
Name CWID

Midterm Exam

March 19th, 2018
1:50-3:05

CS520 - Data Integration,
Warehousing, and Provenance

Please leave this empty!

1.1 1.2 1.3 1.4 Sum

Instructions
• Try to answer all the questions using what you have learned in class. Keep hard questions until the end.

• When writing a query, write the query in a way that it would work over all possible database
instances and not just for the given example instance!

• The exam is closed book and closed notes! No calculator, smartphones, or similar allowed!

Consider the following database schema and example instance about music albums:

user
nickname name postVisibility country

BobAwesome Bob FOF USA
Ali12 Alice friends France
Peter Peter friends India

Pokegert Gert public China

friends
person friend

BobAwesome Ali12
Ali12 BobAwesome

BobAwesome Peter
Peter Pokegert

posts
pid user text time
1 BobAwesome Hello just brought . . . 2018-01-10
2 BobAwesome meet @Ali12 at . . . 2018-01-11
3 Peter . . . is great, would recommend. 2018-01-15

Hints:

• Attributes with black background form the primary key of a relation (e.g., nickname for relation user)

• The attributes person and friend of relation friends are a foreign key to relation user.

• The attribute user of relation posts is a foreign key to relation user.

Spring 2018: Page 2 (of 13)

Part 1.1 Datalog (Total: 25 Points)

Recall that Datalog applies set semantics.

Question 1.1.1 (4 Points)

Write a Datalog program that returns the nicknames of users which have posted at least one post.

Question 1.1.2 (6 Points)

Write a Datalog program that returns the nicknames of users that are friends of a user with nickname
BobAwesome or are friends of friends of BobAwesome. For instance, in the example database Pokegert is a friend
of one of BobAwesome’s friends.

Spring 2018: Page 3 (of 13)

Question 1.1.3 (6 Points)

Write a Datalog program that returns the names of users that have not written any posts. Note that we are
asking for names and not nicknames.

Question 1.1.4 (9 Points)

Write a Datalog program that returns all pairs of users (X, Y) such that user X can see the posts of user Y .
Represent users using their nicknames. Whether the posts of a user are visible to another user is determined
based on the postVisibility attribute for the user. The possible values are

• “friends”: only friends of the user can see the users posts

• “FOF”: in addition to friends, also friends of friends of the user can see the users posts

• “public”: everybody can see the users posts

For example, one result returned for the example database would be (Pokegert,BobAwesome), because user
BobAwesome has set his post visibility to FOF and Pokegert is a friend of Peter who is a friend of BobAwesome.

Spring 2018: Page 4 (of 13)

Spring 2018: Page 5 (of 13)

Part 1.2 Constraints (Total: 30 Points)

Question 1.2.1 Expressing Constraints in First-Order Logic (15 Points)

Recall the representation of constraints as universally quantified formulas in first-order logic introduced in class.
Write down the logical formals encoding the following constraints over the example schema:

• The foreign key from attribute person of relation friends to relation user.

• The foreign key from attribute friend of relation friends to relation user.

• The primary key of relation user

• The following functional dependency for relation posts: user, time→ text

Spring 2018: Page 6 (of 13)

Question 1.2.2 Creating Denial Constraints (15 Points)

Create denial constraints over the example schema based on the following descriptions. Some of the constraints
may require you to write more than one denial constraint!

• Users from France cannot have a postVisibility of “public”.

• Users from USA cannot be friends with users from France and vice versa.

• Implement the functional dependency user, time → text over relation posts

Spring 2018: Page 7 (of 13)

Part 1.3 Query Containment And Equivalence (Total: 27 Points)

Question 1.3.1 (27 Points)

Consider the 3 queries shown below. Check all possible containment relationships. If there exists a containment
mapping from Qi to Qj then write down the mapping.
Q1(X) :- R(X,Z), R(X,X), R(Z,A).
Q2(X) :- R(X,Y), R(Y,Z).
Q3(X) :- R(X,Z), R(Z,A), R(A,Y).

Spring 2018: Page 8 (of 13)

Part 1.4 Virtual Data Integration (Total: 18 Points)

Question 1.4.1 (18 Points)

Given are the views and schema shown below. Find a maximally contained rewriting of the following query
using these views. The query returns titles of books, their authors, price, and year where the author is from
IIT. You are allowed to use any of the algorithms discussed in class such as the Bucket algorithm. However,
only the result counts, you are not required to use any of these algorithms.
Q(Title ,Author ,Price ,Genre) :- Books(Title ,X,Y,Genre ,Z,Price),

Author (Title , Author),
Person (Author ,A,’IIT ’).

Views

V1(Title , Pub , Genre , Price , Year) :- Books(Title ,Pub , X, Genre , Year , Price),
Genre = ’CS’.

V2(Title , Pub , Price , Ed) :- Books(Title , Pub , Ed , X, Y, Price).

V3(Title , Author , Affl) :- Author (Title , Author),
Person (Author , ’Dr.’, Affl).

V4(Author) :- Author (X, Author).

V5(Title , Author) :- Books(Title , X, Y, Z, Year , A),
Author (Title , Author),
Person (Author , B, ’IIT ’),
Year = 2017.

Schema

Books(title, publisher, edition, genre, year, price)
Author(bookTitle, authorName)
Person(name, title, affiliation)
Publisher(name, country)

Spring 2018: Page 9 (of 13)

Spring 2018: Page 10 (of 13)

Spring 2018: Page 11 (of 13)

Spring 2018: Page 12 (of 13)

Spring 2018: Page 13 (of 13)

