
Name CWID

Final Exam

May 3rd, 2018
10:30-12:30

CS520 - Data Integration,
Warehousing, and Provenance

Results

Please leave this empty!

1.1 1.2 1.3 Sum

Instructions
• When writing a query, write the query in a way that it would work over all possible database

instances and not just for the given example instance!

Consider the following datawarehouse schema (star schema) and partial example instance. There is a single
fact table (warehouse) about items stored in a warehouse. Each row in this fact table stores the quantity of a
certain product (e.g., 3 Samson Galaxy phones) stored at a particular location and time. For each such set of
products we also record which supplier did supply the product. There are four dimension tables corresponding
to the following dimensions:

• Time with three levels (year, month, day)

• Location with four levels (state, city, zip, street)

• Supplier with two levels (type, sname)

• Product with three levels (category, brand, pname, price) where pname is the finest granularity and
brand and category are not comparable (some brands can have products from multiple categories and
categories obviously can contain have products from different brands). The same holds for price and
brand and price and category.

warehouse
TID LID SID PID numItems
1 4 1 1 15
2 1 5 2 10
100 1 76 4 22
.

timeDim
TID year month day
1 2010 1 1
2 2010 1 2
.
. . . 2018 5 1

locationDim
LID state city zip street
1 Illinois Chicago 60616 10 W 31st
2 Illinois Chicago 60615 900 Cottage Grove
2 Lousiana New Orleans 42345 12 Mark street
.

suppliedDim
SID type sname
1 electronics Nokiso
2 houseware Saemens
.

productDim
PID category brand pname price
1 computers Apple MacBook 1300
2 computers Dell Inspire 1000
3 smartphones Samsung Galaxy 1 600

DB - Spring 2018: Page 2 (of 20)

Hints:

• Attributes with black background form the primary key of a relation (e.g., PID for relation productDim)

• Attributes LID, TID, PID, and CID in the fact table are foreign keys to the dimension tables

DB - Spring 2018: Page 3 (of 20)

Part 1.1 Data Warehousing (Total: 40 Points)

Recall that you should write all queries according to the schema and not according to the example instance.

Question 1.1.1 (6 Points)

Write an SQL query that returns the 3 pairs of year and state with the highest total number of products in the
warehouses in that state during that year. Note that we are dealing with snapshot facts here, since the fact
table records for every TID a snapshot of the various warehouses recorded in the database and an item may
contribute to multiple snapshots.

Solution

SELECT max(s ta t e I t ems) AS t t lProc , s ta te , year
FROM

(SELECT sum (numItems) state I tems , TID , s tate , year
FROM warehouse w NATURAL JOIN timeDim t NATURAL JOIN locat ionDim l
GROUP BY s ta te , TID , year)

GROUP BY year , s t a t e
ORDER BY t t lProd DESC
LIMIT 3

DB - Spring 2018: Page 4 (of 20)

Question 1.1.2 (6 Points)

Write an SQL query that returns the total value (the number of items multiplied by the price) of products per
supplier for all Apple products stored in warehouses at January 1st of 2018.

Solution

SELECT sum (numItems ∗ p r i c e) , sname
FROM warehouse f

NATURAL JOIN
(SELECT PID , p r i c e FROM productDim WHERE brand = ’Apple ’) c
NATURAL JOIN
(SELECT TID FROM timeDime WHERE year = 2018 AND month = 1 AND day = 1) t
NATURAL JOIN
(SELECT LID FROM locat ionDim) l
NATURAL JOIN
(SELECT SID , sname FROM suppl ierDim o) l

GROUP BY sname

DB - Spring 2018: Page 5 (of 20)

Question 1.1.3 (7 Points)

Write an SQL query that returns the number of products (numItems) in total, per state, per city, and per zip
code stored in warehouses at January 1st of 2018.

Solution

SELECT sum (numItems) , s ta te , c i ty , z ip ,
GROUPING (s t a t e) AS gstate , GROUPING (c i t y) AS gc i ty , GROUPING (z ip) AS gz ip

FROM warehouse f
NATURAL JOIN
(SELECT TID FROM timeDime WHERE year = 2018 AND month = 1 AND day = 1) t
NATURAL JOIN
(SELECT LID , s tate , c i ty , z ip FROM locat ionDim) l

GROUP BY ROLLUP (s ta te , c i ty , z ip) ;

DB - Spring 2018: Page 6 (of 20)

Question 1.1.4 (7 Points)

Write an SQL query that returns for each year the change in the average of the total number of items in all
warehouses. Return the year, the difference in average to the previous year, the average for this year, and the
average for the following year.

Solution

WITH t t l AS (
SELECT sum (numItems) AS t t l I t ems , year , TID
FROM warehouse f

NATURAL JOIN
(SELECT TID , year FROM timeDime) t
GROUP BY TID , year

) ,
yavg AS (

SELECT avg (t t l I t ems) AS avgTotal , year
FROM t t l
GROUP BY year

)
sibAvg AS (

SELECT
f i r s t_va l u e (avgTotal) OVER (ORDER BY year

ROWS BETWEEN 1 PRECEDING
AND 1 FOLLOWING) AS prevYear ,

avgTotal AS curYear ,
l a s t_va lue (avgTotal) OVER (ORDER BY year ROWS

BETWEEN 1 PRECEDING
AND 1 FOLLOWING) AS nextYear ,

year
FROM yavg

)
SELECT year , curYear − prevYear AS prevDi f f , curYear , nextYear − curYear AS nex tD i f f
FROM sibAvg ;

for the last part we would also accept nextYear instead of nextYear − curYear because the question was worded
misleadingly

DB - Spring 2018: Page 7 (of 20)

Question 1.1.5 (7 Points)

Write an SQL query that returns the number of months during which the average of the total products in
warehouses is more than 100,000.

Solution

WITH t t l AS (
SELECT sum (numItems) AS t t l I t ems , year , TID
FROM warehouse f

NATURAL JOIN
(SELECT TID , year , month FROM timeDime) t
GROUP BY TID , year , month

) ,
a vg t t l AS (

SELECT avg (t t l I t ems) , year , month
FROM t t l
GROUP BY year , month
HAVING avg (t t l I t ems) > 100000

)
SELECT count (∗) FROM avg t t l ;

DB - Spring 2018: Page 8 (of 20)

Question 1.1.6 (7 Points)

Write an SQL query that returns the three cities with the highest average of the maximum of the total number
of items per year.

Solution

WITH t t l AS (
SELECT sum (numItems) AS t t l I t ems , year , TID , c i t y
FROM warehouse f

NATURAL JOIN
(SELECT TID , year FROM timeDime) t
NATURAL JOIN
(SELECT LID , c i t y FROM locat ionDim) l

GROUP BY TID , year , c i t y
) ,
yavg AS (

SELECT c i ty , avg (maxTotal) AS avg t t l
FROM

(SELECT max(t t l I t ems) AS maxTotal , year , c i t y
FROM t t l
GROUP BY year , c i t y) ymax

GROUP BY c i t y
)
SELECT ∗
FROM yavg
ORDER BY avg t t l DESC
LIMIT 3 ;

DB - Spring 2018: Page 9 (of 20)

Part 1.2 Big Data (Total: 30 Points)

Question 1.2.1 (12 Points)

Consider a dataset of key-value pairs (ssn,state) recording SSN of taxpayers and the state they live in.
Describe a MapReduce workflow that computes the number of tax payers per state. First explain the workflow
and then provide pseudocode for the map and reduce functions of your workflow.

Solution

The workflow consists of a single map reduce job. The map function m : (ssn, state) 7→ (state, 1) and the
reduce function r : [(state, 1), . . . , (state, 1)]︸ ︷︷ ︸

n

7→ (state, n)

Question 1.2.2 (5 Points)

Explain how group-by aggregation can be implemented using the MapReduce programming model.

Solution

Consider an aggregation Gγf(a)(R) where G is a list of group-by attributes, f is an aggregation function, and
a is an attribute from the input relation R.

• We use one map-reduce phase for this.

• The map function takes inputs (k, t) where k is a key and t is a full tuple and outputs (t.G, a).

• The reduce function r : [(g, a1), . . . , (g, an)]︸ ︷︷ ︸
n

7→ (g, f(a1, . . . , an))

DB - Spring 2018: Page 10 (of 20)

Question 1.2.3 Fault Tolerance (4 Points)

Explain in a few sentences why load balancing is critical for distributed systems to scale.

Solution
Many distributed computation require all nodes involved in a computation to finish processing before the output
is returned. In this case the slowest node will determine performance. With a large number of nodes, the effect
of random events that delay the progress of a node are more pronounced, because even if the probability of a
single node experiencing such an event is low, for a large number of nodes it is likely that at least one node
will experience a delay and, thus, slow down the computation. A similar argument holds for imbalances in
distributing the work across nodes. Load balancing refer to techniques that aim at distributing the load evenly
across nodes to reduce the chance of stragglers (nodes that are much slower than the rest of the cluster). Based
on the above argument this will improve scalability by reducing the effect random differences in work assigned
to nodes have on overall system performance.

Question 1.2.4 Distributed file systems (5 Points)

n HDFS automatically detects when a data node is down

n Writing of files in HDFS is append-only

q HDFS does not rely on replication to achieve fault tolerance

q HDFS scales well to large number of files

n In HDFS, clients communicate both with the name node as well as with data nodes

Question 1.2.5 MapReduce and Hadoop (4 Points)

n The map function in MapReduce is applied to single key-value pairs from the input.

n The map phase in MapReduce does not require any communication among workers

n Hadoop MapReduce uses an external merge sort algorithm to sort the input of reducers on their keys

q A shuffle only requires network communication, but not disk I/O

DB - Spring 2018: Page 11 (of 20)

DB - Spring 2018: Page 12 (of 20)

Part 1.3 Provenance (Total: 30 Points)

For the following the queries over the schema shown below, compute the provenance according to the following
provenance models for all their result tuples.

• Why-Provenance

• Minimal Why-Provenance

• Provenance Polynomials

Before presenting provenance, show the results for each query first and label the result tuples t1, t2, . . . , tn.
Consider the following database schema and instance:

location
lName city owner sizeSf

Windsor Castle Windsor Queen 40,000 l1
Big Ben London Public 3,500 l2

Stonehedge Amesbury Public 14,000 l3

account
witness suspect crimeId
Bob Peter 1 a1
Peter Bob 1 a2
Queen Bob 2 a3

crime
crimeId lName time type victim

1 Big Ben 10:30 murder Alice c1
2 Windsor Castle 11:00 theft Queen c2

DB - Spring 2018: Page 13 (of 20)

Question 1.3.1 (5 Points)

πcity(σsizeSf>10,000(location))

Solution
Result relation:

city
Windsor t1
Amesbury t2

Why provenance:

city
Windsor {{l1}}
Amesbury {{l3}}

Minimal Why provenance:

city
Windsor {{l1}}
Amesbury {{l3}}

Provenance Polynomials:

city
Windsor l1
Amesbury l3

Question 1.3.2 (8 Points)

q1
def= (location ./ account ./ crime)

q
def= πtype,time,city(q1)

Solution

DB - Spring 2018: Page 14 (of 20)

Result relation:

type time city
murder 10:30 London t1
theft 11:00 Windsor t2

Why provenance:

type time city
murder 10:30 London {{c1, l2, a1}, {c1, l2, a2}}
theft 11:00 Windsor {{c2, l1, a3}}

Minimal Why provenance:

type time city
murder 10:30 London {{c1, l2, a1}, {c1, l2, a2}}
theft 11:00 Windsor {{c2, l1, a3}}

Provenance Polynomials:

type time city
murder 10:30 London (c1 · l2 · a1) + (c1 · l2 · a2)
theft 11:00 Windsor c2 · l1 · a3

Question 1.3.3 (8 Points)

q1
def= ρs1←suspect,w1←witness(account)

q2
def= ρs2←suspect,w2←witness(account)

q
def= πcrimId,w1,w2(σw16=w2(crime ./ q1 ./ q2))

Solution

DB - Spring 2018: Page 15 (of 20)

Result relation:

crimeId w1 w2
1 Bob Peter t1
1 Peter Bob t2

Why provenance:

crimeId w1 w2
1 Bob Peter {{c1, a1, a2}}
1 Peter Bob {{c1, a1, a2}}

Minimal Why provenance:

crimeId w1 w2
1 Bob Peter {{c1, a1, a2}}
1 Peter Bob {{c1, a1, a2}}

Provenance Polynomials:

crimeId w1 w2
1 Bob Peter c1 · a1 · a2
1 Peter Bob c1 · a1 · a2

Question 1.3.4 (9 Points)

q
def= πcity(σtype=′murder′(location ./ crime)) ∪ πcity(σvictim=′Queen′(location ./ crime))

Solution

DB - Spring 2018: Page 16 (of 20)

Result relation:

city
London t1
Windsor t2

Why provenance:

city
London {{c1, l2}}
Windsor {{c2, l1}}

Minimal Why provenance:

city
London {{c1, l2}}
Windsor {{c2, l1}}

Provenance Polynomials:

city
London c1 · l2
Windsor c2 · l1

DB - Spring 2018: Page 17 (of 20)

DB - Spring 2018: Page 18 (of 20)

DB - Spring 2018: Page 19 (of 20)

DB - Spring 2018: Page 20 (of 20)

