating constraints results in penalty
of scores

– Assign cost for each constraint

– Return combination that has the maximal score

21
CS520 - 3) Matching and Mapping

3.1 Schema Matching

22
CS520 - 3) Matching and Mapping

Constraint 1: An attribute matched to source.cust-phone

has to get a score of 1 from the phone regexpr matcher

Constraint 2: Any attribute matched to source.fax has to

have fax in its name

Constraint 3: If an attribute is matched to

source.firstname with score > 0.9 then there has to be

another attribute from the same target table that is

matched to source.lastname with score > 0.9

Example: Constraints

3.1 Schema Matching

• How to search match combinations

– Full search

• Exponentially many combinations potentially

– Informed search approaches

• A* search

– Local propagation

• Only local optimizations

23
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• A* search

– Given a search problem

• Set of states: start state, goal states

• Transitions about states

• Costs associated with transitions

• Find cheapest path from start to goal states

– Need admissible heuristics h

• For a path p, h computes lower bound for any path from
start to goal with prefix p

– Backtracking best-first search

• Choose next state with lowest estimated cost

• Expand it in all possible ways

24
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• A* search
– Estimated cost of a state f(n) = g(n) + h(n)

• g(n) = cost of path from start state to n

• h(n) = lower bound for path from n to goal state

– No path reaching the goal state from n can have a total cost
lower than f(n)

25
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• Algorithm

– Data structures

• Keep a priority queue q of states sorted on f(n)

– Initialize with start state

• Keep set v of already visited nodes

– Initially empty

–While q is not empty

• pop state s from head of q

• If s is goal state return

• Foreach s’ that is direct neighbor of s

– If s’ not in v

– Compute f(s’) and insert s’ into q

26
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• Application to constraint enforcing

– Source attributes: A1 to An

– Target attributes: B1 to Bm

– States

• Vector of length n with values Bi or * indicating that no

choice has not been taken

• [B1, *, *, B3]

– Initial state

• [*, *, *, *]

– Goal states

• All states without *

27
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• Match Selector
– Input: Similarity matrix

• Output of the individual matchers

– Output: Matches

28
CS520 - 3) Matching and Mapping

Matcher Matcher

Combiner

Constraint

Enforcer

Match

Selector

3.1 Schema Matching

• Match Selection

–Merge similarity matrices produced by the

matchers into single matrix

– Typical strategies

• Average, Minimum, Max

• Weighted combinations

• Some script

29
CS520 - 3) Matching and Mapping

3.1 Schema Matching

• Many-to-many matchers

– Combine multiple columns using a set of functions

• E.g., concat, +, currency exchange, unit exchange

– Large or even unlimited search space

– -> need method that explores interesting part of the

search space

– Specific searchers

• Only concatenation of columns (limit number of

combinations, e.g., 2)

30
CS520 - 3) Matching and Mapping

3. Overview

• Topics covered in this part

– Schema Matching

– Schema Mappings and Mapping Languages

31
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

32
CS520 - 3) Matching and Mapping

Assume: We have data in the source as shown above

What data should we create in the target? Copy values based on matches?

Example: Matching Result

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

3.2 Schema Mapping

• Matches do not determine completely how to

create the target instance data! (Data

Exchange)

– How do we choose values for attributes that do not

have a match?

– How do we combine data from different source

tables?

• Matches do not determine completely what the

answers to queries over a mediated schema

should be! (Virtual Data Integration)

33
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

34
CS520 - 3) Matching and Mapping

Example: Types of Matching

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name Address Office-phone Office-address Home-phone

Peter Chicago (312) 123 4343

Alice Chicago (312) 555 7777

Bob New York (465) 123 1234

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

What values should we use for

Office-address and Home-

phone

How do we know that we

should join tables Person and

Address to get the matching

address for a name?

3.2 Schema Mapping

• Schema mappings

– Generalize matches

– Describe relationship between instances of
schemas

–Mapping languages

• LAV, GAV, GLAV

• Mapping as Dependencies: tuple-generating
dependencies

• Mapping generation

– Input: Matches, Schema constraints

– Output: Schema mappings

35
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Instance-based definition of mappings

– Global schema G

– Local schemas S1 to Sn

–Mapping M can be expressed as for each set of

instances of the local schemas what are allowed

instances of the global schema

• Subset of (IG x I1 x … x In)

– Useful as a different way to think about mappings,

but not a practical way to define mappings

36
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Certain answers

– Given mapping M and Q

– Instances I1 to In for S1 to Sn

– Tuple t is a certain answer for Q over I1 to In

• If for every instance IG so that (IG x I1 x … x In) in M

then t in Q(IG)

37
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Languages for Specifying Mappings

• Describing mappings as inclusion

relationships between views:

– Global as View (GAV)

– Local as View (LAV)

– Global and Local as View (GLAV)

• Describing mappings as dependencies

– Source-to-target tuple-generating dependencies

(st-tgds)

38
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Describing mappings as inclusion
relationships between views:

– Global as View (GAV)

– Local as View (LAV)

– Global and Local as View (GLAV)

• Terminology stems from virtual integration

– Given a global (or mediated, or virtual) schema

– A set of data sources (local schemas)

– Compute answers to queries written against the
global schema using the local data sources

39
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Excursion Virtual Data Integration

–More in next section of the course

40
CS520 - 3) Matching and Mapping

Global

Schema

Local

Schema

1

Local

Schema

2

Local

Schema

n

Query

Mappings

3.2 Schema Mapping

• Global-as-view (GAV)

– Express the global schema as views over the local
schemata

–What query language do we support?

• CQ, UCQ, SQL, …?

– Closed vs. open world assumption

• Closed world: R = Q(S1,…,Sn)

– Content of global relation R is defined as the result of query Q
over the sources

• Open world: R ⊇Q(S1,…,Sn)

– Relation R has to contain the result of query Q, but may
contain additional tuples

41
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

42
CS520 - 3) Matching and Mapping

Q(X,Z,A) :- Person(X,Z,A)

= Q(X,Z,A) :- Person(X,Y), Address(Y,Z,A)

Since heads of LHS and RHS have to be the same we can use

simpler notation without the head of the view expression:

Person(X,Z,A) = Person(X,Y), Address(Y,Z,A)

Example: GAV

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

3.2 Schema Mapping

43
CS520 - 3) Matching and Mapping

Q(X’,Y’,Z’,A’) :- Person(X’,Y’,Z’,A’)

= Q(X,Z,A, ????) :- Person(X,Y), Address(Y,Z,A)

Cannot be expressed as GAV mapping! No way to compute the

Home-phone attribute values since there is no

correspondence with a source attribute!

Example: GAV not possible

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Home-phone

3.2 Schema Mapping

• Global-as-view (GAV)

• Solutions (mapping M)

– Unique data exchange solution (later)

– Intuitively, execute queries over local instance that

produced global instance

44
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Global-as-view (GAV)

• Answering Queries

– Simply replace references to global tables with the view

definition

• Mapping R(X,Y) = S(X,Y), T(Y,Z)

• Q(X) :- R(X,Y)

• Rewrite into

• Q(X) :- S(X,Y), T(Y,Z)

45
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

46
CS520 - 3) Matching and Mapping

GAV mapping:

P2(X,Z,A) = P1(X,Y), Address(Y,Z,A)

Query – Select Name from Persons

Q(A) :- P2(A,B,C)

View unfolding: Replace P2 with its definition

Q(A) :- P1(A,Y), Address(Y,B,C)

Example: GAV – query answering

Local Schema

P1

Name

Address

Address

Id

City

Office-contact

Global Schema

P2

Name

Address

Office-phone

3.2 Schema Mapping

• Global-as-view (GAV) Discussion
– Hard to add new source

• -> have to rewrite the view definitions

– Does not deal with missing values

– Easy query processing
• -> view unfolding

47
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Local-as-view (LAV)

– Express the local schema as views over the global
schemata

–What query language do we support?

• CQ, UCQ, SQL, …?

– Closed vs. open world assumption

• Closed world: Sij = Q(G)

– Content of local relation Sij is defined as the result of query Q
over the sources

• Open world: Sij ⊇Q(G)

– Local relation Sij has to contain the result of query Q, but

may contain additional tuples

48
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

49
CS520 - 3) Matching and Mapping

Person(X,Y,Z) = P2(X,Y,Z,A,B)

Example: LAV

Local Schema

Person

Name

City

Office-contact

Global Schema

P2

Name

Address

Office-phone

Office-address

Home-phone

3.2 Schema Mapping

50
CS520 - 3) Matching and Mapping

Cannot deal with attributes from the local schema that do not have a

correspondence with attributes in the global schema

Person(X,???) = Person(X,Y,Z,A,B)

Address(???,Y,Z) = Person(X,Y,Z,A,B)

Example: LAV not possible

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Office-address

Home-phone

3.2 Schema Mapping

• Local-as-view (LAV)

• Solutions (mapping M)

– Incompleteness possible

=> There may exist many solutions

51
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Local-as-view (GAV)

• Answering Queries

– Need to find equivalent query using only the views
(this is a hard problem, more in next course
section)

• Mapping S(X,Z) = R(X,Y), T(Y,Z)

• Q(X) :- R(X,Y)

• Rewrite into ???

– Need to come up with missing values

– Give up query equivalence?

52
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Local-as-view (LAV) Discussion

– Easy to add new sources

• -> have to write a new view definition

• May take some time to get used to expressing sources

like that

– Still does not deal gracefully with all cases of

missing values

• Loosing correlation

– Hard query processing

• Equivalent rewriting using views only

• Later: give up equivalence

53
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Global-Local-as-view (GLAV)

– Express both sides of the constraint as queries

–What query language do we support?

• CQ, UCQ, SQL, …?

– Closed vs. open world assumption

• Closed world: Q’(G) = Q(S)

• Open world: Q’(G) ⊇Q(S)

54
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

55
CS520 - 3) Matching and Mapping

Source: Q(X,Y,Z) :- Person(X’,Y’), Address(Y’,Z’,A’)

=

Target: Q(X’,Y’,Z’) :- Person(X’,Y’,Z’,A’,B’)

Example: GLAV

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Office-address

Home-phone

3.2 Schema Mapping

• Local-as-view (GLAV) Discussion

– Kind of best of both worlds (almost)

– Complexity of query answering is the same as for LAV

– Can address the lost correlation and missing values
problems we observed using GAV and LAV

56
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Source-to-target tuple-generating

dependencies (st-tgds)

– Logical way of expressing GLAV mappings

• LHS formula is a conjunction of source (local) relation

atoms (and comparisons

• RHS formula is a conjunction of target (global) relation

atoms and comparisons

– Equivalence to a containment constraint:

Q’(G) ⊇Q(S)

57
CS520 - 3) Matching and Mapping

∀~x : �(~x) → ∃~y : (~x, ~y)

3.2 Schema Mapping

58
CS520 - 3) Matching and Mapping

Source: Q(X,Y,Z) :- Person(X’,Y’), Address(Y’,Z’,A’)

=

Target: Q(X’,Y’,Z’) :- Person(X’,Y’,Z’,A’,B’)

Example: Types of Matching

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Office-address

Home-phone

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

3.2 Schema Mapping

• Generating Schema Mappings

– Input: Schemas (Constraints), matches

– Output: Schema mappings

• Ideas:

– Schema matches tell us which source attributes

should be copied to which target attributes

– Foreign key constraints tell us how to join in the

source and target to not loose information

59
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Clio

– Clio is a data exchange system prototype

developed by IBM and University of Toronto

researchers

– The concepts developed for Clio have been

implemented in IBM InfoSphere Data Architect

– Clio does matching, mapping generation, and data

exchange

• For now let us focus on the mapping generation

60
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Clio Mapping Generation Algorithm
– Inputs: Source and Target schemas, matches

– Output: Mapping from source to target schema

– Note, Clio works for nested schemas such as XML too not
just for relational data.
• Here we will look at the relational model part only

61
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Clio Algorithm Steps

– 1) Use foreign keys to determine all reasonable

ways of joining data within the source and the

target schema

• Each alternative of joining tables in the source/target is

called a logical association

– 2) For each pair of source-target logical

associations: Correlate this information with the

matches to determine candidate mappings

62
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Clio Algorithm: 1) Find logical associations

– This part relies on the chase procedure that first

introduced to test implication of functional

dependencies (‘77)

– The idea is that we start use a representation of

foreign keys are inclusion dependencies (tgds)

• There are also chase procedures that consider edgs (e.g.,

PKs)

– Starting point are all single relational atoms

• E.g., R(X,Y)

63
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Chase step

–Works on tabelau: set of relational atoms

– A chase step takes one tgd t where the LHS is
fulfilled and the RHS is not fulfilled

• We fulfill the tgd t by adding new atoms to the tableau
and mapping variables from t to the actually occuring
variables from the current tablau

• Chase

– Applying the chase until no more changes

– Note: if there are cyclic constraints this may not
terminate

64
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Clio Algorithm: 1) Find logical associations

– Compute chase R(X) for each atom R in source and target

– Each chase result is a logical association

– Intuitively, each such logical association is a possible way
to join relations in a schema based on the FK constraints

65
CS520 - 3) Matching and Mapping

3.2 Schema Mapping

• Clio Algorithm: 2) Generate Candidate
Mappings

– For each pair of logical association AS in the
source and AT in the target produced in step 1

– Find the matches that are covered by AS and AT

• Matches that lead from an element of AS to an element
from AT

– If there is at least one such match then create
mapping by equating variables as indicated by the
matches and create st-tgd with AS in LHS and AT

in RHS

66
CS520 - 3) Matching and Mapping

Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing

7) Big Data Analytics

8) Data Provenance

67
CS520 - 3) Matching and Mapping

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)   Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 1 CS520 - 3) Matching and Mapping

4. Virtual Data Integration

•  Virtual Data Integration

2 CS520 - 3) Matching and Mapping

Global	

Schema	

Local	

Schema	

1	

Local	

Schema	

2	

Local	

Schema	

n	

Query	

Mappings	

4. Virtual Data Integration

Problems:

•  How to create mappings?

– Discussed in previous part of the course

•  How to compute query Q

– This is the main focus of this part

3 CS520 - 3) Matching and Mapping

4. Query Answering with Views

•  How to compute query Q over global
schema based on source schemas only?

– What language is used to express mappings?

– What language due we allow for Q?

– What language(s) can we use to query local
sources?

– What language can we use to compute Q from
query results returned by local sources?

– How to deal with incompleteness?

4 CS520 - 5) Data Exchange

4.1 Query Answering with Views

5 CS520 - 5) Data Exchange

	

	

	

	

	

	

Query:										Q(Name) :- Person(Name, A, OP, OA, HP).

Example:	Solu-ons	

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (465)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	

4.1 Query Answering with Views

6 CS520 - 5) Data Exchange

	

	

	

	

	

	

	

	

	

	

	

Query:										Q(Name) :- Person(Name, A, OP, OA, HP).

RewriKen	query	over	the	source:											

 Q(Name) :- Person(Name, AI),

 Address(AI,A,OP).

Example:	Solu-ons	

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (465)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	

Name	

Peter	

Alice	

Bob	

4.1 Query Answering with Views

7 CS520 - 5) Data Exchange

	

	

	

	

	

	

Query:										Q(Home-ph) :- Person(N, A, OP, OA, Home-ph).

Example:	Solu-ons	

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (465)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	

Values	of	home-phone		are	not	

available	in	the	source	

4. Query Answering with Views

•  Problems

– How to determine whether query can be answered
at all?

– Given a rewriting of the query using views, how
do we know it is correct?

– What to do if views can only return some of the
query results?

8 CS520 - 5) Data Exchange

Motivating Example (Part 1)

Movie(ID,Ttle,year,genre)	

Director(ID,director)	

Actor(ID,	actor)	

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V
1
(T,Y,D) :−Movie(I,T,Y,G),Y ≥1940,G ="comedy"

Director(I,D),Actor(I,D)

Q'(T,Y,D) :−V1(T,Y,D),Y ≥1950V
1
⊇ Q ⇒

Containment	is	enough	to	show	that	V1	can	be	used	

to	answer	Q.	

Motivating Example (Part 2)

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V2(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Q' '(T,Y,D) :−V
2
(I,T,Y),V

3
(I,D)

V
3
(I,D) :−Director(I,D),Actor(ID,D)

Containment	does	not	hold,	but	intuiTvely,	V2	and	V3	are	

useful	for	answering	Q.		

How	do	we	express	that	intuiTon?	

	

Answering	queries	using	views!	

Problem Definition

Input:	Query	Q	

										View	definiTons:	V1	,…	,Vn	

A	rewriTng:	a	query	Q’	that	refers	only	
to	the	views	and	interpreted	predicates	

(comparisons)	

An	equivalent	rewriTng	of	Q	using	V1	,…	,Vn:	

	a	rewriTng	Q’,	such	that	Q’ ⇔	Q	

Naïve approach

•  Given Q and views

– Randomly combine views into a query Q’

– Check equivalence of Q’ and Q

–  If Q’ is equivalent we are done

– Else repeat

•  Why is this not good?

– There are infinitely many ways of combining
views

•  E.g., V, V x V, V x V x V, …

– We are not using any information in the query

Motivating Example (Part 3)

Movie(ID,Ttle,year,genre)	

Director(ID,director)	

Actor(ID,	actor)	

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V
3
(I,D) :−Director(I,D),Actor(ID,D)

V4 (I,T,Y) :−Movie(I,T,Y,G),Y ≥1960,G ="comedy"

Q' ' '(T,Y,D) :−V
4
(I,T,Y),V

3
(I,D)

maximally-contained	rewri-ng	

Maximally-Contained Rewritings

Input: Query Q

 Rewriting query language L

 View definitions: V1,…,Vn

Q’ is a maximally-contained rewriting of

Q given V1,…,Vn and L if:

1. Q’ ∈ L,

2. Q’ ⊆ Q, and

3. there is no Q’’ in L such

that

 Q’’ ⊆ Q and Q’⊂ Q’’

Why again?

Global	

Schema	

Local	

Schema	

1	

Local	

Schema	

2	

Local	

Schema	

n	

Query	

Mappings	

LAV/GLAV!	

Other use-cases

•  Query	opTmizaTon	with	materialized	views	

– Need	equivalent	rewriTngs	

–  Implemented	in	many	commercial	DBMS	

– Here	interest	is	cost:	how	to	speed-up	query	

processing	by	using	materialized	views	

Exercise: which of these views

can be used to answer Q?

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V2(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

V
3
(I,D) :−Director(I,D),Actor(I,D)

V6(T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

V7(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,

G ="comedy",Award(I,W)

V
8
(I,T) :−Movie(I,T,Y,G),Y ≥1940,G ="comedy"

Algorithms for answering queries

using views

•  Step	1:	we’ll	bound	the	space	of	possible	
query	rewriTngs	we	need	to	consider	(no	

comparisons)	

•  Step	2:	we’ll	find	efficient	methods	for	

searching	the	space	of	rewriTngs	

– Bucket	Algorithm,	MiniCon	Algorithm	

•  Step	2b:	we	consider	“logical	approaches”	to	
the	problem:	

– The	Inverse-Rules	Algorithm	

Bounding the Rewriting Length

Q(X) :−p
1
(X

1
),..., pn (Xn)Query:

Q'(X) :−V
1
(X

1
),...,V

m
(X

m
)Rewriting:

Q' '(X) :−g
1

1
,...gk

1

  
,...,g

1

m
,...,g j

m

    
Expansion:

Proof: Only n subgoals in Q can contribute to

the image of the containment mapping ϕ

ϕ

Theorem:	if	there	is	an	equivalent	rewriTng,	

there	is	one	with	at	most	n	subgoals.	

Complexity Result

[LMSS, 1995]

•  Applies	to	queries	with	no	interpreted	

predicates.	

•  Finding	an	equivalent	rewriTng	of	a	query	

using	views	is	NP-complete	

– Need	only	consider	rewriTngs	of	query	length	or	

less.	

•  Maximally-contained	rewriTng:	

– Union	of	all	conjuncTve	rewriTngs	of	length	n	or	

less.	

The Bucket Algorithm

Key	idea:		

– Create	a	bucket	for	each	subgoal	g	in	the	query.	

– The	bucket	contains	views	that	contribute	to	g.	

– Create	rewriTngs	from	the	Cartesian	product	of	

the	buckets	(select	one	view	for	each	goal)	

•  Step	1:	assign	views	with	renamed	vars	to	

buckets	

•  Step	2:	create	rewriTngs,	refine	them,	unTl	

equivalent/all	contained	rewriTng(s)	are	

found	

The Bucket Algorithm

Step	1:		

– We	want	to	construct	buckets	with	views	that	

have	parTally	mapped	variables	

– For	each	goal	g	=	R	in	query	

– For	each	view	V		

– For	each	goal	v	=	R	in	V	

•  If	the	goal	has	head	variables	in	the	same	places	as	g	

then		

–  rename	the	view	head	variables	to	match	the	query	goal	vars	

–  choose	a	new	unique	name	for	each	other	var	

–  add	the	resulTng	view	atom	to	the	bucket	

The Bucket Algorithm

Step	1	Intui-on		

– A	view	can	only	be	used	to	provide	informaTon	

about	a	goal	R(X)	if	it	has	a	goal	R(Y)	

•  Q(X) :- R(X,Y)

•  V(X) :- S(X,Y)

–  If	the	query	goal	contains	variables	that	are	in	the	

head	of	the	query,	then	the	view	is	only	useful	if	it	

gives	access	to	these	values	(they	are	in	the	head)	

•  Q(X) :- R(X,Y)

•  V(X) :- S(X,Y), R(Y,Z)

Bucket Algorithm in Action

Q(ID,Dir) :−Movie(ID, title, year,genre),Revenues(ID,amount),

Director(ID,dir),amount ≥ $100M

View atoms that can contribute to Movie:

 V1(ID,year’), V2(ID,A’), V4(ID,D’,year’’)

V1(I,Y) :−Movie(I,T,Y,G),Revenues(I,A), I ≥ 5000,A ≥ $200M

V2 (I,A) :−Movie(I,T,Y,G),Revenues(I,A)

V3(I,A) :−Revenues(I,A),A ≤ $50M

V4(I,D,Y) :−Movie(I,T,Y,G),Director(I,D), I ≤ 3000

Buckets and Cartesian product

Movie(ID,-tle,					

year,genre)
Revenues(ID,	

amount)
Director(ID,dir)

V1(ID,year) V1(ID,Y’) V4(ID,Dir,Y’)

V2(ID,A’) V2(ID,amount)

V4(ID,D’,year)

q
1
'(ID,dir) :−V

1
(ID,year),V

1
(ID,y '),V

4
(ID,dir,y')

Consider	first	candidate	rewriTng:	first	V1	subgoal	

is	redundant,	and	V1	and	V4	are	mutually	

exclusive.	

Next Candidate Rewriting

Movie(ID,-tle,year,genre) Revenues(ID,amount) Director(ID,dir)

V1(ID,year) V1(ID,Y’) V4(ID,Dir,Y’)

V2(ID,A’) V2(ID,amount)

V4(ID,D’,year)

q
2
'(ID,dir) :−V

2
(ID,A'),V

2
(ID,amount),V

4
(ID,dir,y')

q2 '(ID,dir) :−V2(ID,amount),V4 (ID,dir,y '),

amount ≥ $100M

The Bucket Algorithm

Step	2:		

– For	each	combinaTon	of	one	element	of	each	

bucket:	

– Create	query	Q’	with	query	Q’s		head	and	list	all	

these	view	atoms	in	the	body	

–  If	Q’	equivalent	to	Q	(or	contained	in	Q)	

•  Done	(equivalent)	

•  Add	to	union	of	CQs	for	contained	case	

–  If	not	try	to	add	comparisons	

The Bucket Algorithm: Summary

•  Cuts	down	the	number	of	rewriTng	that	need	

to	be	considered,	especially	if	views	apply	

many	interpreted	predicates.		

•  The	search	space	can	sTll	be	large	because	the	

algorithm	does	not	consider	the	interacTons	

between	different	subgoals.	

– See	next	example.	

The MiniCon Algorithm

Q(title,year,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,dir)

V5(D,A) :−Director(I,D),Actor(I,A)

Intuition: The variable I is not in the head of V5,

hence V5 cannot be used in a rewriting.

MiniCon discards this option early on, while the

Bucket algorithm does not notice the interaction.

MinCon Algorithm Steps

•  1)	Create	MiniCon	descrip-ons	(MCDs):	

– Homomorphism	on	view	heads	

– Each	MCD	covers	a	set	of	subgoals	in	the	query	

with	a	set	of	subgoals	in	a	view	

•  2)	Combina-on	step:	

– Any	set	of	MCDs	that	covers	the	query	subgoals	

(without	overlap)	is	a	rewriTng	

– No	need	for	an	addiTonal	containment	check!	

MiniCon Descriptions (MCDs)
An atomic fragment of the ultimate containment mapping

Q(title,act,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,act)

V (I,D,A) :−Director(I,D),Actor(I,A)

MCD:

 mapping:

 covered subgoals of Q: {2,3}

ID→ I

dir→ D

act→ A

MCDs: Detail 1

Q(title,year,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,dir)

V (I,D,A) :−Director(I,D),Actor(I,A)

MCD:

 mapping:

 covered subgoals of Q: {2,3}

ID→ I

dir→ D

V '(I,D,D) :−Director(I,D),Actor(I,D)

Need to specialize the view first:

MCDs: Detail 2

Q(title,year,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,dir)

V (I,D,D) :−Director(I,D),Actor(I,D),

Movie(I,T,Y,G)

MCD:

 mapping:

 covered subgoals of Q still: {2,3}

ID→ I

dir→ D

Note:	the	third	subgoal	of	the	view	is	not	included	

in	the	MCD.	

Inverse-Rules Algorithm

•  A	“logical”	approach	to	AQUV	

•  Produces	maximally-contained	rewriTng	in	

polynomial	Tme	

– To	check	whether	the	rewriTng	is	equivalent	to	

the	query,	you	sTll	need	a	containment	check.	

•  Conceptually	simple	and	elegant	

– Depending	on	your	comfort	with	Skolem	

funcTons…	

Inverse Rules by Example

V
7
(I,T,Y,G) :−Movie(I,T,Y,G),Director(I,D),Actor(I,D)

And	the	following	tuple	in	V7:		

										V7(79,ManhaKan,1979,Comedy)	

	

Then	we	can	infer	the	tuple:	

											Movie(79,ManhaKan,1979,Comedy)	

Hence,	the	following	‘rule’	is	sound:	
IN1:	Movie(I,T,Y,G)	:-	V7(I,T,Y,G)	

Given	the	following	view:		

Skolem Functions

V
7
(I,T,Y,G) :−Movie(I,T,Y,G),Director(I,D),Actor(I,D)

Now suppose we have the tuple

 V7(79,Manhattan,1979,Comedy)

Then we can infer that there exists some

director. Hence, the following rules hold (note

that they both use the same Skolem function):

IN2: Director(I,f1(I,T,Y,G)):- V7(I,T,Y,G)

IN3: Actor(I,f1(I,T,Y,G)):- V7(I,T,Y,G)

Inverse Rules in General

Rewriting = Inverse Rules + Query

Given	Q2,	the	rewriTng	would	include:	

	IN1,	IN2,	IN3,	Q2.		

Q
2
(title,year,genre) :−Movie(ID,title,year,genre)

Given	input:	V7(79,ManhaKan,1979,Comedy)	

Inverse	rules	produce:	

			Movie(79,ManhaKan,1979,Comedy)	

				Director(79,f1(79,Manha>an,1979,Comedy))	

				Actor(79,f1(79,Manha>an,1979,Comedy))	

				Movie(Manha>an,1979,Comedy)	

(the	last	tuple	is	produced	by	applying	Q2).	

Comparing Algorithms

•  Bucket	algorithm:	

– Good	if	there	are	many	interpreted	predicates	

– Requires	containment	check.	Cartesian	product	

can	be	big	

•  MiniCon:		

– Good	at	detecTng	interacTons	between	subgoals	

Algorithm Comparison

(Continued)

•  Inverse-rules	algorithm:	

– Conceptually	clean	

– Can	be	used	in	other	contexts	(see	later)	

– But	may	produce	inefficient	rewriTngs	because	it	

“undoes”	the	joins	in	the	views	(see	next	slide)	

•  Experiments	show	MiniCon	is	most	efficient.	

•  Even	faster:	
Konstantinidis, G. and Ambite, J.L, Scalable query rewriting: a

graph-based approach. SIGMOD ‘11	

Inverse Rules Inefficiency

Example

Query and view :

Q(X,Y) :−e
1
(X,Z),e

2
(Z,Y)

V (A,B) :−e
1
(A,C),e

2
(C,B)

Inverse rules :

e
1
(A, f

1
(A,B)) :−V (A,B)

e
2
(f
1
(A,B),B) :−V (A,B)

Now we need to re-compute the join…

View-Based Query Answering

•  Maximally-contained	rewriTngs	are	

parameterized	by	query	language.	

•  More	general	quesTon:	

– Given	a	set	of	view	definiTons,	view	instances	and	

a	query,	what	are	all	the	answers	we	can	find?	

•  We	introduce	certain	answers	as	a	

mechanism	for	providing	a	formal	answer.	

View Instances = Possible DB’s

V
8
(dir) :−Movie(ID,dir,actor)

V
9
(actor) :−Movie(ID,dir,actor)

V8: {Allen, Copolla}

V9: {Keaton, Pacino}

Consider	the	two	views:	

And	suppose	the	extensions	of	the	views	

are:		

Possible Databases

There	are	mulTple	databases	that	saTsfy	the	

above	view	definiTons:	(we	ignore	the	first	

argument	of	Movie	below)	

	

DB1.	{(Allen,	Keaton),	(Coppola,	Pacino)}	

DB2.	{(Allen,	Pacino),	(Coppola,	Keaton)}	

	

If	we	ask	whether	Allen	directed	a	movie	in	

which	Keaton	acted,	we	can’t	be	sure.	

Certain	answers	are	those	true	in	all	databases	that	are	

consistent	with	the	views	and	their	extensions.	

Certain Answers: Formal Definition
[Open-world Assumption]

•  Given:	
– Views:	V1,…,Vn	

– View	extensions	v1,…vn	

– A	query	Q	

•  A	tuple	t	is	a	certain	answer	to	Q	under	the	
open-world	assumpTon	if	t	∈	Q(D)	for	all	
databases	D	such	that:	

– Vi(D)	⊆	vi		for	all	i.	

Certain Answers
[Closed-world Assumption]

•  Given:	
– Views:	V1,…,Vn	

– View	extensions	v1,…vn	

– A	query	Q	

•  A	tuple	t	is	a	certain	answer	to	Q	under	the	
open-world	assumpTon	if	t	∈	Q(D)	for	all	
databases	D	such	that:	

– Vi(D)	=	vi		for	all	i.	

Certain Answers: Example

V
8
(dir) :−Director(ID,dir)

V
9
(actor) :−Actor(ID,actor)

Q(dir,actor) :−Director(ID,dir),Actor(ID,actor)

V8: {Allen}

V9: {Keaton}

Under	closed-world	assumpTon:	

	single	DB	possible	⇒	(Allen,	Keaton)		

	

Under	open-world	assumpTon:	

	no	certain	answers.	

The Good News

•  The	MiniCon	and	Inverse-rules	algorithms	

produce	all	certain	answers	

– Assuming	no	interpreted	predicates	in	the	query	

(ok	to	have	them	in	the	views)	

– Under	open-world	assumpTon	

– Corollary:	they	produce	a	maximally-contained	

rewriTng	

In Other News…

•  Under closed-world assumption finding all

certain answers is co-NP hard!

v
1
(X) :−color(X,Y)

v
2
(Y) :−color(X,Y)

v
3
(X,Y) :−edge(X,Y)

Proof: encode a graph - G = (V,E)

I(V
1
) =V

I(V
2
) = {red,green,blue}

I(V
3
) = E

q() :−edge(X,Y),color(X,Z),color(Y,Z)

q has a certain tuple iff G is not 3-colorable

Interpreted Predicates

•  In	the	views:	no	problem	(all	results	hold)	

•  In	the	query	Q:	

–  If	the	query	contains	interpreted	predicates,	

finding	all	certain	answers	is	co-NP-hard	even	

under	open-world	assumpTon	

– Proof:	reducTon	to	CNF.		

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)   Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 50 CS520 - 3) Matching and Mapping

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)   Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 1 CS520 - 5) Data Exchange

5. Data Exchange

•  Virtual Data Integration

– Never materialize instances for the global schema

– Data of global schema only “visible” through
queries

•  Data Exchange

– Materialize instance of global instance

•  We call it the “target schema”

– Based on information from an instance of the local
schema

•  We call this the “source schema”

2 CS520 - 5) Data Exchange

5. Data Exchange

•  Data Exchange Problem Statement

•  Input:

– Given a source and a target schema

– + instance of the source schema

– + set of schema mappings (here st-tgds)

•  Output:

–  Instance of the target schema that fulfills
constraints

3 CS520 - 5) Data Exchange

Source	
 Schema	
 S	
 Target	
 Schema	
 T	

Source	
 Data	
 Target	
 Data	

M	
 	

5. Data Exchange

4 CS520 - 5) Data Exchange

Example:	
 Types	
 of	
 Matching	

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id	
 City	
 Office-­‐contact	

1	
 Chicago	
 (312)	
 123	
 4343	

2	
 Chicago	
 (312)	
 555	
 7777	

3	
 New	
 York	
 (465)	
 123	
 1234	

Name	
 Address	

Peter	
 1	

Alice	
 3	

Bob	
 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

5. Data Exchange

5 CS520 - 5) Data Exchange

Example:	
 Types	
 of	
 Matching	

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name	
 Address	
 Office-­‐phone	
 Office-­‐address	
 Home-­‐phone	

Peter	
 Chicago	
 (312)	
 123	
 4343	

Alice	
 Chicago	
 (312)	
 555	
 7777	

Bob	
 New	
 York	
 (465)	
 123	
 1234	

Id	
 City	
 Office-­‐contact	

1	
 Chicago	
 (312)	
 123	
 4343	

2	
 Chicago	
 (312)	
 555	
 7777	

3	
 New	
 York	
 (465)	
 123	
 1234	

Name	
 Address	

Peter	
 1	

Alice	
 2	

Bob	
 3	

5.1 Data Exchange Setting

6 CS520 - 5) Data Exchange

Source	
 Schema	
 S	
 Target	
 Schema	
 T	

Source	
 Data	

M	
 	

Data	
 Exchange	
 seCng	
 is	
 a	
 tuple	
 (S,T,I,Σ)	

•  Schema	
 S	

•  Schema	
 T	

•  Instance	
 I	
 of	
 S	

•  Mappings	
 Σ	
 from	
 S	
 to	
 T	

	

DefiniEon:	
 Data	
 Exchange	
 SeFng	

5.1 Data Exchange Solutions

7 CS520 - 5) Data Exchange

Source	
 Schema	
 S	
 Target	
 Schema	
 T	

Source	
 Data	
 Target	
 Data	

M	
 	

Given	
 data	
 exchange	
 seCng	
 is	
 a	
 tuple	
 (S,T,I,Σ)	
 	

•  Find	
 instance	
 J	
 of	
 T	
 so	
 that	
 (I,J)	
 fulfills	
 mappings	
 Σ	

•  J	
 uses	
 values	
 from	
 a	
 universe	
 U	
 and	
 set	
 of	
 labeled	
 nulls	
 N	

DefiniEon:	
 Data	
 Exchange	
 SoluEon	

5.1 Data Exchange Solutions

8 CS520 - 5) Data Exchange

	

	

	

	

	

	

	

	

	

	

	

Can	
 we	
 come	
 up	
 with	
 a	
 soluQon?	

Example:	
 SoluEons	

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id	
 City	
 Office-­‐contact	

1	
 Chicago	
 (312)	
 123	
 4343	

2	
 Chicago	
 (312)	
 555	
 7777	

3	
 New	
 York	
 (465)	
 123	
 1234	

Name	
 Address	

Peter	
 1	

Alice	
 2	

Bob	
 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

5.1 Data Exchange Solutions

9 CS520 - 5) Data Exchange

Example:	
 SoluEons	

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name	
 Address	
 Office-­‐phone	
 Office-­‐address	
 Home-­‐phone	

Peter	
 Chicago	
 (312)	
 123	
 4343	
 NULL	
 NULL	

Alice	
 Chicago	
 (312)	
 555	
 7777	
 NULL	
 NULL	

Bob	
 New	
 York	
 (465)	
 123	
 1234	
 NULL	
 NULL	

Id	
 City	
 Office-­‐contact	

1	
 Chicago	
 (312)	
 123	
 4343	

2	
 Chicago	
 (312)	
 555	
 7777	

3	
 New	
 York	
 (465)	
 123	
 1234	

Name	
 Address	

Peter	
 1	

Alice	
 2	

Bob	
 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

5.1 Number of Solutions

•  How many solutions exists?

– Depends on how whether we use existentially
quantified variables in the mappings?

•  i.e., do we have attributes for which we have to invent
values?

– What attribute values do we allow?

•  Surely values from the source instance (active domain)

•  NULL?
– Need multiple NULL values as placeholders for missing values

that have to be the same

– Note that this is the open-world assumption

•  there are infinitely many solutions (if domains infinite)

10 CS520 - 5) Data Exchange

5.1 Number of Solutions

•  Target instance domain

– Consider a universe U

•  Source instance can only use values from U

– Consider an infinite set N of labeled nulls

•  Target instance can use these as placeholders for
missing values

11 CS520 - 5) Data Exchange

5.1 Data Exchange Solutions

12 CS520 - 5) Data Exchange

Example:	
 MulEple	
 SoluEons	

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name	
 Address	
 Office-­‐phone	
 Office-­‐address	
 Home-­‐phone	

Peter	
 Chicago	
 (312)	
 123	
 4343	
 X	
 Y	

Alice	
 Chicago	
 (312)	
 555	
 7777	
 A	
 A	

Bob	
 New	
 York	
 (465)	
 123	
 1234	
 C	
 D	

Name	
 Address	
 Office-­‐phone	
 Office-­‐address	
 Home-­‐phone	

Peter	
 Chicago	
 (312)	
 123	
 4343	
 X	
 Y	

Alice	
 Chicago	
 (312)	
 555	
 7777	
 A	
 A	

Bob	
 New	
 York	
 (465)	
 123	
 1234	
 C	
 D	

Heinzbert	
 Pferdegert	
 111-­‐222-­‐3798	
 E	

Name	
 Address	
 Office-­‐phone	
 Office-­‐address	
 Home-­‐phone	

Peter	
 Chicago	
 (312)	
 123	
 4343	
 Hometown	
 111-­‐322-­‐3454	

Alice	
 Chicago	
 (312)	
 555	
 7777	
 A	
 A	

Bob	
 New	
 York	
 (465)	
 123	
 1234	
 Other	
 town	
 D	

5.1 Certain answers (… again)

•  Have multiple solutions

– Define certain answers for queries as before

– Every tuple t so that t is in the result of query Q
over any valid solution J

•  What’s new?

– Want to materialize an instance so that computing
certain answers over this instance is easy

•  Not immediately clear that this actually possible

13 CS520 - 5) Data Exchange

5.1 Data Exchange Solutions

14 CS520 - 5) Data Exchange

How	
 general	
 	
 is	
 soluQon	
 (in	
 terms	
 of	
 certain	
 answers)?	

	

Consider	
 query	
 	

Q(n) :- P(n,a,op,oa,hp), oa = Hometown

Example:	
 SoluEon	
 generality	

Name	
 Address	
 Office-­‐phone	
 Office-­‐address	
 Home-­‐phone	

Peter	
 Chicago	
 (312)	
 123	
 4343	
 X	
 Y	

Alice	
 Chicago	
 (312)	
 555	
 7777	
 A	
 A	

Bob	
 New	
 York	
 (465)	
 123	
 1234	
 C	
 D	

Name	
 Address	
 Office-­‐phone	
 Office-­‐address	
 Home-­‐phone	

Peter	
 Chicago	
 (312)	
 123	
 4343	
 Hometown	
 111-­‐322-­‐3454	

Alice	
 Chicago	
 (312)	
 555	
 7777	
 A	
 A	

Bob	
 New	
 York	
 (465)	
 123	
 1234	
 Other	
 town	
 D	

5.1 Universal solutions

•  Universal solution

– Want a solution that is as general as possible

– We call such most general solutions universal
solutions

– How do we know whether it is most general

•  We can map the tuples in this solution to any other less
general solution by replacing unspecified values
(labelled nulls) with actual data values

•  Query answering with universal solutions

– For UCQs: run query over universal instance

– Remove tuples with labelled nulls

– Result are the certain answers!
15 CS520 - 5) Data Exchange

5.1 Universal Solutions

16 CS520 - 5) Data Exchange

A	
 homomorphism	
 h	
 from	
 instance	
 J	
 to	
 instance	
 J’	
 maps	
 the	
 constants	
 and	
 nulls	

of	
 J	
 to	
 the	
 constants	
 and	
 nulls	
 of	
 J’	
 and	
 fulfills	
 the	
 following	
 condiQons:	

	

•  Constants	
 are	
 mapped	
 onto	
 themselves:	
 h(c)	
 =	
 c	

•  Every	
 tuple	
 R(a1,…,an)	
 in	
 J	
 is	
 mapped	
 to	
 a	
 tuple	
 in	
 J’:	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 R(a1,…,an)	
 in	
 J	
 -­‐>	
 R(h(a1),	
 …,h(an))	
 in	
 J’	

	

DefiniEon:	
 Homomorphism	

	

Given	
 data	
 exchange	
 seCng	
 (S,T,I,Σ).	
 An	
 instance	
 J	
 of	
 T	
 is	
 called	
 an	
 universal	

soluQon	
 for	
 a	
 source	
 instance	
 I	
 if	
 it	
 is	
 a	
 soluQon	
 and	
 for	
 every	
 other	
 soluQon	
 J’	

hold	
 that	

	

•  There	
 exists	
 a	
 homomorphism	
 from	
 J	
 to	
 J’	

DefiniEon:	
 Universal	
 soluEon	

5.1 Data Exchange Solutions

17 CS520 - 5) Data Exchange

How	
 general	
 	
 is	
 soluQon	
 (in	
 terms	
 of	
 certain	
 answers)?	

	

Consider	
 query	
 	

Q(n) :- P(n,a,op,oa,hp), oa = Hometown

Example:	
 SoluEon	
 generality	

Name	
 Address	
 Office-­‐phone	
 Office-­‐address	
 Home-­‐phone	

Peter	
 Chicago	
 (312)	
 123	
 4343	
 X	
 Y	

Alice	
 Chicago	
 (312)	
 555	
 7777	
 A	
 A	

Bob	
 New	
 York	
 (465)	
 123	
 1234	
 C	
 D	

5.1 Data Exchange Solutions

18 CS520 - 5) Data Exchange

Above	
 is	
 universal	
 soluQon	

	

How	
 to	
 map	
 to	
 below	
 non-­‐universal	
 soluQon?	
 	

Replace	
 generic	
 labelled	
 Nulls	
 with	
 values:	

X	
 -­‐>	
 Hometown,	
 Y-­‐>	
 111-­‐322-­‐3454,	
 C	
 -­‐>	
 other	
 town,	

Example:	
 SoluEon	
 generality	

Name	
 Address	
 Office-­‐phone	
 Office-­‐address	
 Home-­‐phone	

Peter	
 Chicago	
 (312)	
 123	
 4343	
 X	
 Y	

Alice	
 Chicago	
 (312)	
 555	
 7777	
 A	
 A	

Bob	
 New	
 York	
 (465)	
 123	
 1234	
 C	
 D	

Name	
 Address	
 Office-­‐phone	
 Office-­‐address	
 Home-­‐phone	

Peter	
 Chicago	
 (312)	
 123	
 4343	
 Hometown	
 111-­‐322-­‐3454	

Alice	
 Chicago	
 (312)	
 555	
 7777	
 A	
 A	

Bob	
 New	
 York	
 (465)	
 123	
 1234	
 Other	
 town	
 D	

5.2 Computing Solutions

•  Note

– Schema mappings (st-tgds) are tuple-generating
dependencies

– What other tgd’s do we know

•  Foreign keys

– How did we solve violations to FKs?

•  The chase!

– Chase produces universal solution!

19 CS520 - 5) Data Exchange

Source	
 Schema	
 S	
 Target	
 Schema	
 T	

Source	
 Data	
 Target	
 Data	

M	
 	

5.2 Computing Solutions

•  Can we use a database system to compute
solutions?

– Yes, systems such as Clio generate queries that
compute universal solutions!

•  SQL

•  Java

•  XSLT (for XML docs)

20 CS520 - 5) Data Exchange

5.2 Computing Solutions

•  Generating Executable Transformations

– How to preserve semantics of labeled nulls

•  n = n’ is true if we have the same labeled null only

•  n = n’ if one is a constant and the other one is a labeled
null

21 CS520 - 5) Data Exchange

5.2 Skolem Functions

•  Skolem functions for labeled nulls

– For each existential variable in a tgd we create a
new skolem function

– What should be the arguments of the function?

•  Naïve: all universally quantified variables

•  Better: only relevant ones

22 CS520 - 5) Data Exchange

5.2 Skolem Functions

23 CS520 - 5) Data Exchange

Example:	
 Skolem	
 FuncEons	

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

5.2 Skolem Functions

24 CS520 - 5) Data Exchange

	

	

	

	

	

	

	

	

	

	

Introduce	
 skolem	
 funcQon	
 sk1	
 and	
 sk2	
 for	
 f	
 and	
 g.	

	

What	
 arguments	
 to	
 choose	
 for	
 sk1	
 and	
 sk2?	

	

E.g.,,	
 f	
 should	
 be	
 fixed	
 for	
 a	
 certain	
 address	
 and	
 should	
 not	
 depend	
 on	
 the	
 person.	

Example:	
 Skolem	
 FuncEons	

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

5.2 Skolem Functions

•  Clio Schema Graph Algorithm

•  Nodes

– Create a graph with one node for every target
attribute and one node for every target relation

– Also add nodes for source attribute if they are
copied to the target according to the mapping

•  Edges

– Edges between a relation and its attributes

– Edges between target attributes that use the same
variable

– Edges between source attributes and target
attributes if they use the same variable

25 CS520 - 5) Data Exchange

5.2 Skolem Functions

•  Clio Schema Graph Algorithm

•  Annotations

– Annotate each target attribute connected to a
source attribute with that source attribute

– Propagate annotations according to the following
rules

•  Propagate annotations from attributes to relations

•  Propagate annotations from relations to attributes

– Only if attribute uses existentially quantified variable

•  Propagate annotations between target attributes
connected by equality edges

26 CS520 - 5) Data Exchange

5.2 Skolem Functions

27 CS520 - 5) Data Exchange

	

	

	

	

	

	

	

	

	

	

Example:	
 Skolem	
 FuncEons	

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Person	

Name	
 Address	
 Age	

Address	

Id	
 City	
 Office-­‐c.	

Name	
 Address	

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

Office-­‐p.	

5.2 Skolem Functions

28 CS520 - 5) Data Exchange

	

	

	

	

	

	

	

	

	

	

Example:	
 Skolem	
 FuncEons	

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Person	

Name	
 Address	
 Age	

Address	

Id	
 City	
 Office-­‐c.	

Name	
 Address	

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

Office-­‐p.	

Name	
 Address	
 Office-­‐p.	

1)	
 IniQalize	
 with	

source	
 afribute	

names	

5.2 Skolem Functions

29 CS520 - 5) Data Exchange

	

	

	

	

	

	

	

	

	

	

Example:	
 Skolem	
 FuncEons	

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Person	

Name	
 Address	
 Age	

Address	

Id	
 City	
 Office-­‐c.	

Name	
 Address	

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

Office-­‐p.	

Name	
 Address	
 Office-­‐p.	

{Address,	

Office-­‐p.}	

Name	

2)	
 Propagate	
 to	

parent	
 and	
 back	
 to	

children	

5.2 Skolem Functions

30 CS520 - 5) Data Exchange

	

	

	

	

	

	

	

	

	

	

Example:	
 Skolem	
 FuncEons	

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Person	

Name	
 Address	
 Age	

Address	

Id	
 City	
 Office-­‐c.	

Name	
 Address	

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

Office-­‐p.	

Name	
 Address	
 Office-­‐p.	

{Address,	

Office-­‐p.}	

Name	

2)	
 Propagate	
 to	

parent	
 and	
 back	
 to	

children	

Name	
 Name	

{Address,	

Office-­‐p.}	

5.1 Data Exchange Solutions

31 CS520 - 5) Data Exchange

	

	

	

	

	

	

	

	

	

	

Example:	
 Skolem	
 FuncEons	

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Person	

Name	
 Address	
 Age	

Address	

Id	
 City	
 Office-­‐c.	

Name	
 Address	

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

Office-­‐p.	

Name	
 Address	
 Office-­‐p.	

3)	
 Propagate	
 along	

equality	
 edges	

(here	
 address=id)	

…	

Compute	
 fixpoint	

{Address,	

Office-­‐p.,	

Name}	

{Address,	

Office-­‐p.,	

Name}	

{Address,	

Office-­‐p.,	

Name}	

{Address,	

Office-­‐p.,	

Name}	

{Address,	

Office-­‐p.,	

Name}	

5.2 Skolem Functions

•  Clio Schema Graph Algorithm

•  Skolem functions

– Derive skolem function arguments from the
schema graph annotations of an element

32 CS520 - 5) Data Exchange

	

For	
 variable	
 f	
 (id,	
 address)	
 we	
 assign	
 sk1(a,b,c)	

For	
 variable	
 g(age)	
 we	
 assign	
 sk2(a,b,c)	

Example:	
 Skolem	
 FuncEons	

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

5.2 Executable Transformations

•  SQL Code Generation Example

– For each tgd mentioning a target relation R we
generate a query fragment

– All query fragments for R are “unioned” together

– A query fragment is

•  A FROM and WHERE clause that is a direct translation
of the LHS of a tgd into SQL

•  A SELECT clause corresponding the R atom in the RHS
using attributes from the FROM clause can the skolem
functions we have determined in the previous step

33 CS520 - 5) Data Exchange

5.2 Executable Transformations

34 CS520 - 5) Data Exchange

	

For	
 Person	
 atom	
 in	
 RHS:	

SELECT	
 name,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ‘SK1’	
 ||	
 name	
 ||	
 address	
 ||	
 office-­‐phone	
 AS	
 address,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ‘SK2’	
 ||	
 name	
 ||	
 address	
 ||	
 office-­‐phone	
 AS	
 age	

FROM	
 Person	

	

	

For	
 Address	
 atom	
 in	
 RHS:	

SELECT	
 	
 ‘SK1’	
 ||	
 name	
 ||	
 address	
 ||	
 office-­‐phone	
 AS	
 address,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 address	
 AS	
 city,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 office-­‐phone	
 AS	
 office-­‐contact	

FROM	
 Person	

	

Example:	
 Skolem	
 FuncEons	

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

5.3 Recap Data Exchange Steps

•  Schema Matching

•  Generate Schema Mappings

– Use constraints

•  Generate Executable Transformations

– SQL, XSLT, XQuery

– Skolems for missing value

•  Run Transformations over source instance to
generate target instance

– Universal solution

35 CS520 - 5) Data Exchange

5.3 Comparison with virtual

integration

•  Pay cost upfront instead of at query time

•  Making decisions early vs. at query time

– When generating a solution

– Caution: bad decisions stick!

•  Universal solutions allow efficient
computation of certain types of queries using,
e.g., SQL

36 CS520 - 5) Data Exchange

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)   Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 37 CS520 - 5) Data Exchange

Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing

7) Big Data Analytics

8) Data Provenance

1
CS520 - 6) Data Warehousing

6. What is Datawarehousing?

• Problem: Data Analysis, Prediction, Mining

– Example: Walmart

– Transactional databases

• Run many “cheap” updates concurrently

• E.g., each store has a database storing its stock and sales

– Complex Analysis over Transactional Databases?

• Want to analyze across several transactional databases
– E.g., compute total Walmart sales per month

– Distribution and heterogeneity

• Want to run complex analysis over large datasets

– Resource consumption of queries affects normal operations on
transactional databases

2
CS520 - 6) Data Warehousing

6. What is Datawarehousing?

• Solution:

• Performance

– Store data in a different system (the
datawarehouse) for analysis

– Bulk-load data to avoid wasting performance on
concurrency control during analysis

• Heterogeneity and Distribution

– Preprocess data coming from transactional
databases to clean it and translate it into a unified
format before bulk-loading

3
CS520 - 6) Data Warehousing

6. Datawarehousing Process

• 1) Design a schema for the warehouse

• 2) Create a process for preprocessing the data

• 3) Repeat

– A) Preprocess data from the transactional databases

– B) Bulk-load it into the warehouse

– C) Run analytics

4
CS520 - 6) Data Warehousing

Data Warehouse

ETL ETL ETL ETL

RDBMS1 RDBMS2

HTML1 XML1

ETL pipeline
outputs

ETL

6. Overview

• The multidimensional datamodel (cube)

– Multidimensional data model

– Relational implementations

• Preprocessing and loading (ETL)

• Query language extensions

– ROLL UP, CUBE, …

• Query processing in datawarehouses

– Bitmap indexes

– Query answering with views

– Self-tuning

5
CS520 - 6) Data Warehousing

6. Multidimensional Datamodel

• Analysis queries are typically aggregating

lower level facts about a business

– The revenue of Walmart in each state (country,

city)

– The amount of toy products in a warehouse of a

company per week

– The call volume per zip code for the Sprint network

– …

6
CS520 - 6) Data Warehousing

6. Multidimensional Datamodel

• Commonality among these queries:

– At the core are facts: a sale in a Walmart store, a

toy stored in a warehouse, a call made by a certain

phone

– Data is aggregated across one or more dimensions

• These dimensions are typically organized hierarchically:

year – month – day – hour, country – state - zip

• Example

– The revenue (sum of sale amounts) of Walmart in

each state

7
CS520 - 6) Data Warehousing

6. Example 2D

8
CS520 - 6) Data Warehousing

2014 2015

1. Quarter 2.	Quarter 3.	Quarter 4.	Quarter 1. Quarter 2.	Qu…

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

Toy

car 3 7 6 37 7 92 37 7 92 37 7 92 37 7 92 2 ...

puppet 9 4 5 31 1 1 1 1 1 1 1 1 1 2 2 2 …

Fishing	 rod 11 12 22 22 22 22 22 22 7 6 6 6 6 65 4 33 …

Books

Moby	Dick 3 40 39 37 7 92 81 6 51 7 48 51 5 7 3 3 …

Mobile	

devel.

3 2 5 43 7 0 81 6 51 7 48 51 5 7 3 3 …

King	Lear 3 9 6 37 7 92 5 6 51 7 48 51 5 7 3 3 …

6. Generalization to multiple

dimensions

9
CS520 - 6) Data Warehousing

• Given a fixed number of dimensions

– E.g., product type, location, time

• Given some measure

– E.g., number of sales, items in stock, …

• In the multidimensional datamodel we store

facts: the values of measures for a combination

of values for the dimensions

6. Data cubes

10
CS520 - 6) Data Warehousing

• Given n dimensions

– E.g., product type, location, time

• Given m measures

– E.g., number of sales, items in stock, …

• A datacube (datahypercube) is an n-

dimensional datastructure that maps values in

the dimensions to values for the m measures

– Schema: D1, …, Dn, M1, …, Mm

– Instance: a function

dom(D1) x … x dom(Dn) -> dom(M1) x ... x dom(Mm)

6. Dimensions

11
CS520 - 6) Data Warehousing

• Purpose

– Selection of descriptive data

– Grouping with desired level of granularity

• A dimension is define through a containment-
hierarchy

• Hierarchies typically have several levels

• The root level represents the whole dimensions

• We may associate additional descriptive
information with a elements in the hierarchy
(e.g., number of residents in a city)

6. Dimension Example

12
CS520 - 6) Data Warehousing

• Location

– Levels: location, state, city

Locations

Illinois Wisconsin

Chicago Schaumburg Madison Whitewater

location

state

city

Schema Instance

6. Dimension Schema

13
CS520 - 6) Data Warehousing

• Schema of a Dimension

– A set D of category attributes D1, …, Dn, TopD

• These correspond to the levels

– A partial order → over D which represents parent-

child relationships in the hierarchy

• These correspond to upward edges in the hierarchy

• TopD is larger than anything else

– For every Di: Di → TopD

• There exists Dmin which is smaller than anything else

– For every Di: Dmin → Di

6. Dimension Schema Example

14
CS520 - 6) Data Warehousing

• Schema of Location Dimension

– Set of categories D = {location, state, city}

– Partial order

{ city → state, city → location, state → location }

– TopD = location

– Dmin = city

Locations

Illinois Wisconsin

Chicago Schaumburg Madison Whitewater

location

state

city

Schema Instance

6. Remarks

15
CS520 - 6) Data Warehousing

• In principle there does not have to exist an

order among the elements at one level of the

hierarchy

– E.g., cities

• Hierarchies do not have to be linear

Schema

year

quarter

month

day

week

6. Cells, Facts, and Measures

16
CS520 - 6) Data Warehousing

• Each cell in the cube corresponds to a combination of

elements from each dimension

– Facts are non-empty cells

– Cells store measures

• Cube for a combination of levels of the dimension

Fact:

Items	in	stock	in	Jan at	

Chicago that	belong	 to	

category	Tool

Time

5 1

4 9

3 4

Product

Location

Book

Tool

Electronic

Audio

Gardening

Jan
Feb
Mar

Apr
May

Facts

• Targets of analytics

– E.g., revenue, #sales, #stock

• A fact is uniquely defined by the combination

of values from the dimensions

– E.g., for dimensions time and and location

Revenue in Illinois during Jan 2015

• Granularity: Levels in the dimension

hierarchy corresponding to the fact

– E.g., state, month

17
CS520 - 6) Data Warehousing

year

quarter

month

day

week

location

state

city

Facts (Event vs. Snapshot)

• Event Facts

– Model real-world events

– E.g., Sale of an item

• Snapshot Facts

– Temporal state

– A single object (e.g., a book) may contribute to

several facts

– E.g., number of items in stock

18
CS520 - 6) Data Warehousing

Measures

• A measure describes a fact

– May be derived from other measures

• Two components

– Numerical value

– Formula (optional): how to derive it

• E.g., avg(revenue) = sum(revenue) / count(revenue)

• We may associate multiple measures to each

cell

– E.g., number of sales and total revenue

19
CS520 - 6) Data Warehousing

Measures - Granularity

• Similar to facts, measures also have a granularity

• How to change granularity of a measure?

• Need algorithm to combine measures

– Additive measures

• Can be aggregated along any dimension

– Semi-additive/non-additive

• Cannot be aggregated along some/all dimensions

• E.g., snapshot facts along time dimension

– Number of items in stock at Jan + Feb + … != items in stock

during year

– Median of a measure

20
CS520 - 6) Data Warehousing

Design Process (after Kimball)

• Comparison to classical relational modeling

– Analysis driven

• No need to model all existing data and relationships relevant

to a domain

• Limit modeling to information that is relevant for predicted

analytics

– Redundancy

• Tolerate redundancy for performance if reasonable

– E.g., in dimension tables to reduce number of joins

21
CS520 - 6) Data Warehousing

Design Process – Steps

• 1) Select relevant business processes

– E.g., order shipping, sales, support, stock
management

• 2) Select granuarity

– E.g., track stock at level of branches or regions

• 3) Design dimensions

– E.g., time, location, product, …

• 4) Select measures

– E.g., revenue, cost, #sales, items in stock, #support
requests

22
CS520 - 6) Data Warehousing

Design Process Example

• Coffee shop chain

– Processes

• Sell coffee to customers

• Buy ingredients from suppliers

• Ship supplies to branches

• Pay employees

• HR (hire, advertise positions, …)

– Which process is relevant to be analysed to increase

profits?

23
CS520 - 6) Data Warehousing

Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Single sale?

– Sale per branch/day?

– Sale per city/year?

24
CS520 - 6) Data Warehousing

Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

– Sufficient for analysis

• Save storage

• 3) Determine relevant dimensions

– Location

– Time

– Product, …

25
CS520 - 6) Data Warehousing

Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions

– Location (country, state, city, zip, shop)

– Time (year, month, day)

– Product (type, brand, product)

26
CS520 - 6) Data Warehousing

Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions

– Location (country, state, city, zip, shop)

– Time (year, month, day)

– Product (type, brand, product)

• 4) Select measures

27
CS520 - 6) Data Warehousing

Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions

– Location (country, state, city, zip, shop)

– Time (year, month, day)

– Product (type, brand, product)

• 4) Select measures

– cost, revenue, profit?

28
CS520 - 6) Data Warehousing

Relational representation

• How to model a datacube using the relational

datamodel

• We start from

– Dimension schemas

– Set of measures

29
CS520 - 6) Data Warehousing

Star Schema

• A data cube is represented as a set of dimension

tables and a fact table

• Dimension tables
– For each dimension schema D = (D1,…,Dk,TopD) we create a

relation

– D (PK, D1,…,Dk)

– Here PK is a primary key, e.g., Dmin

• Fact table

– F(FK1, …, FKn, M1, ..., Mm)

– Each FKi is a foreign key to Di

– Primary key is the combination of all Fki

30
CS520 - 6) Data Warehousing

Star Schema - Remarks

• Dimension tables have redundancy

– Values for higher levels are repeated

• Fact table is in 3NF

• TopD does not have to be stored explicitly

• Primary keys for dimension tables are

typically generated (surrogate keys)

– Better query performance by using integers

31
CS520 - 6) Data Warehousing

Snowflake Schema

• A data cube is represented as a set of dimension
tables and a fact table

• Dimension tables
– For each dimension schema D = (D1,…,Dk,TopD) we create a

relation multiple relations connected through FKs

– Di (PK, A1, …, Al, FKj)

– Al is a descriptive attribute

– FKj is foreign key to the immediate parent(s) of Di

• Fact table

– F(FK1, …, FKn, M1, ..., Mm)

– Each FKi is a foreign key to Di

– Primary key is the combination of all Fki

32
CS520 - 6) Data Warehousing

Snowflake Schema - Remarks

• Avoids redundancy

• Results in much more joins during query

processing

• Possible to find a compromise between

snowflake and star schema

– E.g., use snowflake for very fine-granular

dimensions with many levels

33
CS520 - 6) Data Warehousing

Snowflake Schema - Example

– Coffee chain example

34
CS520 - 6) Data Warehousing

6. Extract-Transform-Load (ETL)

• The preprocessing and loading phase is called

extract-transform-load (ETL) in

datawarehousing

• Many commercial and open-source tools available

• ETL process is modeled as a workflow of

operators

– Tools typically have a broad set of build-in operators:

e.g., key generation, replacing missing values,

relational operators,

– Also support user-defined operators

35
CS520 - 6) Data Warehousing

6. Extract-Transform-Load (ETL)

• Some ETL tools

– Pentaho Data Integration

– Oracle Warehouse Builder (OWB)

– IBM Infosphere Information Server

– Talend Studio for Data Integration

– CloverETL

– Cognos Data Manager

– Pervasive Data Integrator

– …

36
CS520 - 6) Data Warehousing

6. Extract-Transform-Load (ETL)

• Operators supported by ETL

– Many of the preprocessing and cleaning operators
we already know

• Surrogate key generation (like creating existentials
with skolems)

• Fixing missing values

– With default value, using trained model (machine learning)

• Relational queries

– E.g., union of two tables or joining two tables

• Extraction of structured data from semi-structured
data and/or unstructured data

• Entity resolution, data fusion

37
CS520 - 6) Data Warehousing

6. ETL Process

• Operators can be composed to form complex

workflows

38
CS520 - 6) Data Warehousing

Invoice

line items

Split

Date -

time

Filter

invalid
Join

Filter

invalid

Invalid

dates /times

Invalid

items

Item

records

Filter

non -

match

Invalid

customers

Group by

customer

Customer

balance

Customer

records

6. Typical ETL operators

• Elementizing

– Split values into more fine-granular elements

• Standardization

• Verification

• Matching with master data

• Key generation

• Schema matching, Entity

resolution/Deduplication, Fusion

39
CS520 - 6) Data Warehousing

6. Typical ETL operators

• Control flow operators

– AND/OR

– Fork

– Loops

– Termination

• Successful

• With warning/errors

40
CS520 - 6) Data Warehousing

6. Typical ETL operators

• Elementizing

– Split non 1NF data into individual elements

• Examples

– name: “Peter Gertsen” -> firstname: “Peter”, lastname:

“Gertsen”

– date: “12.12.2015” -> year: 2002, month: 12, day :12

– Address: “10 W 31st, Chicago, IL 60616” -> street = “10

W 31st”, city = “Chicago”, state = “IL”, zip = “60616”

41
CS520 - 6) Data Warehousing

6. Typical ETL operators

• Standardization

– Expand abbreviation

– Resolve synonyms

– Unified representation of, e.g., dates

• Examples

– “IL” -> “Illinois”

– “m/w”, “M/F” -> “male/female”

– “Jan”, “01”, “January”, “january” -> “January”

– “St” -> “Street”, “Dr” -> “Drive”, …

42
CS520 - 6) Data Warehousing

6. Typical ETL operators

• Verification

– Same purpose as constraint based data cleaning but

typically does not rely on constraints, but, e.g.,

regular expression matching

• Examples

– Phone matches “[0-9]{3}-[0-9]{3}-[0-9]{4}”

– For all t in Tokens(product description), t exists in

English language dictionary

43
CS520 - 6) Data Warehousing

6. Typical ETL operators

• Matching master data (lookup)

– Check and potentially repair data based on

available master data

• Examples

– E.g., using a clean lookup table with (city,zip) replace

the city in each tuple if the pair (city,zip) does not occur

in the lookup table

44
CS520 - 6) Data Warehousing

6. Metadata management

• As part of analysis in DW data is subjected to a
complex pipeline of operations

– Sources

– ETL

– Analysis queries

• -> important, but hard, to keep track of what
operations have been applied to data and from
which sources it has been derived

– Need metadata management

• Including provenance (later in this course)

45
CS520 - 6) Data Warehousing

6. Querying DW

• Targeted model (cube vs. relational)

– Design specific language for datacubes

– Add suitable extensions to SQL

• Support typical analytical query patterns

– Multiple parallel grouping criteria

• Show total sales, subtotal per state, and subtotal per city

• -> three subqueries with different group-by in SQL

– Windowed aggregates and ranking

• Show 10 most successful stores

• Show cummulative sales for months of 2016

– E.g., the result for Feb would be the sum of the sales for Jan + Feb

46
CS520 - 6) Data Warehousing

6. Querying DW

• Targeted model (cube vs. relational)

– Design specific language for datacubes

• MDX

– Add suitable extensions to SQL

• GROUPING SETS, CUBE, …

• Windowed aggregation using OVER(), PARTITION BY,

ORDER BY, window specification

• Window functions

– RANK, DENSE_RANK()

47
CS520 - 6) Data Warehousing

6. Cube operations

• Roll-up

– Move from fine-granular to more coarse-granular

in one or more dimensions of a datacube

• E.g., sales per (city,month,product category) to Sales

per (state,year, product category

• Drill-down

– Move from coarse-granular to more fine-granular

in one of more dimensions

• E.g., phonecalls per (city,month) to phonecalls per

(zip,month)

48
CS520 - 6) Data Warehousing

6. Cube operations

• Drill-out

– Add additional dimensions

• special case of drill-down starting from TopD in
dimension(s)

• E.g., sales per (city, product category) to Sales per
(city,year, product category)

• Drill-in

– Remove dimension

• special case for roll-up move to TopD for dimension(s)

• E.g., phonecalls per (city,month) to phonecalls per
(month)

49
CS520 - 6) Data Warehousing

6. Cube operations

• Slice

– Select data based on restriction of the values of one

dimension

• E.g., sales per (city,month) -> sales per (city) in Jan

• Dice

– Select data based on restrictions of the values of

multiple dimensions

• E.g., sales per (city,month) -> sales in Jan for Chicago

and Washington DC

50
CS520 - 6) Data Warehousing

6. SQL Extensions

• Recall that grouping on multiple sets of

attributes is hard to express in SQL

– E.g., give me the total sales, the sales per year, and

the sales per month

• Practice

51
CS520 - 6) Data Warehousing

6. SQL Extensions

• Syntactic Sugar for multiple grouping

– GROUPING SETS

– CUBE

– ROLLUP

• These constructs are allowed as expressions in

the GROUP BY clause

52
CS520 - 6) Data Warehousing

6. GROUPING SETS

• GROUP BY GROUPING SETS ((set1), …,
(setn))

• Explicitly list sets of group by attributes

• Semantics:

– Equivalent to UNION over duplicates of the query

each with a group by clause GROUP BY seti

– Schema contains all attributes listed in any set

– For a particular set, the attribute not in this set are

filled with NULL values

53
CS520 - 6) Data Warehousing

6. GROUPING SETS

SELECT quarter,

city,

product_typ,

SUM(profit) AS profit

FROM facttable F, time T, location L, product P

WHERE

F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID

GROUP BY GROUPING SETS

((quarter, city), (quarter, product_typ))

54
CS520 - 6) Data Warehousing

quarter city product_typ profit

2010 Q1 Books 8347

2012 Q2 Books 7836

2012	Q2 Gardening 12300

2012	Q2 Chicago 12344

2012 Q2 Seattle 124345

6. GROUPING SETS

SELECT quarter, city, NULL AS product_typ,

SUM(profit) AS profit

FROM facttable F, time T, location L, product P

WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID

GROUP BY quarter, city

UNION

SELECT quarter, NULL AS city, product_typ,

SUM(profit) AS profit

FROM facttable F, time T, location L, product P

WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID

GROUP BY quarter, product_type

55
CS520 - 6) Data Warehousing

6. GROUPING SETS

• Problem:

– How to distinguish between NULLs based on

grouping sets and NULL values in a group by

column?
GROUP BY GROUPING SETS

((quarter, city), (quarter, product_typ), (quarter, product_typ, city)

56
CS520 - 6) Data Warehousing

quarter city product_typ profit

2010 Q1 Books 8347

2012 Q2 Books 7836

2012	Q2 Gardening 12300

2012	Q2 Chicago 12344

2012 Q2 Seattle 124345

2012	Q2 Seattle Gardening 12343

Did	not	group	on	

product_typ or	this	is	

the	group	 for	all	NULL	

values	in	product_typ?

6. GROUPING SETS

• Solution:

– GROUPING predicate

– GOUPING(A) = 1 if grouped on attribute A, 0 else
SELECT … GROUPING(product_typ) AS grp_prd

…

GROUP BY GROUPING SETS

((quarter, city), (quarter, product_typ), (quarter, product_typ, city)

57
CS520 - 6) Data Warehousing

quarter city product_typ profit grp_prd

2010 Q1 Books 8347 1

2012 Q2 Books 7836 1

2012	Q2 Gardening 12300 1

2012	Q2 Chicago 12344 0

2012 Q2 Seattle 124345 1

2012	Q2 Seattle Gardening 12343 1

Now	it’s	clear!

6. GROUPING SETS

• Combining GROUPING SETS

GROUP BY A, B

= GROUP BY GROUPING SETS ((A,B))

GROUP BY GROUPING SETS ((A,B), (A,C), (A))

= GROUP BY A, GROUPING SETS ((B), (C), ())

GROUP BY GROUPING SETS ((A,B), (B,C),

GROUPING SETS ((D,E), (D))

= GROUP BY GROUPING SETS (

(A,B,D,E), (A,B,D), (B,C,D,E), (B,C,D)

)

58
CS520 - 6) Data Warehousing

6. CUBE

• GROUP BY CUBE (set)

• Group by all 2n subsets of set
GROUP BY CUBE (A,B,C)

= GROUP BY GROUPING SETS (

(),

(A), (B), (C),

(A,B), (A,C), (B,C),

(A,B,C)

)

59
CS520 - 6) Data Warehousing

6. CUBE

• GROUP BY ROLLUP(A1, …, An)

• Group by all prefixes

• Typically different granularity levels from single
dimension hierarchy, e.g., year-month-day

– Database can often find better evaluation strategy
GROUP BY ROLLUP (A,B,C)

= GROUP BY GROUPING SETS (

(A,B,C),

(A,B),

(A),

()

)

60
CS520 - 6) Data Warehousing

6. OVER clause

• Agg OVER (partition-clause, order-
by,window-specification)

• New type of aggregation and grouping where
– Each input tuple is paired with the aggregation result for the group it

belongs too

– More flexible grouping based on order and windowing

– New aggregation functions for ranking queries

• E.g., RANK(), DENSE_RANK()

61
CS520 - 6) Data Warehousing

6. OVER clause

• Agg OVER (partition-clause, order-
by,window-specification)

• New type of aggregation and grouping where
SELECT shop, sum(profit) OVER()

- aggregation over full table

SELECT shop, sum(profit) OVER(PARTITION BY state)

- like group-by

SELECT shop, sum(profit) OVER(ORDER BY month)

- rolling sum including everything with smaller month

SELECT shop, sum(profit) OVER(ORDER BY month 6
PRECEDING 3 FOLLOWING)

62
CS520 - 6) Data Warehousing

6. OVER clause

• Agg OVER (partition-clause order-
by,window-specification)

• New type of aggregation and grouping where
<window frame preceding> ::= {

UNBOUNDED PRECEDING

| n PRECEDING

| CURRENT ROW }

<window frame following> ::= {

UNBOUNDED FOLLOWING

| n FOLLOWING

| CURRENT ROW

}

63
CS520 - 6) Data Warehousing

6. OVER clause

SELECT year, month, city, profit

SUM(profit) OVER () AS ttl

FROM sales

• For each tuple build a set of tuples belonging to the same window

– Compute aggregation function over window

– Return each input tuple paired with the aggregation result for its window

• OVER() = one window containing all tuples

64
CS520 - 6) Data Warehousing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 92

2010 2 Chicago 5 92

2010 3 Chicago 20 92

2011 1 Chicago 45 92

2010 1 New York 12 92

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (PARTITION BY year) AS ttl

FROM sales

• PARITION BY

– only tuples with same partition-by attributes belong to the same window

• Like GROUP BY

65
CS520 - 6) Data Warehousing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 47

2010 2 Chicago 5 47

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 47

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

66
CS520 - 6) Data Warehousing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 47

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 47

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

67
CS520 - 6) Data Warehousing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

68
CS520 - 6) Data Warehousing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

69
CS520 - 6) Data Warehousing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 92

2010 1 New York 12 22

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (PARTIION BY year ORDER BY month)
AS ttl

FROM sales

• Combining PARTITION BY and ORDER BY

– First partition, then order tuples within each partition

70
CS520 - 6) Data Warehousing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (PARTITION BY year ORDER BY month

RANGE BETWEEN 1 PRECEDING

AND 1 FOLLOWING) AS ttl

FROM sales

• Explicit window specification

– Requires ORDER BY

– Determines which tuples “surrounding” the tuple according to the sort order to

include in the window

71
CS520 - 6) Data Warehousing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 27

2010 2 Chicago 5 47

2010 3 Chicago 20 25

2011 1 Chicago 45 45

2010 1 New York 12 27

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month

ROWS BETWEEN 1 PRECEDING

AND 1 FOLLOWING) AS ttl

FROM sales

• Explicit window specification

– Requires ORDER BY

– Determines which tuples “surrounding” the tuple according to the sort order to

include in the window

72
CS520 - 6) Data Warehousing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 37

2010 3 Chicago 20 70

2011 1 Chicago 45 65

2010 1 New York 12 27

6. MDX

• Multidimensional expressions (MDX)

– Introduced by Microsoft

– Query language for the cube data model

– SQL-like syntax

• Keywords have different meaning

– MDX queries return a multi-dimensional report

• 2D = spreadsheet

• 3D or higher, e.g., multiple spreadsheets

73
CS520 - 6) Data Warehousing

6. MDX Query

• Basic Query Structure

SELECT <axis-spec1>, …

FROM <cube-spec1>, …

WHERE (<select-spec>)

• Note!

– Semantics of SELECT, FROM, WHERE not what

you would expect knowing SQL

74
CS520 - 6) Data Warehousing

6. MXD

SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE (Measures.numCalls, Carrier.Spring)

• Meaning of
– [] interpret number as name

– {} set notation

– () tuple in where clause

75
CS520 - 6) Data Warehousing

2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

6. MXD

SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE (Measures.numCalls, Carrier.Spring)

76
CS520 - 6) Data Warehousing

2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

Determine	result	layout

rows	and	columns	of	

spreadsheet

Specify	sets	of	

dimensional	 concepts	

Datacube(s)	to	use

Select	measures	to	aggregate	

over

Slice	(egg.,	here	only	

aggregation	over	Spring	

calls)

6. MXD - SELECT

SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE (Measures.numCalls, Carrier.Spring)

• Select specifies dimensions in result and how to visualize

– ON COLUMNS, ON ROWS, ON PAGES, ON SECTIONS, ON
CHAPTERS

• Every dimension in result corresponds to one dimension in the cube

– Set of concepts from this dimensions which may be from different levels of

granularity

– E.g., {2010, 2011 Jan, 2012 Jan, 2012 Feb, 2010 Jan 1st}

77
CS520 - 6) Data Warehousing

2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

6. MXD - SELECT

• Specify concepts from dimensions

– List all values as set, e.g., { [2010], [2011] }

– Not necessarily from same level of hierarchy (e.g., mix years and months)

• Language constructs for accessing parents and children or members

of a level in the hierarchy

– CHILDREN: all direct children

• E.g., [2010].CHILDREN = {[2010 Jan], …, [2010 Dec]}

– PARENT: the direct parent

• E.g., [2010 Jan].PARENT = [2010]

– MEMBERS: all direct children

• E.g., Time.Years.MEMBERS = {[1990], [1991], …, [2016]}

– LASTCHILD: last child (according to order of children)

• E.g., [2010].LASTCHILD = [2010 Dec]

– NEXTMEMBER: right sibling on same level

• E.g., [2010].NEXTMEMBER = [2011]

– [a]:[b]: all members in interval between a and b

• E.g., [1990]:[1993] = {[1990], [1991], [1992], [1993]}

78
CS520 - 6) Data Warehousing

6. MXD - SELECT

• Specify concepts from dimensions

– List all values as set, e.g., { [2010], [2011] }

– Not necessarily from same level of hierarchy (e.g., mix years and months)

• Language constructs for accessing parents and children or members

of a level in the hierarchy

– CHILDREN: all direct children

• E.g., [2010].CHILDREN = {[2010 Jan], …, [2010 Dec]}

– PARENT: the direct parent

• E.g., [2010 Jan].PARENT = [2010]

– MEMBERS: all direct children

• E.g., Time.Years.MEMBERS = {[1990], [1991], …, [2016]}

– LASTCHILD: last child (according to order of children)

• E.g., [2010].LASTCHILD = [2010 Dec]

– NEXTMEMBER: right sibling on same level

• E.g., [2010].NEXTMEMBER = [2011]

– [a]:[b]: all members in interval between a and b

• E.g., [1990]:[1993] = {[1990], [1991], [1992], [1993]}

79
CS520 - 6) Data Warehousing

6. MXD - SELECT

• Nesting of sets: CROSSJOIN
– Project two dimensions into one

– Forming all possible combinations

SELECT CROSSJOIN (

{ Chicago, Schaumburg },

{ [2010], [2011] }

) ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE (Measures.numCalls)

80
CS520 - 6) Data Warehousing

Chicago
2010 123411

2011 3231

Schaumburg
2010 32321132

2011 12355

6. MXD - SELECT

• Conditional selection of members: FILTER
– One use members that fulfill condition

– E.g., condition over aggregation result

• Show results for all month of 2010 where there are more Sprint

calls than ATT calls

SELECT FILTER([2010].CHILDREN,

(Sprint, numCalls) > (ATT, numCalls)

) ON ROWS

{ Chicago } ON COLUMNS

FROM PhoneCallsCube

WHERE (Measures.numCalls)

81
CS520 - 6) Data Warehousing

6. Query Processing in DW

• Large topic, here we focus on two aspects

– Partitioning

– Query answering with materialized views

82
CS520 - 6) Data Warehousing

6. Partitioning

• Partitioning splits a table into multiple

fragments that are stored independently

– E.g., split across X disks, across Y servers

• Vertical partitioning

– Split columns across fragments

• E.g., R = {A,B,C,D}, fragment F1 = {A,B}, F2 = {C,D}

• Either add a row id to each fragment or the primary key

to be able to reconstruct

• Horizontal partitioning

– Split rows

– Hash vs. range partitioning
83

CS520 - 6) Data Warehousing

6. Partitioning

• Why partitioning?

– Parallel/distributed query processing

• read/write fragments in parallel

• Distribute storage load across disks/servers

– Avoid reading data that is not needed to answer a

query

• Vertical

– Only read columns that are accessed by query

• Horizontal

– only read tuples that may match queries selection conditions

84
CS520 - 6) Data Warehousing

6. Partitioning

• Vertical Partitioning

– Fragments F1 to Fn of relation R such that

• Sch(F1) u Sch(F2) u … u Sch(Fn) = Sch(R)

• Store row id or PK of R with every fragment

• Restore relation R through natural joins

85
CS520 - 6) Data Warehousing

Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Rowid Name Salary

1 Peter 12,000

2 Alice 24,000

3 Bob 20,000

4 Gertrud 50,000

5 Pferdegert 14,000

Rowid Age Gender

1 45 M

2 34 F

3 22 M

4 55 F

5 23 M

6. Partitioning

• Horizontal Partitioning

– Range partitioning on attribute A

• Split domain of A into intervals representing fragments

• E.g., tuples with A = 15 belong to fragment [0,20]

– Fragments F1 to Fn of relation R such that

• Sch(F1) = Sch(F2) = … = Sch(Fn) = Sch(R)

• R = F1 u … u Fn

86
CS520 - 6) Data Warehousing

Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Name Salary Age Gender

Peter 12,000 45 M

Pferdegert 14,000 23 M

Name Salary Age Gender

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Salary

[0,15000]

Salary

[15001,10000]

6. Partitioning

• Horizontal Partitioning

– Hash partitioning on attribute A

• Split domain of A into x buckets using hash function

• E.g., tuples with h(A) = 3 belong to fragment F3

• Sch(F1) = Sch(F2) = … = Sch(Fn) = Sch(R)

• R = F1 u … u Fn

87
CS520 - 6) Data Warehousing

Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Salary

h(24,000)	 =	0

H(14,000)	 =	0

Salary

h(12,000)	 =	1

H(20,000)	 =	1

H(50,000)	 =	1

Name Salary Age Gender

Alice 24,000 34 F

Pferdegert 14,000 23 M

Name Salary Age Gender

Peter 12,000 45 M

Bob 20,000 22 M

Gertrud 50,000 55 F

Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing

7) Big Data Analytics

8) Data Provenance

88
CS520 - 6) Data Warehousing

CS520

Data Integration, Warehousing, and

Provenance

7. Big Data Systems and Integration

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 1 CS520 - 7) Big Data Analytics

3. Big Data Analytics

•  Big Topic, big Buzzwords ;-)

•  Here

– Overview of two types of systems

•  Key-value/document stores

•  Mainly: Bulk processing (MR, graph, …)

– What is new compared to single node systems?

– How do these systems change our approach to

integration/analytics

•  Schema first vs. Schema later

•  Pay-as-you-go

2 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  1) How does data processing at scale (read

using many machines) differ from what we

had before?

– Load-balancing

– Fault tolerance

– Communication

– New abstractions

•  Distributed file systems/storage

3 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  2) Overview of systems and how they

achieve scalability

– Bulk processing

•  MapReduce, Shark, Flink, Hyracks, …

•  Graph: e.g., Giraph, Pregel, …

– Key-value/document stores = NoSQL

•  Cassandra, MongoDB, Memcached, Dynamo, …

4 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  2) Overview of systems and how they

achieve scalability

– Bulk processing

•  MapReduce, Shark, Flink,

– Fault tolerance

•  Replication

•  Handling stragglers

– Load balancing

•  Partitioning

•  Shuffle

5 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  3) New approach towards integration

– Large clusters enable directly running queries

over semi-structured data (within feasible time)

•  Take a click-stream log and run a query

– One of the reasons why pay-as-you-go is now

feasible

•  Previously: designing a database schema upfront and

designing a process (e.g., ETL) for cleaning and

transforming data to match this schema, then query

•  Now: start analysis directly, clean and transform data if

needed for the analysis

6 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  3) New approach towards integration

– Advantage of pay-as-you-go

•  More timely data (direct access)

•  More applicable if characteristics of data change

dramatically (e.g., yesterdays ETL process no longer

applicable)

– Disadvantages of pay-as-you-go

•  Potentially repeated efforts (everybody cleans the click-

log before running the analysis)

•  Lack of meta-data may make it hard to

– Determine what data to use for analysis

– Hard to understand semantics of data

7 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  Scalable systems

– Performance of the system scales in the number of

nodes

•  Ideally the per node performance is constant

independent of how many nodes there are in the system

•  This means: having twice the number of nodes would

give us twice the performance

– Why scaling is important?

•  If a system scales well we can “throw” more resources

at it to improve performance and this is cost effective

8 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  What impacts scaling?

– Basically how parallelizable is my algorithm

•  Positive example: problem can be divided into

subproblems that can be solved independently without

requiring communication

–  E.g., array of 1-billion integers [i1, …, i1,000,000,000] add 3 to

each integer. Compute on n nodes, split input into n equally

sized chunks and let each node process one chunk

•  Negative example: problem where subproblems are

strongly intercorrelated

–  E.g., Context Free Grammar Membership: given a string and a

context free grammar, does the string belong to the language

defined by the grammar.

9 CS520 - 7) Big Data Analytics

3. Big Data – Processing at Scale

•  New problems at scale

– DBMS

•  running on 1 or 10’s of machines

•  running on 1000’s of machines

•  Each machine has low probability of failure

–  If you have many machines, failures are the norm

– Need mechanisms for the system to cope with

failures

•  Do not loose data

•  Do not use progress of computation when node fails

– This is called fault-tolerance
10 CS520 - 7) Big Data Analytics

3. Big Data – Processing at Scale

•  New problems at scale

– DBMS

•  running on 1 or 10’s of machines

•  running on 1000’s of machines

•  Each machine has limited storage and

computational capabilities

– Need to evenly distribute data and computation

across nodes

•  Often most overloaded node determine processing speed

– This is called load-balancing

11 CS520 - 7) Big Data Analytics

3. Big Data – Processing at Scale

•  Building distributed systems is hard

– Many pitfalls

•  Maintaining distributed state

•  Fault tolerance

•  Load balancing

– Requires a lot of background in

•  OS

•  Networking

•  Algorithm design

•  Parallel programming

12 CS520 - 7) Big Data Analytics

3. Big Data – Processing at Scale

•  Building distributed systems is hard

– Hard to debug

•  Even debugging a parallel program on a single machine

is already hard

– Non-determinism because of scheduling: Race conditions

–  In general hard to reason over behavior of parallel threads of

execution

•  Even harder when across machines

– Just think about how hard it was for you to first

program with threads/processes

13 CS520 - 7) Big Data Analytics

3. Big Data – Why large scale?

•  Datasets are too large

– Storing a 1 Petabyte dataset requires 1 PB

storage

•  Not possible on single machine even with RAID

storage

•  Processing power/bandwidth of single

machine is not sufficient

– Run a query over the facebook social network

graph

•  Only possible within feasible time if distributed

across many nodes

14 CS520 - 7) Big Data Analytics

3. Big Data – User’s Point of

View

•  How to improve the efficiency of distributed

systems experts

– Building a distributed system from scratch for

every store and analysis task is obviously not

feasible!

•  How to support analysis over large datasets

for non distributed systems experts

– How to enable somebody with some programming

but limited/no distributed systems background to

run distributed computations

15 CS520 - 7) Big Data Analytics

3. Big Data – Abstractions

•  Solution

– Provide higher level abstractions

•  Examples

– MPI (message passing interface)

•  Widely applied in HPC

•  Still quite low-level

– Distributed file systems

•  Make distribution of storage transparent

– Key-value storage

•  Distributed store/retrieval of data by identifier (key)

16 CS520 - 7) Big Data Analytics

3. Big Data – Abstractions

•  More Examples

– Distributed table storage

•  Store relations, but no SQL interface

– Distributed programming frameworks

•  Provide a, typically, limited programming model with

automated distribution

– Distributed databases, scripting languages

•  Provide a high-level language, e.g., SQL-like with an

execution engine that is distributed

17 CS520 - 7) Big Data Analytics

3. Distributed File Systems

•  Transparent distribution of storage

– Fault tolerance

– Load balancing?

•  Examples

– HPC distributed filesystems

•  Typically assume a limited number of dedicated storage

servers

•  GPFS, Lustre, PVFS

– “Big Data” filesystems

•  Google file system, HDFS

18 CS520 - 7) Big Data Analytics

3. HDFS

•  Hadoop Distributed Filesystem (HDFS)

•  Architecture

– One nodes storing metadata (name node)

– Many nodes storing file content (data nodes)

•  Filestructure

– Files consist of blocks (e.g., 64MB size)

•  Limitations

– Files are append only

19 CS520 - 7) Big Data Analytics

3. HDFS

•  Name node

•  Stores the directory structure

•  Stores which blocks belong to which files

•  Stores which nodes store copies of which

block

•  Detects when data nodes are down

•  Clients communicate with the name node to

gather FS metadata

20 CS520 - 7) Big Data Analytics

3. HDFS

•  Data nodes

•  Store blocks

•  Send/receive file data from clients

•  Send heart-beat messages to name node to

indicate that they are still alive

•  Clients communicate data nodes for reading/

writing files

21 CS520 - 7) Big Data Analytics

3. HDFS

•  Fault tolerance

– n-way replication

– Name node detects failed nodes based on heart-

beats

–  If a node if down, then the name node schedules

additional copies of the blocks stored by this node

to be copied from nodes storing the remaining

copies

22 CS520 - 7) Big Data Analytics

3. Distributed FS Discussion

•  What do we get?

– Can store files that do not fit onto single nodes

– Get fault tolerance

–  Improved read speed (caused on replication)

– Decreased write speed (caused by replication)

•  What is missing?

– Computations

23 CS520 - 7) Big Data Analytics

3. Frameworks for Distributed

Computations

•  Problems

– Not all algorithms do parallelize well

– How to simplify distributed programming?

•  Solution

– Fix a reasonable powerful, but simple enough

model of computation for which scalable

algorithms are known

–  Implement distributed execution engine for this

model and make it fault tolerant and load-balanced

24 CS520 - 7) Big Data Analytics

3. MapReduce

•  Data Model

– Sets of key-value pairs {(k1,v1), …, (kn,vn)}

– Key is an identifier for a piece data

– Value is the data associaed with a key

•  Programming Model

– We have two higher-level functions map and

reduce

•  Take as input a user-defined function that is applied to

elements in the input key-value pair set

– Complex computations can be achieved by

chaining map-reduce computations
25 CS520 - 7) Big Data Analytics

3. MapReduce Datamodel

•  Data Model

– Sets of key-value pairs {(k1,v1), …, (kn,vn)}

– Key is an identifier for a piece data

– Value is the data associaed with a key

•  Examples

– Document d with an id

•  (id, d)

– Person with name, salary, and SSN

•  (SSN, “name, salary”)

26 CS520 - 7) Big Data Analytics

3. MapReduce Computional

Model

•  Map

– Takes as input a set of key-value pairs and a user-

defined function f:(k,v) -> {(k,v)}

– Map applies f to every input key-value pair and

returns the union of the outputs produced by f

{(k1,v1),…,(kn,vn)}

->

f((k1,v1)) ∪ … ∪ f((kn,vn))

27 CS520 - 7) Big Data Analytics

3. MapReduce Computional

Model

•  Example

– Input: Set of (city,population) pairs

– Task: multiply population by 1.05

•  Map function

–  f: (city,population) ->

{(city,population*1.05)}

•  Application of f through map

–  Input: {(chicago, 3), (nashville, 1)}

– Output: {(chicago, 3.15)} ∪ {(nashville, 1.05)}
 = {(chicago, 3.15), (nashville, 1.05)}

28 CS520 - 7) Big Data Analytics

3. MapReduce Computional

Model

•  Reduce

– Takes as input a key with a list of associated values

a user-defined function

g: (k,list(v)) -> {(k,v)}

– Reduce groups all values with the same key in the

input key-value set and passes each key and its list

of values to g. and returns the union of the outputs

produced by g
{(k1,v11),…,(k1,v1n1), … (km,vm1),…,(km,vmnm)}

->

g((k1,(v11,…,v1n1)) ∪ … ∪ g((km,(vm1,…,vmnm))

29 CS520 - 7) Big Data Analytics

3. MapReduce Computional

Model

•  Example

– Input: Set of (state, population) pairs one for each

city in the state

– Task: compute the total population per state

•  Reduce function

–  f: (state,[p1, …, pn]) ->

{(state,SUM([p1,…,pn)}

•  Application of f through map

–  Input: {(illinois, 3), (illinois, 1), (oregon, 15)}

– Output: {(illinois, 4), (oregon, 15)}

30 CS520 - 7) Big Data Analytics

3. MapReduce Workflows

•  Workflows

– Computations in MapReduce consists of map

phases followed by reduce phases

•  The input to the reduce phase is the output of the map

phase

– Complex computations may require multiple map-

reduce phases to be chained together

31 CS520 - 7) Big Data Analytics

3. MapReduce Implementations

•  MapReduce

– Developed by google

– Written in C

– Runs on top of GFS (Google’s distributed

filesystem)

•  Hadoop

– Open source Apache project

– Written in Java

– Runs on-top of HDFS

32 CS520 - 7) Big Data Analytics

3. Hadoop

•  Anatomy of a Hadoop cluster

– Job tracker

•  Clients submit MR jobs to the job tracker

•  Job tracker monitors progress

– Task tracker aka workers

•  Execute map and reduce jobs

•  Job

– Input: files from HDFS

– Output: written to HDFS

– Map/Reduce UDFs

33 CS520 - 7) Big Data Analytics

3. Hadoop

•  Fault tolerance

– Handling stragglers

•  Job tracker will reschedule jobs to a different worker if

the worker falls behind too much with processing

– Materialization

•  Inputs are read from HDFS

•  Workers write results of map jobs assigned to them to

local disk

•  Workers write results of reduce jobs to HDFS for

persistence

34 CS520 - 7) Big Data Analytics

3. Hadoop – MR Job

35 CS520 - 7) Big Data Analytics

H
D
F
S
	

H
D
F
S
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Clients	sends	job	to	job	

tracker	

-  Job	tracker	decides	

#mappers,	#reducers	

and	which	nodes	to	use	

3. Hadoop – MR Job

36 CS520 - 7) Big Data Analytics

H
D
F
S
	

H
D
F
S
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Job	tracker	sends	jobs	

to	task	tracker	on	

worker	nodes	

-  Try	to	schedule	

map	jobs	on	nodes	

that	store	the	

chunk	processed	

by	a	job	

-  Job	tracker	monitors	

progress	

3. Hadoop – MR Job

37 CS520 - 7) Big Data Analytics

H
D
F
S
	

H
D
F
S
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Each	mapper	reads	its	

chunk	from	HDFS,	

translates	the	input	into	

key-value	pairs	and	

applies	the	map	UDF	to	

every	(k,v)		

-  Outputs	are	wriLen	to	

disk	with	one	file	per	

reducer	(hashing	on	

key)	

-  Job	tracker	may	spawn	

addiNonal	mappers	if	

mappers	are	not	

making	progress	

3. Hadoop – MR Job

38 CS520 - 7) Big Data Analytics

H
D
F
S
	

H
D
F
S
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Mappers	send	files	to	

reducers	(scp)		

-	Called	shuffle	

3. Hadoop – MR Job

39 CS520 - 7) Big Data Analytics

H
D
F
S
	

H
D
F
S
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Reducers	merge	and	

sort	these	input	files	on	

key	values	

-  External	merge	

sort	where	runs	

already	exists	

-  Reducer	applies	reduce	

UDF	to	each	key	and	

associated	list	of	values	

3. Combiners

•  Certain reduce functions lend themselves to

pre-aggregation

– E.g., SUM(revenue) group by state

•  Can compute partial sums over incomplete groups and

then sum up the pre-aggregated results

– This can be done at the mappers to reduce amount

of data send to the reducers

•  Supported in Hadoop through a user provided

combiner function

– The combiner function is applied before writing

the mapper results to local disk
40 CS520 - 7) Big Data Analytics

3. Combiners

•  Certain reduce functions lend themselves to

pre-aggregation

– E.g., SUM(revenue) group by state

•  Can compute partial sums over incomplete groups and

then sum up the pre-aggregated results

– This can be done at the mappers to reduce amount

of data send to the reducers

•  Supported in Hadoop through a user provided

combiner function

– The combiner function is applied before writing

the mapper results to local disk
41 CS520 - 7) Big Data Analytics

3. Example code – Word count

•  https://hadoop.apache.org/docs/r1.2.1/

mapred_tutorial.html

42 CS520 - 7) Big Data Analytics

3. Example code – Word count

•  https://hadoop.apache.org/docs/r1.2.1/

mapred_tutorial.html

43 CS520 - 7) Big Data Analytics

3. Example code – Word count

44 CS520 - 7) Big Data Analytics

3. Systems/Languages on top of

MapReduce

•  Pig

– Scripting language, compiled into MR

– Akin to nested relational algebra

•  Hive

– SQL interface for warehousing

– Compiled into MR

•  …

45 CS520 - 7) Big Data Analytics

3. Hive

•  Hive

– HiveQL: SQL dialect with support for directly

applying given Map+Reduce functions as part of a

query

– HiveQL is compiled into MR jobs

– Executed of Hadoop cluster

46 CS520 - 7) Big Data Analytics

FROM	(

	MAP	doctext	USING	'python	wc_mapper.py'	AS	(word,	cnt)	 		

																	FROM	docs	

	CLUSTER	BY	word		

)	a	

REDUCE	word,	cnt	USING	'python	wc_reduce.py';		

3. Hive Architecture

47 CS520 - 7) Big Data Analytics

3. Hive Datamodel

•  Tables
–  Attribute-DataType pairs

–  User can instruct Hive to partition the table in a certain way

•  Datatypes
–  Primitive: integer, float, string

–  Complex types

•  Map: Key->Value

•  List

•  Struct

–  Complex types can be nested

•  Example:
CREATE TABLE t1(st string, fl float, li list<map<string, struct<p1:int,
p2:int>>);

•  Implementation:
–  Tables are stored in HDFS

–  Serializer/Deserializer - transform for querying
48 CS520 - 7) Big Data Analytics

3. Hive - Query Processing

•  Compile HiveQL query into DAG of map and
reduce functions.
–  A single map/reduce may implement several

traditional query operators
•  E.g., filtering out tuples that do not match a condition

(selection) and filtering out certain columns (projection)

–  Hive tries to use the partition information to avoid
reading partitions that are not needed to answer the
query
•  For example

–  table instructor(name,department) is partitioned on
department

–  SELECT name FROM instructor WHERE department = ‘CS’

–  This query would only access the partition of the table for
department ‘CS’

49 CS520 - 7) Big Data Analytics

3. Operator implementations

•  Join implementations

– Broadcast join

• Send the smaller table to all nodes

• Process the other table partitioned

– Each node finds all the join partners for a partition
of the larger table and the whole smaller table

– Reduce join (partition join)

• Use a map job to create key-value pairs where
the key is the join attributes

• Reducer output joined rows

50 CS520 - 7) Big Data Analytics

3. Example plan

51 CS520 - 7) Big Data Analytics

Spark

•  MR uses heavy materialization to achieve fault

tolerance

– A lot of I/O

•  Spark

– Works in main memory (where possible)

–  Inputs and final outputs stored in HDFS

– Recomputes partial results instead of materializing

them - resilient distributed datasets (RDD)

•  Lineage: Need to know from which chunk a chunk was

derived from and by which computation

52 CS520 - 7) Big Data Analytics

Summary

•  Big data storage systems

•  Big data computation platforms

•  Big data “databases”

•  How to achieve scalability

– Fault tolerance

– Load balancing

•  Big data integration

– Pay-as-you-go

– Schema later

53 CS520 - 7) Big Data Analytics

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 54 CS520 - 7) Big Data Analytics

