
Name CWID

Homework Assignment
2

February 16, 2016

CS520

Please leave this empty!

1.1 1.2 1.3 1.4 1.5 1.6

1.7 1.8 1.9 1.10 1.11 1.12 1.13 Sum

Instructions
• Try to answer all the questions using what you have learned in class

• The assignment is not graded

• There is a theoretical and practical part

• When writing a query, write the query in a way that it would work over all possible database
instances and not just for the given example instance!

CS520 - Spring 2015: Page 2 (of 9)

Lab Part
• This part of the assignment helps you to practice the techniques we have introduced in class

Hospital Dataset

• We have uploaded a hospital dataset to the course webpage: http://cs.iit.edu/~cs520/hospital.csv

• The database instance is stored in a CSV file

• The schema of this database contains a single table with attributes

– providernumber
– hospitalname
– address1
– address2
– address3
– city
– state
– zip
– country
– phone
– hospitaltype
– hospitalowner
– emergencyservice
– condition
– measurecode
– measurename
– score
– sample
– stateavg

The following constraints (functional dependencies) have been defined for the dataset:

e0 : zip→ city

e1 : zip→ state

e2 : phone→ zip

e3 : phone→ city

e4 : phone→ state

e7 : providernumber,measurecode→ stateavg

e8 : state,measurecode→ stateavg

CS520 - Spring 2015: Page 3 (of 9)

Part 1.1 Reuse Hospital Schema and Dataset (Total: 0 Points)

• Recall that in the last assignment we asked you to load the hospital dataset into the DBMS of your choice.
In this assignment you will execute several data cleaning task over this dataset.

Part 1.2 Detecting Constraint Violations (Total: 0 Points)

• The dataset is dirty with respect to the functional dependencies defined on the previous page.

• Write SQL queries using the method we have discussed in class to detect which constraints are violated
(boolean queries). Execute these queries. Which constraints are violated?

• Modify the queries from the previous step to detect pairs of tuples that a constraint.

• Execute these queries and store their results

Part 1.3 Fixing Violations (Total: 0 Points)

• Pick one constraint with violations and write a program for fixing these violations

– Your program should use “updates equating the right-hand side” to fix violations
– Start by computing equivalence classes (if you modify the SQL queries used for detection in a par-

ticular fashion this will help you to build these equivalence classes)
– To fix a violation implement one of the following strategies
∗ Frequency per class: pick the value that occurs the most within each right-hand side attribute

of an equivalence class.
∗ Total frequency: pick the value that occurs most within each right-hand side attribute (consider
all tuples in the database).

∗ Cost of the update: use the edit-distance measure (see below) you have implemented to compute
the cost of updating values. The cost of updating attribute A of tuples from a equivalence class
E to a value c defined as

∑
t∈E dedit(t, t′) where t′ is the version of t after updating A to c.

Part 1.4 Edit Distance (Total: 0 Points)

• Implement the edit distance measure in your favorite programming language

• Test it with a few strings (e.g., the examples from the slides)

CS520 - Spring 2015: Page 4 (of 9)

Part 1.5 Entity Resolution (Total: 0 Points)

• Create a table medcond(city, state, zip, condition) by running a query over the hospital table and store it
as a separate table. We will use this table for entity resolution.

• Naturally, this table has a lot of duplicates (same values). Now we randomly update tuples in the database
to create near-duplicates by adding or deleting a few characters. E.g., in SQL you can use queries like the
one shown below to add one or more random characters to some values of an attribute.

UPDATE ho sp i t a l
SET c i t y = c i t y

| | CASE WHEN random () > 0 .9 THEN ’A ’ ELSE ’ ’ END
| | CASE WHEN random () > 0 .5 THEN ’B ’ ELSE ’ ’ END
| | CASE WHEN random () > 0 .2 THEN ’C ’ ELSE ’ ’ END

WHERE random () > 0 . 5 ;

• Assign some reasonable weights to the attributes. For example, state should be less predictive than zip
code.

• Use edit distance as a similarity metric for all attributes.

• Fix a threshold β.

• Find duplicates using the weighted combination of the edit distance for the attributes of the table.

Part 1.6 Data Fusion (Total: 0 Points)

• For duplicates that you have identified in the previous step, fuse conflicting values for the state attribute
by choosing the value that is more common in the database, i.e., you would have to run a query upfront
to determine the value distribution of the state column.

Part 1.7 The Llunatic cleaning system (Total: 0 Points)

Llunatic is a system for constraint-based data cleaning that is available as open source.

• Download llunatic from the link given on the project page http://www.db.unibas.it/projects/llunatic/.

• Download the examples from that webpage and get used to system

• If you like to, then try to use llunatic to repair the hospital dataset

Part 1.8 Use BART to mess up some data (Total: 0 Points)

BART is an open source system for injecting errors into a clean database in a controlled manner. The system
was developed to support evaluations of data cleaning algorithms and systems.

• Download BART from the link given on the project page http://www.db.unibas.it/projects/bart/.

• Download the examples from that webpage and use the system to create a few dirty datasets

• Create versions with different amount of violations (errors) and test how well they are cleaned by llunatic

Part 1.9 Open end (Total: 0 Points)

There are several other freely available cleaning/preparation solutions available online. Browse the web and try
out a few. For example, http://datacleaner.org and http://openrefine.org/.

CS520 - Spring 2015: Page 5 (of 9)

http://www.db.unibas.it/projects/llunatic/
http://www.db.unibas.it/projects/bart/
http://datacleaner.org
http://openrefine.org/

Theory Part
• This part of the assignment helps you to practice the techniques we have introduced in class.

Consider the following transportation database schema and example instance:

road
fromCity toCity length
Chicago Evanston 13
Chicago Evanston 14
Chicago Oak Park 8
Oak Park Naperville 20
Chicago Naperville 18

city
name gasPrice population
Chicago 1.80 5,000,000
Evanston 1.9 300,000
Oak Park 1.5 500,000
Naperville 1.6 22,000

train
fromCity toCity price
Chicago Evanston 20
Chicago Oak Park 34
Oak Park Naperville 12

Hints:

• Attributes with black background form the primary key of a relation

• The attributes fromCity and toCity of relation road are both foreign keys to relation city

• The attributes fromCity and toCity or relation trans are both foreign keys to relation city

CS520 - Spring 2015: Page 6 (of 9)

Part 1.10 Detection Queries (Total: 0 Points)

Question 1.10.1 Translate detection queries (0 Points)

Translate the SQL queries you have written for detecting violations of constraints (e0 to 8) in the lab part of
the assignment and translate them into datalog.

Question 1.10.2 Write detection queries for transportation schema constraints (0
Points)

Consider the logical versions of the constraints defined for the transportations schema (see last assignment).
Write boolean detection queries for these constraints in Datalog. Note that the detection queries for foreign key
constraints require the use of negation in the Datalog queries.

PK(city) : ∀name, gP1, gP2, ppl1, ppl2 : city(name, gP1, ppl1) ∧ city(name, gP2, ppl2)→ gP1 = gP2 ∧ ppl1 = ppl2
PK(train) : ∀fCity, tCity, p1, p2 : train(fCity, tCity, p1) ∧ train(fCity, tCity, p2)→ p1 = p2
FK1(road) : ∀fCity, t, l : road(fCity, t, l)→ ∃gPrice, ppl : city(fCity, gPrice, ppl)
FK2(road) : ∀f, tCity, l : road(f, tCity, l)→ ∃gPrice, ppl : city(tCity, gPrice, ppl)
FK1(train) : ∀fCity, t, l : train(fCity, t, l)→ ∃gPrice, ppl : city(fCity, gPrice, ppl)
FK2(train) : ∀f, tCity, l : train(f, tCity, l)→ ∃gPrice, ppl : city(tCity, gPrice, ppl)

CS520 - Spring 2015: Page 7 (of 9)

Question 1.10.3 Write detection queries for denial constraints (0 Points)

Consider the denial constraints developed over the transportations schema (see last assignment). Write boolean
detection queries for these constraints in Datalog.

c1 :∀¬(city(X,Y, Z) ∧ Z > 200, 000 ∧ Y < 1.5)

c2 :∀¬(road(X,Y, L1) ∧ road(X,Y, L2) ∧ abs(L1− L2) > 10)

c3 :∀¬(train(X,Y, P) ∧ train(X,Z, P1) ∧ train(Z, Y, P2) ∧ P < P1)

c4 :∀¬(train(X,Y, P) ∧ train(X,Z, P1) ∧ train(Z, Y, P2) ∧ P < P2)

CS520 - Spring 2015: Page 8 (of 9)

Part 1.11 Query Equivalence and Containment (Total: Points)

Question 1.11.1 (6 Points)

Determine which of the following queries are contained in each other or equivalent to each other under set
semantics. Recall that to determine containment you need to check whether there are containment mappings
between queries. Write down one containment mapping for each pair of queries in each direction (if it exists)
and fill out the table below.

Q1(X,Y) : −R(X,Z), R(A, Y).
Q2(X,Y) : −R(X,Y).
Q3(X,Y) : −R(X,Z), R(A,Z), R(Y,Z), R(B,Z).
Q4(U,U) : −R(U,U).
Q5(X,Y) : −R(X,X), R(Y, Y).
Q6(X,Y) : −R(X,X), R(X,Z), R(Z, Y), R(Y, Y).

Q v Q′ Q1 Q2 Q3 Q4 Q5 Q6
Q1
Q2
Q3
Q4
Q5
Q6

CS520 - Spring 2015: Page 9 (of 9)

	Reuse Hospital Schema and Dataset (Total: 0 Points)
	Detecting Constraint Violations (Total: 0 Points)
	Fixing Violations (Total: 0 Points)
	Edit Distance (Total: 0 Points)
	Entity Resolution (Total: 0 Points)
	Data Fusion (Total: 0 Points)
	The Llunatic cleaning system (Total: 0 Points)
	Use BART to mess up some data (Total: 0 Points)
	Open end (Total: 0 Points)
	Detection Queries (Total: 0 Points)
	Translate detection queries (0 Points)
	Write detection queries for transportation schema constraints (0 Points)
	Write detection queries for denial constraints (0 Points)

	Query Equivalence and Containment (Total: Points)
	 (6 Points)

